Created
January 21, 2022 02:52
-
-
Save toniesteves/1e06abb1fcdafde8508c0d3f0b4df89a to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import numpy as np | |
import os | |
import skimage.io as io | |
import skimage.transform as trans | |
import numpy as np | |
from tensorflow.keras.models import * | |
from tensorflow.keras.layers import * | |
from tensorflow.keras.optimizers import * | |
from tensorflow.keras.callbacks import ModelCheckpoint, LearningRateScheduler | |
from tensorflow.keras import backend as keras | |
def unet(pretrained_weights = None,input_size = (512,512,3)): | |
inputs = Input(input_size) | |
conv1 = Conv2D(64, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(inputs) | |
conv1 = Conv2D(64, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(conv1) | |
pool1 = MaxPooling2D(pool_size=(2, 2))(conv1) | |
conv2 = Conv2D(128, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(pool1) | |
conv2 = Conv2D(128, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(conv2) | |
pool2 = MaxPooling2D(pool_size=(2, 2))(conv2) | |
conv3 = Conv2D(256, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(pool2) | |
conv3 = Conv2D(256, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(conv3) | |
pool3 = MaxPooling2D(pool_size=(2, 2))(conv3) | |
conv4 = Conv2D(512, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(pool3) | |
conv4 = Conv2D(512, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(conv4) | |
drop4 = Dropout(0.5)(conv4) | |
pool4 = MaxPooling2D(pool_size=(2, 2))(drop4) | |
conv5 = Conv2D(1024, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal', name = "embeddings_out")(pool4) | |
conv5 = Conv2D(1024, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(conv5) | |
drop5 = Dropout(0.5)(conv5) | |
up6 = Conv2D(512, 2, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(UpSampling2D(size = (2,2))(drop5)) | |
merge6 = concatenate([drop4,up6], axis = 3) | |
conv6 = Conv2D(512, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(merge6) | |
conv6 = Conv2D(512, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(conv6) | |
up7 = Conv2D(256, 2, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(UpSampling2D(size = (2,2))(conv6)) | |
merge7 = concatenate([conv3,up7], axis = 3) | |
conv7 = Conv2D(256, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(merge7) | |
conv7 = Conv2D(256, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(conv7) | |
up8 = Conv2D(128, 2, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(UpSampling2D(size = (2,2))(conv7)) | |
merge8 = concatenate([conv2,up8], axis = 3) | |
conv8 = Conv2D(128, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(merge8) | |
conv8 = Conv2D(128, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(conv8) | |
up9 = Conv2D(64, 2, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(UpSampling2D(size = (2,2))(conv8)) | |
merge9 = concatenate([conv1,up9], axis = 3) | |
conv9 = Conv2D(64, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(merge9) | |
conv9 = Conv2D(64, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(conv9) | |
conv9 = Conv2D(2, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(conv9) | |
conv10 = Conv2D(1, 1, activation = 'sigmoid')(conv9) | |
model = Model(inputs, conv10) | |
#model.summary() | |
if(pretrained_weights): | |
model.load_weights(pretrained_weights) | |
return model | |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment