Last active
October 24, 2019 12:58
-
-
Save tonussi/f27c4816e661cce443ea11c5d6430f5b to your computer and use it in GitHub Desktop.
predicaot2
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
> m4 <- lm(geo$preco ~ geo$area + geo$coef_ap + geo$acl_decl + geo$frente, data=geo) | |
> | |
> summary(m4) | |
Call: | |
lm(formula = geo$preco ~ geo$area + geo$coef_ap + geo$acl_decl + | |
geo$frente, data = geo) | |
Residuals: | |
Min 1Q Median 3Q Max | |
-15525 -5235 -1858 3628 52939 | |
Coefficients: | |
Estimate Std. Error t value Pr(>|t|) | |
(Intercept) -41771.930 16298.496 -2.563 0.013501 * | |
geo$area 17.276 6.424 2.689 0.009761 ** | |
geo$coef_ap 8195.227 2238.198 3.662 0.000614 *** | |
geo$acl_decl 55767.600 18004.224 3.097 0.003227 ** | |
geo$frente 221.517 94.485 2.344 0.023152 * | |
--- | |
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 | |
Residual standard error: 11020 on 49 degrees of freedom | |
Multiple R-squared: 0.5867, Adjusted R-squared: 0.5529 | |
F-statistic: 17.39 on 4 and 49 DF, p-value: 6.111e-09 | |
> summary(m4) | |
Call: | |
lm(formula = geo$preco ~ geo$area + geo$coef_ap + geo$acl_decl + | |
geo$frente, data = geo) | |
Residuals: | |
Min 1Q Median 3Q Max | |
-15525 -5235 -1858 3628 52939 | |
Coefficients: | |
Estimate Std. Error t value Pr(>|t|) | |
(Intercept) -41771.930 16298.496 -2.563 0.013501 * | |
geo$area 17.276 6.424 2.689 0.009761 ** | |
geo$coef_ap 8195.227 2238.198 3.662 0.000614 *** | |
geo$acl_decl 55767.600 18004.224 3.097 0.003227 ** | |
geo$frente 221.517 94.485 2.344 0.023152 * | |
--- | |
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 | |
Residual standard error: 11020 on 49 degrees of freedom | |
Multiple R-squared: 0.5867, Adjusted R-squared: 0.5529 | |
F-statistic: 17.39 on 4 and 49 DF, p-value: 6.111e-09 | |
> | |
> summary(m4) | |
Call: | |
lm(formula = geo$preco ~ geo$area + geo$coef_ap + geo$acl_decl + | |
geo$frente, data = geo) | |
Residuals: | |
Min 1Q Median 3Q Max | |
-15525 -5235 -1858 3628 52939 | |
Coefficients: | |
Estimate Std. Error t value Pr(>|t|) | |
(Intercept) -41771.930 16298.496 -2.563 0.013501 * | |
geo$area 17.276 6.424 2.689 0.009761 ** | |
geo$coef_ap 8195.227 2238.198 3.662 0.000614 *** | |
geo$acl_decl 55767.600 18004.224 3.097 0.003227 ** | |
geo$frente 221.517 94.485 2.344 0.023152 * | |
--- | |
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 | |
Residual standard error: 11020 on 49 degrees of freedom | |
Multiple R-squared: 0.5867, Adjusted R-squared: 0.5529 | |
F-statistic: 17.39 on 4 and 49 DF, p-value: 6.111e-09 | |
> | |
> residuos <- rstandard(m4) | |
> | |
> preditos <- fitted(m4) | |
> | |
> plot(residuos ~ preditos) | |
> | |
> qqnorm(residuos) | |
> | |
> qqline(residuos) | |
> | |
> shapiro.test(residuos) | |
Shapiro-Wilk normality test | |
data: residuos | |
W = 0.82459, p-value = 1.653e-06 | |
> | |
> |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
> coefap <- geo$coef_ap^2 | |
> frente <- geo$frente^3 | |
> acldecl <- 1/geo$acl_decl | |
> m4 <- lm(log(geo$preco) ~ log(geo$area) + coefap + acldecl + frente, data=geo) | |
> | |
> summary(m4) | |
Call: | |
lm(formula = log(geo$preco) ~ log(geo$area) + coefap + acldecl + | |
frente, data = geo) | |
Residuals: | |
Min 1Q Median 3Q Max | |
-0.30260 -0.14413 -0.03326 0.09578 0.64391 | |
Coefficients: | |
Estimate Std. Error t value Pr(>|t|) | |
(Intercept) 10.546673 0.660423 15.970 < 2e-16 *** | |
log(geo$area) 0.227991 0.098045 2.325 0.0242 * | |
coefap 0.041921 0.009218 4.547 3.58e-05 *** | |
acldecl -1.534453 0.258429 -5.938 2.92e-07 *** | |
frente 0.003400 0.001822 1.867 0.0679 . | |
--- | |
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 | |
Residual standard error: 0.2031 on 49 degrees of freedom | |
Multiple R-squared: 0.709, Adjusted R-squared: 0.6852 | |
F-statistic: 29.84 on 4 and 49 DF, p-value: 1.35e-12 | |
> | |
> residuos <- rstandard(m4) | |
> | |
> preditos <- fitted(m4) | |
> | |
> plot(residuos ~ preditos) | |
> | |
> qqnorm(residuos) | |
> | |
> qqline(residuos) | |
> | |
> shapiro.test(residuos) | |
Shapiro-Wilk normality test | |
data: residuos | |
W = 0.9426, p-value = 0.01198 | |
> | |
> |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
MODELO 1 SEM TRANSFORMAR VARIÁVEIS