Created
November 18, 2011 21:13
-
-
Save tonious/1377768 to your computer and use it in GitHub Desktop.
A quick AVL tree implementation in c.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#define _XOPEN_SOURCE 500 /* Enable certain library functions (strdup) on linux. See feature_test_macros(7) */ | |
#include <time.h> | |
#include <stdlib.h> | |
#include <stdio.h> | |
#include <limits.h> | |
#include <string.h> | |
#include <assert.h> | |
struct avl_node_s { | |
struct avl_node_s *left; | |
struct avl_node_s *right; | |
int value; | |
}; | |
typedef struct avl_node_s avl_node_t; | |
struct avl_tree_s { | |
struct avl_node_s *root; | |
}; | |
typedef struct avl_tree_s avl_tree_t; | |
/* Create a new AVL tree. */ | |
avl_tree_t *avl_create() { | |
avl_tree_t *tree = NULL; | |
if( ( tree = malloc( sizeof( avl_tree_t ) ) ) == NULL ) { | |
return NULL; | |
} | |
tree->root = NULL; | |
return tree; | |
} | |
/* Initialize a new node. */ | |
avl_node_t *avl_create_node() { | |
avl_node_t *node = NULL; | |
if( ( node = malloc( sizeof( avl_node_t ) ) ) == NULL ) { | |
return NULL; | |
} | |
node->left = NULL; | |
node->right = NULL; | |
node->value = 0; | |
return node; | |
} | |
/* Find the height of an AVL node recursively */ | |
int avl_node_height( avl_node_t *node ) { | |
int height_left = 0; | |
int height_right = 0; | |
if( node->left ) height_left = avl_node_height( node->left ); | |
if( node->right ) height_right = avl_node_height( node->right ); | |
return height_right > height_left ? ++height_right : ++height_left; | |
} | |
/* Find the balance of an AVL node */ | |
int avl_balance_factor( avl_node_t *node ) { | |
int bf = 0; | |
if( node->left ) bf += avl_node_height( node->left ); | |
if( node->right ) bf -= avl_node_height( node->right ); | |
return bf ; | |
} | |
/* Left Left Rotate */ | |
avl_node_t *avl_rotate_leftleft( avl_node_t *node ) { | |
avl_node_t *a = node; | |
avl_node_t *b = a->left; | |
a->left = b->right; | |
b->right = a; | |
return( b ); | |
} | |
/* Left Right Rotate */ | |
avl_node_t *avl_rotate_leftright( avl_node_t *node ) { | |
avl_node_t *a = node; | |
avl_node_t *b = a->left; | |
avl_node_t *c = b->right; | |
a->left = c->right; | |
b->right = c->left; | |
c->left = b; | |
c->right = a; | |
return( c ); | |
} | |
/* Right Left Rotate */ | |
avl_node_t *avl_rotate_rightleft( avl_node_t *node ) { | |
avl_node_t *a = node; | |
avl_node_t *b = a->right; | |
avl_node_t *c = b->left; | |
a->right = c->left; | |
b->left = c->right; | |
c->right = b; | |
c->left = a; | |
return( c ); | |
} | |
/* Right Right Rotate */ | |
avl_node_t *avl_rotate_rightright( avl_node_t *node ) { | |
avl_node_t *a = node; | |
avl_node_t *b = a->right; | |
a->right = b->left; | |
b->left = a; | |
return( b ); | |
} | |
/* Balance a given node */ | |
avl_node_t *avl_balance_node( avl_node_t *node ) { | |
avl_node_t *newroot = NULL; | |
/* Balance our children, if they exist. */ | |
if( node->left ) | |
node->left = avl_balance_node( node->left ); | |
if( node->right ) | |
node->right = avl_balance_node( node->right ); | |
int bf = avl_balance_factor( node ); | |
if( bf >= 2 ) { | |
/* Left Heavy */ | |
if( avl_balance_factor( node->left ) <= -1 ) | |
newroot = avl_rotate_leftright( node ); | |
else | |
newroot = avl_rotate_leftleft( node ); | |
} else if( bf <= -2 ) { | |
/* Right Heavy */ | |
if( avl_balance_factor( node->right ) >= 1 ) | |
newroot = avl_rotate_rightleft( node ); | |
else | |
newroot = avl_rotate_rightright( node ); | |
} else { | |
/* This node is balanced -- no change. */ | |
newroot = node; | |
} | |
return( newroot ); | |
} | |
/* Balance a given tree */ | |
void avl_balance( avl_tree_t *tree ) { | |
avl_node_t *newroot = NULL; | |
newroot = avl_balance_node( tree->root ); | |
if( newroot != tree->root ) { | |
tree->root = newroot; | |
} | |
} | |
/* Insert a new node. */ | |
void avl_insert( avl_tree_t *tree, int value ) { | |
avl_node_t *node = NULL; | |
avl_node_t *next = NULL; | |
avl_node_t *last = NULL; | |
/* Well, there must be a first case */ | |
if( tree->root == NULL ) { | |
node = avl_create_node(); | |
node->value = value; | |
tree->root = node; | |
/* Okay. We have a root already. Where do we put this? */ | |
} else { | |
next = tree->root; | |
while( next != NULL ) { | |
last = next; | |
if( value < next->value ) { | |
next = next->left; | |
} else if( value > next->value ) { | |
next = next->right; | |
/* Have we already inserted this node? */ | |
} else if( value == next->value ) { | |
/* This shouldn't happen. */ | |
} | |
} | |
node = avl_create_node(); | |
node->value = value; | |
if( value < last->value ) last->left = node; | |
if( value > last->value ) last->right = node; | |
} | |
avl_balance( tree ); | |
} | |
/* Find the node containing a given value */ | |
avl_node_t *avl_find( avl_tree_t *tree, int value ) { | |
avl_node_t *current = tree->root; | |
while( current && current->value != value ) { | |
if( value > current->value ) | |
current = current->right; | |
else | |
current = current->left; | |
} | |
return current; | |
} | |
/* Do a depth first traverse of a node. */ | |
void avl_traverse_node_dfs( avl_node_t *node, int depth ) { | |
int i = 0; | |
if( node->left ) avl_traverse_node_dfs( node->left, depth + 2 ); | |
for( i = 0; i < depth; i++ ) putchar( ' ' ); | |
printf( "%d: %d\n", node->value, avl_balance_factor( node ) ); | |
if( node->right ) avl_traverse_node_dfs( node->right, depth + 2 ); | |
} | |
/* Do a depth first traverse of a tree. */ | |
void avl_traverse_dfs( avl_tree_t *tree ) { | |
avl_traverse_node_dfs( tree->root, 0 ); | |
} | |
int main( int argc, char **argv ) { | |
avl_tree_t *tree = NULL; | |
int i = 0; | |
int r = 0; | |
tree = avl_create(); | |
/* Insert 1-20 in random order -- this is suboptimal, but easy */ | |
srand( time( NULL ) ); | |
for( i = 0; i < 20; i++ ) { | |
do { | |
r = rand() % 20 + 1; | |
} while( avl_find( tree, r ) ); | |
avl_insert( tree, r ); | |
} | |
avl_traverse_dfs( tree ); | |
return 0; | |
} | |
I am looking for a function to delete nodes! OTL
This isn't an AVL tree it's just a generic BST with balance and height functions. Plus the recursive calls will kill the stack for large data sets, such as described by other users.
I have done a benchmark test to this code, it takes 8331ms to insert 16 * 1024 randomly distributed int32_t values generated by mt19937 (gcc-13, -O2), it's totally a SLOW AVL tree implementation!
#include <kerbal/container/vector.hpp>
#include <kerbal/test/runtime_timer.hpp>
#include <kerbal/random/mersenne_twister_engine.hpp>
#include <iostream>
int main( int argc, char **argv ) {
typedef kerbal::type_traits::integral_constant<std::size_t, 16 * 1024> N;
kerbal::container::vector<int> v;
{
v.resize(N::value);
kerbal::random::mt19937 eg;
eg.generate_n(&v[0], N::value);
//kerbal::algorithm::iota(v.begin(), v.end(), 0);
}
avl_tree_t *tree = avl_create();
{
kerbal::test::runtime_timer t;
for (N::value_type i = 0; i < N::value; ++i) {
avl_insert(tree, v[i]);
}
std::cout << t.count() << std::endl;
}
return 0;
}
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
@JKornev well said. I stand corrected.