Created
June 3, 2022 00:50
-
-
Save tomsing1/ad769fa0394bf9ce04b4f786528762a5 to your computer and use it in GitHub Desktop.
Querying NCBI GEO and Biosample databases from R using the rentrez package
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| library(glue) | |
| library(purrr) | |
| library(rentrez) | |
| library(snakecase) | |
| library(tidyr) | |
| library(xml2) | |
| rentrez::entrez_dbs() # for reference: available databases | |
| # query NCBI GEO for information about Series GSE178265 | |
| kStudy <- "GSE178265" | |
| terms <- entrez_db_searchable(db = "gds") # for reference: searchable fields | |
| # first, get additional information about this series, including its db ID. | |
| series <- entrez_search("gds", | |
| term = glue("{kStudy}[ACCN] AND gse[ETYP]")) | |
| # use the ID to fetch details, including the sample table | |
| series_summary <- entrez_summary(db = "gds", id = series$ids) | |
| # fetch sample annotations as XML records | |
| terms <- entrez_db_searchable(db = "biosample") # for reference: searchable fields | |
| sample_ids <- extract_from_esummary(series_summary, "samples") | |
| sample_accessions <- entrez_search("biosample", | |
| term = glue_collapse( | |
| glue("{sample_ids$accession}"), sep = " OR "), | |
| retmax = 1000L) | |
| # query biosample database for details on each sample | |
| records <- xml2::read_xml( | |
| entrez_fetch("biosample", id = sample_accessions$ids, rettype = "xml") | |
| ) | |
| # extract attributes for each sample | |
| samples <- xml2::xml_find_all(records, "//BioSampleSet/BioSample") | |
| df <- purrr::map_df(samples, function(x) { | |
| data.frame( | |
| accession = xml_attr(x, "accession"), | |
| title = xml_text(xml2::xml_find_all(x, "Description/Title")), | |
| biosample = xml_text(xml2::xml_find_all(x, "Ids/Id[@db = 'BioSample']")), | |
| geo = xml_text(xml2::xml_find_all(x, "Ids/Id[@db = 'GEO']")), | |
| organism = xml_attr(xml2::xml_find_all(x, "Description/Organism"), | |
| "taxonomy_name"), | |
| tags = purrr::map_chr( | |
| xml_attrs(xml2::xml_find_all(x, "Attributes/Attribute")), | |
| "attribute_name"), | |
| values = xml2::xml_text( | |
| xml2::xml_find_all(x, "Attributes/Attribute") | |
| ) | |
| ) | |
| }) | |
| # pivot into a wide data.frame | |
| df <- tidyr::pivot_wider( | |
| df, | |
| id_cols = c("accession", "biosample", "geo", "title", "organism"), | |
| names_from = "tags", | |
| values_from = "values") | |
| colnames(df) <- snakecase::to_snake_case(colnames(df)) | |
| dim(df) | |
| head(df) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment