Created
October 31, 2017 00:48
-
-
Save tomthetrainer/9fab44ae3d4ad4b8983e569e5aefe868 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import numpy | |
import pandas | |
from keras.models import Sequential | |
from keras.layers import Dense | |
from keras.wrappers.scikit_learn import KerasClassifier | |
from keras.utils import np_utils | |
from sklearn.cross_validation import cross_val_score, KFold | |
from sklearn.preprocessing import LabelEncoder | |
from sklearn.pipeline import Pipeline | |
# fix random seed for reproducibility | |
seed = 7 | |
numpy.random.seed(seed) | |
# load dataset | |
dataframe = pandas.read_csv("iris.csv", header=None) | |
dataset = dataframe.values | |
X = dataset[:,0:4].astype(float) | |
Y = dataset[:,4] | |
print(X) | |
print(Y) | |
#encode class values as integers | |
encoder = LabelEncoder() | |
encoder.fit(Y) | |
encoded_Y = encoder.transform(Y) | |
# convert integers to dummy variables (hot encoded) | |
dummy_y = np_utils.to_categorical(encoded_Y) | |
print(dummy_y) | |
# define baseline model | |
#def baseline_model(): | |
# create model | |
model = Sequential() | |
model.add(Dense(4, input_dim=4, activation='relu')) | |
model.add(Dense(3,activation='sigmoid')) | |
# Compile model | |
model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) | |
# return model | |
#model.fit | |
model.fit(X, dummy_y, nb_epoch=200, batch_size=5) | |
prediction = model.predict(numpy.array([[4.6,3.6,1.0,0.2]])); | |
print(prediction); | |
# To casve just the weights | |
model.save_weights('/tmp/iris_model_weights') | |
# To save the weights and the config | |
# Note this is what is used for this demo | |
model.save('/tmp/full_iris_model') | |
# To save the Json config to a file | |
json_string = model.to_json() | |
text_file = open("/tmp/iris_model_json", "w") | |
text_file.write(json_string) | |
text_file.close() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment