Created
February 11, 2021 22:47
-
-
Save topepo/9bd165222d49aa7ee54233de8812af5a to your computer and use it in GitHub Desktop.
LiblineaR, glmnet, and glm
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# pak::pak("tidymodels/parsnip@logistic-liblinear") | |
library(AppliedPredictiveModeling) | |
library(tidymodels) | |
theme_set(theme_bw()) | |
# ------------------------------------------------------------------------------ | |
lr_pull <- function(pen, eng = "glmnet", dat, ...) { | |
logistic_reg(penalty = pen, ...) %>% | |
set_engine(eng) %>% | |
fit(class ~ ., dat) %>% | |
tidy() %>% | |
mutate(penalty = pen, engine = eng) | |
} | |
tidy.LiblineaR <- function(x, ...) { | |
# In general, this needs more work | |
coefs <- x$W[1,] | |
names(coefs)[names(coefs) == "Bias"] <- "(Intercept)" | |
tibble::tibble(term = names(coefs), estimate = unname(coefs)) | |
} | |
# ------------------------------------------------------------------------------ | |
# lp = 0 - 4 * x1 + 4 * x2 | |
# cor[x1, x2] about 0.62 | |
set.seed(1) | |
dat <- easyBoundaryFunc(1000, interaction = 0) %>% select(-prob) | |
ggplot(dat, aes(X1, X2, col = class)) + | |
geom_point(alpha = .3) + | |
coord_fixed(ratio = 1) | |
# ------------------------------------------------------------------------------ | |
lasso_penalties <- 10^seq(-4, 3, length.out = 20) | |
ridge_penalties <- lasso_penalties | |
big_penalties <- lasso_penalties | |
glmn_lasso_res <- | |
map_dfr(lasso_penalties, lr_pull, dat = dat, mixture = 1) %>% | |
mutate(model = "lasso") | |
ll_lasso_res <- | |
map_dfr(big_penalties, lr_pull, eng = "LiblineaR", dat = dat, mixture = 1) %>% | |
mutate(model = "lasso") | |
glmn_ridge_res <- | |
map_dfr(ridge_penalties, lr_pull, dat = dat, mixture = 0) %>% | |
mutate(model = "ridge") | |
ll_ridge_res <- | |
map_dfr(big_penalties, lr_pull, eng = "LiblineaR", dat = dat, mixture = 0) %>% | |
mutate(model = "ridge") | |
glm_res <- | |
lr_pull(NULL, "glm", dat) %>% | |
select(term, estimate) %>% | |
mutate(penalty = 0, engine = "glm") %>% | |
mutate(model = "unpenalized") | |
glm_res | |
bind_rows(glmn_lasso_res, ll_lasso_res, glmn_ridge_res, ll_ridge_res) %>% | |
dplyr::filter(term != "(Intercept)") %>% | |
ggplot(aes(x = penalty, y = estimate, col = term)) + | |
geom_hline(yintercept = c(-4, 4), lty = 3) + | |
geom_line() + | |
facet_grid(engine ~ model) + | |
scale_x_log10() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment