Created
September 6, 2018 02:14
-
-
Save tonyyang-svail/09a45375d02d1fb2032177cdef5a5470 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from __future__ import absolute_import | |
from __future__ import division | |
from __future__ import print_function | |
import tensorflow as tf | |
import tensorflow.contrib.eager as tfe | |
tfe.enable_eager_execution() | |
NOISE_DIMENSION = 10 | |
INPUT_DIMENSION = 784 | |
HIDDEN_DIMENSION = 100 | |
NUM_CLASS = 2 | |
BATCH_SIZE = 2 | |
def image_batch(): | |
return tf.random_uniform((BATCH_SIZE, INPUT_DIMENSION)) | |
class MLP(tf.keras.Model): | |
def __init__(self, input_dim, hidden_dim, output_dim): | |
super(MLP, self).__init__(name='') | |
self.fc1 = tf.keras.layers.Dense(hidden_dim, input_shape=(input_dim,)) | |
self.fc2 = tf.keras.layers.Dense(output_dim, input_shape=(hidden_dim,)) | |
def call(self, input_tensor): | |
x = self.fc1(input_tensor) | |
x = tf.nn.relu(x) | |
x = self.fc2(x) | |
return tf.nn.relu(x) | |
G = MLP(NOISE_DIMENSION, HIDDEN_DIMENSION, INPUT_DIMENSION) | |
D = MLP(INPUT_DIMENSION, HIDDEN_DIMENSION, NUM_CLASS) | |
opt = tf.train.GradientDescentOptimizer(learning_rate=0.01) | |
for i in range(50): | |
# Train D | |
noise = tf.random_uniform((BATCH_SIZE, NOISE_DIMENSION)) | |
fake_image = G(noise) | |
real_image = image_batch() | |
images = tf.concat([fake_image, real_image], axis=0) | |
labels = tf.constant([[1, 0] for x in range(BATCH_SIZE)] + \ | |
[[0, 1] for x in range(BATCH_SIZE)]) | |
with tf.GradientTape() as grad_tape: | |
logits = D(images) | |
loss = tf.losses.softmax_cross_entropy( | |
logits=logits, onehot_labels=labels) | |
print(loss) | |
grads = grad_tape.gradient(loss, D.variables) | |
opt.apply_gradients(zip(grads, D.variables)) | |
# Train G | |
with tf.GradientTape() as grad_tape: | |
noise = tf.random_uniform((BATCH_SIZE, NOISE_DIMENSION)) | |
images = G(noise) | |
labels = tf.constant([[0, 1] for x in range(BATCH_SIZE)]) | |
logits = D(images) | |
loss = tf.losses.softmax_cross_entropy( | |
logits=logits, onehot_labels=labels) | |
print(loss) | |
grads = grad_tape.gradient(loss, G.variables) | |
opt.apply_gradients(zip(grads, G.variables)) | |
# POSSIBLE ENHENCEMENT(tony): visualize tape, like tensorboard | |
# POSSIBLE ENHENCEMENT(tony): make model save work, model.save('model.h5', input_dim=(784,))) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment