Created
March 20, 2014 01:20
-
-
Save topnotcher/9655438 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
\documentclass{hw} | |
\setlength{\parindent}{0pt} | |
\setlength{\parskip}{8pt} | |
%\usepackage[margin=.5in, paperwidth=8.5in, paperheight=11in]{geometry} | |
\usepackage{multicol} | |
\usepackage{mdwlist} | |
\usepackage{amssymb} | |
\usepackage{amsmath} | |
\usepackage{amsthm} | |
\newtheorem{thm}{Theorem} | |
\title{derp} | |
\author{derp} | |
\begin{document} | |
\problem{Express the following complex numbers in the form $a+ib$} | |
\begin{enumerate} | |
\item $\displaystyle(2+3i)+(4+i)$ | |
\item $\displaystyle \frac{2+3i}{4+i}$ | |
\item $\displaystyle \frac{1}{i} + \frac{3}{1+i}$ | |
\end{enumerate} | |
\solution | |
\part | |
\begin{equation*}4+2+(3+1)i = 6+4i\end{equation*} | |
\part | |
\begin{equation*} \frac{2+3i}{4+i}\cdot\frac{4-i}{4-i} = \frac{8-2i+12i+3}{4^2-i^2} = \frac{11}{17} + \frac{10}{17}i \end{equation*} | |
\part | |
\noindent | |
\begin{align*} | |
\frac{1}{i} = \frac{1}{i}\cdot\frac{i}{i} = -i\\ | |
\frac{3}{1+i}\cdot\frac{1-i}{1-i} = \frac{3-3i}{2} | |
\end{align*} | |
Adding, | |
\begin{equation*} | |
= \frac{3}{2} - \frac{3}{2}i -i =\frac{3}{2} - \frac{5}{2}i | |
\end{equation*} | |
\problem{Express the following complex numbers in the form $a+ib$} | |
\begin{enumerate} | |
\item $\displaystyle (2+3i)(4+i)$ | |
\item $\displaystyle (8+6i)^2$ | |
\item $\displaystyle \left(1 + \frac{3}{1+i}\right)^2$ | |
\end{enumerate} | |
\solution | |
\part | |
\begin{equation*} | |
(2+3i)(4+i) = 8 + 2i + 12i + -3 = 5 + 14i | |
\end{equation*} | |
\part | |
\begin{equation*} | |
(8+6i)^2 = 64+96i-36=28+96i | |
\end{equation*} | |
\part | |
From question 1, we have $\displaystyle \frac{3}{1+i} = \frac{3}{2} - \frac{3}{2}i$. | |
\begin{align*} | |
\left(1 + \frac{3}{1+i}\right)^2 = \left(1+\frac{3-3i}{2}\right)^2 = 1 + 3-3i + \frac{(3-3i)^2}{4} \\ | |
=\frac{16-12i+(3-3i)^2}{4} = \frac{16-12i+9-18i-9}{4} = \frac{16+-30i}{4} = 4+\frac{15}{2}i | |
\end{align*} | |
\problem{Find the solutions to $z^2 = 3-4i$} | |
\solution | |
We want to find $z=x+iy$ ($x,y\in\mathbb{R}$) such that $z^2 = (x+iy)^2 = x^2 + 2xiy - y^2$. Separating the imaginary and complex parts, we have: | |
\begin{eqnarray*} | |
x^2-y^2 = 3\\ | |
2xy = -4 \Rightarrow x=-2/y | |
\end{eqnarray*} | |
Substituting, | |
\begin{eqnarray*} | |
\frac{4}{y^2} - y^2 -3 = 0 \\ | |
-y^4 -3y^2 +4 = 0 | |
\end{eqnarray*} | |
Factoring, we have $(y^2+4)(y^2-1) =0$, which gives $y^2 = -4$ or $y^2=1$. Since we require that $y$ be real, we can ignore the $-4$. Thus, we conclude that $y=1$ or $y=-1$ and: | |
\begin{eqnarray*} | |
x = -2/y = -2/1 = -2 \\ | |
x = -2/-1 = 2 | |
\end{eqnarray*} | |
It follows that $z=\pm(2-i)$ | |
\problem{Find the solutions to the following equations:} | |
\begin{enumerate} | |
\item $\displaystyle (z+1)^2 = 3+4i$ | |
\item $\displaystyle z^4-i = 0$ | |
\end{enumerate} | |
\problem{Find the real and imaginary parts of the following, where $z=x+iy$.} | |
\solution | |
\part | |
\end{document} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment