Last active
June 7, 2020 02:06
-
-
Save tonyreina/4f96a6272794a179c34cbabe847f6bf6 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# !/usr/bin/env python | |
""" | |
Copyright (c) 2018 Intel Corporation | |
| |
Licensed under the Apache License, Version 2.0 (the 'License'); | |
you may not use this file except in compliance with the License. | |
You may obtain a copy of the License at | |
| |
http://www.apache.org/licenses/LICENSE-2.0 | |
| |
Unless required by applicable law or agreed to in writing, software | |
distributed under the License is distributed on an 'AS IS' BASIS, | |
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
See the License for the specific language governing permissions and | |
limitations under the License. | |
""" | |
import os | |
import sys | |
import argparse | |
from pathlib import Path | |
import tensorflow as tf | |
from tensorflow.python.framework import graph_util | |
from tensorflow.python.framework import graph_io | |
import tensorflow.keras.backend as K | |
def setKerasOptions(): | |
K._LEARNING_PHASE = tf.constant(0) | |
K.set_learning_phase(False) | |
K.set_learning_phase(0) | |
K.set_image_data_format('channels_last') | |
def getInputParameters(): | |
parser = argparse.ArgumentParser() | |
parser.add_argument('--input_model', '-m', required=True, type=str, help='Path to Keras model.') | |
parser.add_argument('--num_outputs', '-no', required=False, type=int, help='Number of outputs. 1 by default.', default=1) | |
return parser | |
def export_keras_to_tf(input_model, output_model, num_output): | |
print('Loading Keras model: ', input_model) | |
setKerasOptions() | |
keras_model = tf.keras.models.load_model(input_model, compile=False) | |
predictions = [None] * num_output | |
prediction_node_names = [None] * num_output | |
for i in range(num_output): | |
prediction_node_names[i] = 'output_node' + str(i) | |
predictions[i] = tf.identity(keras_model.outputs[i], name=prediction_node_names[i]) | |
sess = K.get_session() | |
with sess.as_default(): | |
print(' --- Extracting default graph.') | |
def_graph = sess.graph.as_graph_def() | |
print(' --- Converting variables to constants.') | |
constant_graph = tf.compat.v1.graph_util.convert_variables_to_constants(sess, def_graph, prediction_node_names) | |
print(' --- Removing training nodes.') | |
infer_graph = tf.compat.v1.graph_util.remove_training_nodes(constant_graph) | |
graph_io.write_graph(infer_graph, '.', output_model, as_text=True) | |
def main(): | |
argv = getInputParameters().parse_args() | |
input_model = argv.input_model | |
num_output = argv.num_outputs | |
output_model = str(Path(input_model).name) + '.pb' | |
prediction_node_names = export_keras_to_tf(input_model, output_model, num_output) | |
print('Output nodes are:', prediction_node_names) | |
print('Saved as TF frozen model to: ', output_model) | |
if __name__ == '__main__': | |
main() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment