Last active
April 27, 2021 13:24
-
-
Save tonyfischetti/b4fd17a94aa0a6e07fdb to your computer and use it in GitHub Desktop.
Code for my blog post "Kickin' it with elastic net regression"
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#!/usr/bin/Rscript --vanilla | |
########################################################### | |
## ## | |
## elastic.R ## | |
## ## | |
## Author: Tony Fischetti ## | |
## [email protected] ## | |
## ## | |
########################################################### | |
# workspace cleanup | |
rm(list=ls()) | |
# options | |
options(echo=TRUE) | |
options(stringsAsFactors=FALSE) | |
# cli args | |
args <- commandArgs(trailingOnly=TRUE) | |
# libraries | |
library(dplyr) | |
library(magrittr) | |
library(assertr) | |
library(tidyr) | |
library(ggplot2) | |
library(car) | |
library(glmnet) | |
library(boot) | |
library(gridExtra) | |
# 32x10 | |
# mean vif: 9.577414 | |
X <- model.matrix(mpg ~ ., data=mtcars)[,-1] | |
y <- mtcars$mpg | |
alphas <- seq(0, 1, by=.002) | |
mses <- numeric(501) | |
mins <- numeric(501) | |
maxes <- numeric(501) | |
for(i in 1:501){ | |
cvfits <- cv.glmnet(X, y, alpha=alphas[i], nfolds=32) | |
loc <- which(cvfits$lambda==cvfits$lambda.min) | |
maxes[i] <- cvfits$lambda %>% max | |
mins[i] <- cvfits$lambda %>% min | |
mses[i] <- cvfits$cvm[loc] | |
} | |
this <- data.frame(mse=mses, alpha=alphas) | |
plot1 <- ggplot(this, aes(x=alpha, y=mse)) + | |
geom_point(shape=1) + | |
#geom_smooth() + | |
ylab("LOOCV mean squared error") + | |
xlab("alpha parameter") + | |
ggtitle("model error of highest performing regularized elastic-net | |
regression as a function of alpha parameter | |
<using mtcars predicting mpg>") | |
# kitchen.sink <- glm(mpg ~ ., data=mtcars) | |
# cv.glm(mtcars, kitchen.sink) # 12.02194 | |
errors <- numeric(nrow(mtcars)) | |
for(i in 1:nrow(mtcars)){ | |
train <- mtcars[-i,] | |
test <- mtcars[i,] | |
kitchen.sink <- glm(mpg ~ ., data=train) | |
the.pred <- predict(kitchen.sink, newdata=test) | |
errors[i] <- (the.pred - test$mpg)^2 | |
} | |
mean(errors) # 12.18156 | |
full <- glm(mpg ~ ., data=mtcars) | |
stepped <- step(full, direction = "both") | |
sub.coeffs <- names(stepped$coefficients[-1]) | |
errors <- numeric(nrow(mtcars)) | |
for(i in 1:nrow(mtcars)){ | |
train <- mtcars[-i,] | |
test <- mtcars[i,] | |
new.feat.sub <- train[, sub.coeffs] | |
new.feat.sub$mpg <- train$mpg | |
mod <- glm(mpg ~ ., data=new.feat.sub) | |
the.pred <- predict(mod, newdata=test) | |
errors[i] <- (the.pred - test$mpg)^2 | |
} | |
mean(errors) # 7.228 | |
# substantial variation in selected features | |
errors <- numeric(nrow(mtcars)) | |
for(i in 1:nrow(mtcars)){ | |
train <- mtcars[-i,] | |
test <- mtcars[i,] | |
smaller <- glm(mpg ~ ., data=train) | |
stepped <- step(smaller, direction="both", trace=0) | |
new.feat.sub <- train[, names(stepped$coefficients[-1])] | |
print(names(stepped$coefficients[-1])) | |
new.feat.sub$mpg <- train$mpg | |
mod <- glm(mpg ~ ., data=new.feat.sub) | |
the.pred <- predict(mod, newdata=test) | |
errors[i] <- (the.pred - test$mpg)^2 | |
} | |
mean(errors) # 13.27429 | |
other.errors <- data.frame(method=c("kitchen sink", | |
"bad stepwise est.", | |
"better stepwise est."), | |
errors=c(12.18156, 7.228, 13.27429)) | |
plot2 <- ggplot(this, aes(x=alpha, y=mse)) + | |
geom_point(shape=1) + | |
#geom_smooth() + | |
ylab("LOOCV mean squared error") + | |
xlab("alpha parameter") + | |
ggtitle("[with kitchen sink and stepwise LOOCV MSEs]") + | |
geom_hline(aes(yintercept=errors, | |
color=method, group=method), | |
size=2, data=other.errors, show_guide=TRUE) | |
grid.arrange(plot1, plot2, ncol=2) | |
#--------------------------------------# | |
#--------------------------------------# | |
#--------------------------------------# | |
# 517 x 11 | |
# mean VIF: 1.727451 | |
fires <- read.csv("./forestfires.csv") | |
fires$month <- NULL | |
fires$area <- log(fires$area+1) | |
X <- model.matrix(area ~ ., data=fires)[,-1] | |
y <- fires$area | |
alphas <- seq(0.0, 1, by=.01) | |
mses <- numeric(101) | |
mins <- numeric(101) | |
maxes <- numeric(101) | |
for(i in 1:101){ | |
cvfits <- cv.glmnet(X, y, alpha=alphas[i], nfolds=400) | |
loc <- which(cvfits$lambda==cvfits$lambda.min) | |
maxes[i] <- cvfits$lambda %>% max | |
mins[i] <- cvfits$lambda %>% min | |
mses[i] <- cvfits$cvm[loc] | |
} | |
this <- data.frame(mse=mses, alpha=alphas) | |
plot1 <- ggplot(this, aes(x=alpha, y=mse)) + | |
geom_point(shape=1) + | |
geom_smooth() + | |
ylab("400-fold cross validation mean squared error") + | |
xlab("alpha parameter") + | |
ggtitle("model error of highest performing regularized | |
elastic-net regression as a function of alpha parameter | |
<using forest fire data>") | |
# kitchen.sink <- glm(area ~ ., data=fires) | |
# cv.glm(fires, kitchen.sink)$delta[2] # 2.131694 | |
# | |
# step(kitchen.sink, direction="both") # 4 variables | |
# stepped <- glm(area ~ X + DMC + RH + wind, data=fires) | |
# cv.glm(fires, stepped) # 1.951653 | |
# | |
errors <- numeric(nrow(fires)) | |
for(i in 1:nrow(fires)){ | |
train <- fires[-i,] | |
test <- fires[i,] | |
kitchen.sink <- glm(area ~ ., data=train) | |
the.pred <- predict(kitchen.sink, newdata=test) | |
errors[i] <- (the.pred - test$area)^2 | |
} | |
mean(errors) # 2.132028 | |
full <- glm(area ~ ., data=fires) | |
stepped <- step(full, direction = "both") | |
sub.coeffs <- names(stepped$coefficients[-1]) | |
errors <- numeric(nrow(fires)) | |
for(i in 1:nrow(fires)){ | |
train <- fires[-i,] | |
test <- fires[i,] | |
new.feat.sub <- train[, sub.coeffs] | |
new.feat.sub$area <- train$area | |
mod <- glm(area ~ ., data=new.feat.sub) | |
the.pred <- predict(mod, newdata=test) | |
errors[i] <- (the.pred - test$area)^2 | |
} | |
mean(errors) # 1.951689 | |
# much less variation in selected features | |
errors <- numeric(nrow(fires)) | |
for(i in 1:nrow(fires)){ | |
train <- fires[-i,] | |
test <- fires[i,] | |
smaller <- glm(area ~ ., data=train) | |
stepped <- step(smaller, direction="both", trace=0) | |
new.feat.sub <- train[, names(stepped$coefficients[-1])] | |
print(names(stepped$coefficients[-1])) | |
new.feat.sub$area <- train$area | |
mod <- glm(area ~ ., data=new.feat.sub) | |
the.pred <- predict(mod, newdata=test) | |
errors[i] <- (the.pred - test$area)^2 | |
} | |
mean(errors) # 2.151955 | |
other.errors <- data.frame(method=c("kitchen sink", | |
"bad stepwise est.", | |
"better stepwise est."), | |
errors=c(2.132028, 1.951689, 2.151955)) | |
plot2 <- ggplot(this, aes(x=alpha, y=mse)) + | |
geom_point(shape=1) + | |
geom_smooth() + | |
ylab("400-fold cross validation mean squared error") + | |
xlab("alpha parameter") + | |
ggtitle("[with kitchen sink and stepwise LOOCV MSEs]") + | |
geom_hline(aes(yintercept=errors, | |
color=method, group=method), | |
size=2, data=other.errors, show_guide=TRUE) | |
plot2 <- plot2 + ylab("400-fold cross validation mean squared error") | |
grid.arrange(plot1, plot2, ncol=2) | |
#--------------------------------------# | |
#--------------------------------------# | |
#--------------------------------------# | |
# 100x20 | |
# mean vif: 1.225789 | |
data(QuickStartExample) | |
X <- x | |
mock.frame <- data.frame(X) | |
mock.frame$target <- y | |
alphas <- seq(0, 1, by=.002) | |
mses <- numeric(501) | |
mins <- numeric(501) | |
maxes <- numeric(501) | |
for(i in 1:501){ | |
cvfits <- cv.glmnet(X, y, alpha=alphas[i], nfolds=100) | |
loc <- which(cvfits$lambda==cvfits$lambda.min) | |
maxes[i] <- cvfits$lambda %>% max | |
mins[i] <- cvfits$lambda %>% min | |
mses[i] <- cvfits$cvm[loc] | |
} | |
this <- data.frame(mse=mses, alpha=alphas) | |
plot1 <- ggplot(this, aes(x=alpha, y=mse)) + | |
geom_point(shape=1) + | |
#geom_smooth() + | |
ylab("LOOCV mean squared error") + | |
xlab("alpha parameter") + | |
ggtitle("model error of highest performing regularized | |
elastic-net regression as a function of alpha parameter | |
<'quickstart' glmnet data>") | |
# kitchen.sink <- glm(target ~ ., data=mock.frame) | |
# cv.glm(mock.frame, kitchen.sink)$delta[2] # 1.142114 | |
# | |
# step(kitchen.sink, direction="both") # 8 variables | |
# stepped <- glm(target ~ X1 + X3 + X5 + X6 + X8 + X11 + X14 + X20, data=mock.frame) | |
# cv.glm(mock.frame, stepped) # 0.9433261 | |
errors <- numeric(nrow(mock.frame)) | |
for(i in 1:nrow(mock.frame)){ | |
train <- mock.frame[-i,] | |
test <- mock.frame[i,] | |
kitchen.sink <- glm(target ~ ., data=train) | |
the.pred <- predict(kitchen.sink, newdata=test) | |
errors[i] <- (the.pred - test$target)^2 | |
} | |
mean(errors) # 1.144384 | |
full <- glm(target ~ ., data=mock.frame) | |
stepped <- step(full, direction = "both") | |
sub.coeffs <- names(stepped$coefficients[-1]) | |
errors <- numeric(nrow(mock.frame)) | |
for(i in 1:nrow(mock.frame)){ | |
train <- mock.frame[-i,] | |
test <- mock.frame[i,] | |
new.feat.sub <- train[, sub.coeffs] | |
new.feat.sub$target <- train$target | |
mod <- glm(target ~ ., data=new.feat.sub) | |
the.pred <- predict(mod, newdata=test) | |
errors[i] <- (the.pred - test$target)^2 | |
} | |
mean(errors) # 0.9441541 | |
# virtually no variation in selected features | |
errors <- numeric(nrow(mock.frame)) | |
for(i in 1:nrow(mock.frame)){ | |
train <- mock.frame[-i,] | |
test <- mock.frame[i,] | |
smaller <- glm(target ~ ., data=train) | |
stepped <- step(smaller, direction="both", trace=0) | |
new.feat.sub <- train[, names(stepped$coefficients[-1])] | |
print(names(stepped$coefficients[-1])) | |
new.feat.sub$target <- train$target | |
mod <- glm(target ~ ., data=new.feat.sub) | |
the.pred <- predict(mod, newdata=test) | |
errors[i] <- (the.pred - test$target)^2 | |
} | |
mean(errors) # 0.9544712 | |
other.errors <- data.frame(method=c("kitchen sink", | |
"bad stepwise est.", | |
"better stepwise est."), | |
errors=c(1.144384, 0.9441541, 0.9544712)) | |
plot2 <- ggplot(this, aes(x=alpha, y=mse)) + | |
geom_point(shape=1) + | |
#geom_smooth() + | |
ylab("LOOCV mean squared error") + | |
xlab("alpha parameter") + | |
ggtitle("[with kitchen sink and stepwise LOOCV MSEs]") + | |
geom_hline(aes(yintercept=errors, | |
color=method, group=method), | |
size=2, data=other.errors, show_guide=TRUE) | |
grid.arrange(plot1, plot2, ncol=2) | |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
you might be interested in the c060 package which uses an algorithm to do what you're doing