Created
June 21, 2025 04:05
-
-
Save tori29umai0123/3f667c595c6e1891f761fde2a57c57dc to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| import argparse | |
| from datetime import datetime | |
| import gc | |
| import random | |
| import os | |
| import re | |
| import time | |
| import math | |
| import copy | |
| from types import ModuleType, SimpleNamespace | |
| from typing import Tuple, Optional, List, Union, Any, Dict | |
| import torch | |
| import accelerate | |
| from accelerate import Accelerator | |
| from safetensors.torch import load_file, save_file | |
| from safetensors import safe_open | |
| from PIL import Image | |
| import cv2 | |
| import numpy as np | |
| import torchvision.transforms.functional as TF | |
| from tqdm import tqdm | |
| from musubi_tuner.dataset import image_video_dataset | |
| from musubi_tuner.networks import lora_wan | |
| from musubi_tuner.utils.safetensors_utils import mem_eff_save_file, load_safetensors | |
| from musubi_tuner.wan.configs import WAN_CONFIGS, SUPPORTED_SIZES | |
| import musubi_tuner.wan as wan | |
| from musubi_tuner.wan.modules.model import WanModel, load_wan_model, detect_wan_sd_dtype | |
| from musubi_tuner.wan.modules.vae import WanVAE | |
| from musubi_tuner.wan.modules.t5 import T5EncoderModel | |
| from musubi_tuner.wan.modules.clip import CLIPModel | |
| from musubi_tuner.modules.scheduling_flow_match_discrete import FlowMatchDiscreteScheduler | |
| from musubi_tuner.wan.utils.fm_solvers import FlowDPMSolverMultistepScheduler, get_sampling_sigmas, retrieve_timesteps | |
| from musubi_tuner.wan.utils.fm_solvers_unipc import FlowUniPCMultistepScheduler | |
| try: | |
| from lycoris.kohya import create_network_from_weights | |
| except: | |
| pass | |
| from musubi_tuner.utils.model_utils import str_to_dtype | |
| from musubi_tuner.utils.device_utils import clean_memory_on_device | |
| from musubi_tuner.hv_generate_video import save_images_grid, save_videos_grid, synchronize_device | |
| from musubi_tuner.dataset.image_video_dataset import load_video | |
| import logging | |
| logger = logging.getLogger(__name__) | |
| logging.basicConfig(level=logging.INFO) | |
| class GenerationSettings: | |
| def __init__( | |
| self, device: torch.device, cfg, dit_dtype: torch.dtype, dit_weight_dtype: Optional[torch.dtype], vae_dtype: torch.dtype | |
| ): | |
| self.device = device | |
| self.cfg = cfg | |
| self.dit_dtype = dit_dtype | |
| self.dit_weight_dtype = dit_weight_dtype | |
| self.vae_dtype = vae_dtype | |
| def parse_args() -> argparse.Namespace: | |
| """parse command line arguments""" | |
| parser = argparse.ArgumentParser(description="Wan 2.1 inference script") | |
| # WAN arguments | |
| parser.add_argument("--ckpt_dir", type=str, default=None, help="The path to the checkpoint directory (Wan 2.1 official).") | |
| parser.add_argument("--task", type=str, default="t2v-14B", choices=list(WAN_CONFIGS.keys()), help="The task to run.") | |
| parser.add_argument( | |
| "--sample_solver", type=str, default="unipc", choices=["unipc", "dpm++", "vanilla"], help="The solver used to sample." | |
| ) | |
| parser.add_argument("--dit", type=str, default=None, help="DiT checkpoint path") | |
| parser.add_argument("--vae", type=str, default=None, help="VAE checkpoint path") | |
| parser.add_argument("--vae_dtype", type=str, default=None, help="data type for VAE, default is bfloat16") | |
| parser.add_argument("--vae_cache_cpu", action="store_true", help="cache features in VAE on CPU") | |
| parser.add_argument("--t5", type=str, default=None, help="text encoder (T5) checkpoint path") | |
| parser.add_argument("--clip", type=str, default=None, help="text encoder (CLIP) checkpoint path") | |
| # LoRA | |
| parser.add_argument("--lora_weight", type=str, nargs="*", required=False, default=None, help="LoRA weight path") | |
| parser.add_argument("--lora_multiplier", type=float, nargs="*", default=1.0, help="LoRA multiplier") | |
| parser.add_argument("--include_patterns", type=str, nargs="*", default=None, help="LoRA module include patterns") | |
| parser.add_argument("--exclude_patterns", type=str, nargs="*", default=None, help="LoRA module exclude patterns") | |
| parser.add_argument( | |
| "--save_merged_model", | |
| type=str, | |
| default=None, | |
| help="Save merged model to path. If specified, no inference will be performed.", | |
| ) | |
| # inference | |
| parser.add_argument("--prompt", type=str, default=None, help="prompt for generation") | |
| parser.add_argument( | |
| "--negative_prompt", | |
| type=str, | |
| default=None, | |
| help="negative prompt for generation, use default negative prompt if not specified", | |
| ) | |
| parser.add_argument("--video_size", type=int, nargs=2, default=[256, 256], help="video size, height and width") | |
| parser.add_argument("--video_length", type=int, default=None, help="video length, Default depends on task") | |
| parser.add_argument("--fps", type=int, default=16, help="video fps, Default is 16") | |
| parser.add_argument("--infer_steps", type=int, default=None, help="number of inference steps") | |
| parser.add_argument("--save_path", type=str, required=True, help="path to save generated video") | |
| parser.add_argument("--seed", type=int, default=None, help="Seed for evaluation.") | |
| parser.add_argument( | |
| "--cpu_noise", action="store_true", help="Use CPU to generate noise (compatible with ComfyUI). Default is False." | |
| ) | |
| parser.add_argument( | |
| "--guidance_scale", | |
| type=float, | |
| default=5.0, | |
| help="Guidance scale for classifier free guidance. Default is 5.0.", | |
| ) | |
| parser.add_argument("--video_path", type=str, default=None, help="path to video for video2video inference") | |
| parser.add_argument("--image_path", type=str, default=None, help="path to image for image2video inference") | |
| parser.add_argument("--end_image_path", type=str, default=None, help="path to end image for image2video inference") | |
| parser.add_argument( | |
| "--control_path", | |
| type=str, | |
| default=None, | |
| help="path to control video for inference with controlnet. video file or directory with images", | |
| ) | |
| parser.add_argument( | |
| "--one_frame_inference", | |
| type=str, | |
| default=None, | |
| help="one frame inference, default is None, comma separated values from 'no_2x', 'no_4x', 'no_post', 'control_indices' and 'target_index'.", | |
| ) | |
| parser.add_argument( | |
| "--control_image_path", type=str, default=None, nargs="*", help="path to control (reference) image for one frame inference." | |
| ) | |
| parser.add_argument( | |
| "--control_image_mask_path", | |
| type=str, | |
| default=None, | |
| nargs="*", | |
| help="path to control (reference) image mask for one frame inference.", | |
| ) | |
| parser.add_argument("--trim_tail_frames", type=int, default=0, help="trim tail N frames from the video before saving") | |
| parser.add_argument( | |
| "--cfg_skip_mode", | |
| type=str, | |
| default="none", | |
| choices=["early", "late", "middle", "early_late", "alternate", "none"], | |
| help="CFG skip mode. each mode skips different parts of the CFG. " | |
| " early: initial steps, late: later steps, middle: middle steps, early_late: both early and late, alternate: alternate, none: no skip (default)", | |
| ) | |
| parser.add_argument( | |
| "--cfg_apply_ratio", | |
| type=float, | |
| default=None, | |
| help="The ratio of steps to apply CFG (0.0 to 1.0). Default is None (apply all steps).", | |
| ) | |
| parser.add_argument( | |
| "--slg_layers", type=str, default=None, help="Skip block (layer) indices for SLG (Skip Layer Guidance), comma separated" | |
| ) | |
| parser.add_argument( | |
| "--slg_scale", | |
| type=float, | |
| default=3.0, | |
| help="scale for SLG classifier free guidance. Default is 3.0. Ignored if slg_mode is None or uncond", | |
| ) | |
| parser.add_argument("--slg_start", type=float, default=0.0, help="start ratio for inference steps for SLG. Default is 0.0.") | |
| parser.add_argument("--slg_end", type=float, default=0.3, help="end ratio for inference steps for SLG. Default is 0.3.") | |
| parser.add_argument( | |
| "--slg_mode", | |
| type=str, | |
| default=None, | |
| choices=["original", "uncond"], | |
| help="SLG mode. original: same as SD3, uncond: replace uncond pred with SLG pred", | |
| ) | |
| # Flow Matching | |
| parser.add_argument( | |
| "--flow_shift", | |
| type=float, | |
| default=None, | |
| help="Shift factor for flow matching schedulers. Default depends on task.", | |
| ) | |
| parser.add_argument("--fp8", action="store_true", help="use fp8 for DiT model") | |
| parser.add_argument("--fp8_scaled", action="store_true", help="use scaled fp8 for DiT, only for fp8") | |
| parser.add_argument("--fp8_fast", action="store_true", help="Enable fast FP8 arithmetic (RTX 4XXX+), only for fp8_scaled") | |
| parser.add_argument("--fp8_t5", action="store_true", help="use fp8 for Text Encoder model") | |
| parser.add_argument( | |
| "--device", type=str, default=None, help="device to use for inference. If None, use CUDA if available, otherwise use CPU" | |
| ) | |
| parser.add_argument( | |
| "--attn_mode", | |
| type=str, | |
| default="torch", | |
| choices=["flash", "flash2", "flash3", "torch", "sageattn", "xformers", "sdpa"], | |
| help="attention mode", | |
| ) | |
| parser.add_argument("--blocks_to_swap", type=int, default=0, help="number of blocks to swap in the model") | |
| parser.add_argument( | |
| "--output_type", | |
| type=str, | |
| default="video", | |
| choices=["video", "images", "latent", "both", "latent_images"], | |
| help="output type", | |
| ) | |
| parser.add_argument("--no_metadata", action="store_true", help="do not save metadata") | |
| parser.add_argument("--latent_path", type=str, nargs="*", default=None, help="path to latent for decode. no inference") | |
| parser.add_argument("--lycoris", action="store_true", help="use lycoris for inference") | |
| parser.add_argument("--compile", action="store_true", help="Enable torch.compile") | |
| parser.add_argument( | |
| "--compile_args", | |
| nargs=4, | |
| metavar=("BACKEND", "MODE", "DYNAMIC", "FULLGRAPH"), | |
| default=["inductor", "max-autotune-no-cudagraphs", "False", "False"], | |
| help="Torch.compile settings", | |
| ) | |
| # New arguments for batch and interactive modes | |
| parser.add_argument("--from_file", type=str, default=None, help="Read prompts from a file") | |
| parser.add_argument("--interactive", action="store_true", help="Interactive mode: read prompts from console") | |
| args = parser.parse_args() | |
| # Validate arguments | |
| if args.from_file and args.interactive: | |
| raise ValueError("Cannot use both --from_file and --interactive at the same time") | |
| if args.prompt is None and not args.from_file and not args.interactive and args.latent_path is None: | |
| raise ValueError("Either --prompt, --from_file, --interactive, or --latent_path must be specified") | |
| assert (args.latent_path is None or len(args.latent_path) == 0) or ( | |
| args.output_type == "images" or args.output_type == "video" | |
| ), "latent_path is only supported for images or video output" | |
| return args | |
| def parse_prompt_line(line: str) -> Dict[str, Any]: | |
| """Parse a prompt line into a dictionary of argument overrides | |
| Args: | |
| line: Prompt line with options | |
| Returns: | |
| Dict[str, Any]: Dictionary of argument overrides | |
| """ | |
| # TODO common function with hv_train_network.line_to_prompt_dict | |
| parts = line.split(" --") | |
| prompt = parts[0].strip() | |
| # Create dictionary of overrides | |
| overrides = {"prompt": prompt} | |
| # Initialize control_image_path and control_image_mask_path as a list to accommodate multiple paths | |
| overrides["control_image_path"] = [] | |
| overrides["control_image_mask_path"] = [] | |
| for part in parts[1:]: | |
| if not part.strip(): | |
| continue | |
| option_parts = part.split(" ", 1) | |
| option = option_parts[0].strip() | |
| value = option_parts[1].strip() if len(option_parts) > 1 else "" | |
| # Map options to argument names | |
| if option == "w": | |
| overrides["video_size_width"] = int(value) | |
| elif option == "h": | |
| overrides["video_size_height"] = int(value) | |
| elif option == "f": | |
| overrides["video_length"] = int(value) | |
| elif option == "d": | |
| overrides["seed"] = int(value) | |
| elif option == "s": | |
| overrides["infer_steps"] = int(value) | |
| elif option == "g" or option == "l": | |
| overrides["guidance_scale"] = float(value) | |
| elif option == "fs": | |
| overrides["flow_shift"] = float(value) | |
| elif option == "i": | |
| overrides["image_path"] = value | |
| elif option == "cn": | |
| overrides["control_path"] = value | |
| elif option == "n": | |
| overrides["negative_prompt"] = value | |
| # one frame inference options | |
| elif option == "ci": # control_image_path | |
| overrides["control_image_path"].append(value) | |
| elif option == "cim": # control_image_mask_path | |
| overrides["control_image_mask_path"].append(value) | |
| elif option == "of": # one_frame_inference | |
| overrides["one_frame_inference"] = value | |
| # If no control_image_path was provided, remove the empty list | |
| if not overrides["control_image_path"]: | |
| del overrides["control_image_path"] | |
| if not overrides["control_image_mask_path"]: | |
| del overrides["control_image_mask_path"] | |
| return overrides | |
| def apply_overrides(args: argparse.Namespace, overrides: Dict[str, Any]) -> argparse.Namespace: | |
| """Apply overrides to args | |
| Args: | |
| args: Original arguments | |
| overrides: Dictionary of overrides | |
| Returns: | |
| argparse.Namespace: New arguments with overrides applied | |
| """ | |
| args_copy = copy.deepcopy(args) | |
| for key, value in overrides.items(): | |
| if key == "video_size_width": | |
| args_copy.video_size[1] = value | |
| elif key == "video_size_height": | |
| args_copy.video_size[0] = value | |
| else: | |
| setattr(args_copy, key, value) | |
| return args_copy | |
| def get_task_defaults(task: str, size: Optional[Tuple[int, int]] = None) -> Tuple[int, float, int, bool]: | |
| """Return default values for each task | |
| Args: | |
| task: task name (t2v, t2i, i2v etc.) | |
| size: size of the video (width, height) | |
| Returns: | |
| Tuple[int, float, int, bool]: (infer_steps, flow_shift, video_length, needs_clip) | |
| """ | |
| width, height = size if size else (0, 0) | |
| if "t2i" in task: | |
| return 50, 5.0, 1, False | |
| elif "i2v" in task: | |
| flow_shift = 3.0 if (width == 832 and height == 480) or (width == 480 and height == 832) else 5.0 | |
| return 40, flow_shift, 81, True | |
| else: # t2v or default | |
| return 50, 5.0, 81, False | |
| def setup_args(args: argparse.Namespace) -> argparse.Namespace: | |
| """Validate and set default values for optional arguments | |
| Args: | |
| args: command line arguments | |
| Returns: | |
| argparse.Namespace: updated arguments | |
| """ | |
| # Get default values for the task | |
| infer_steps, flow_shift, video_length, _ = get_task_defaults(args.task, tuple(args.video_size)) | |
| # Apply default values to unset arguments | |
| if args.infer_steps is None: | |
| args.infer_steps = infer_steps | |
| if args.flow_shift is None: | |
| args.flow_shift = flow_shift | |
| if args.video_length is None: | |
| args.video_length = video_length | |
| # Force video_length to 1 for t2i tasks | |
| if "t2i" in args.task: | |
| assert args.video_length == 1, f"video_length should be 1 for task {args.task}" | |
| # parse slg_layers | |
| if args.slg_layers is not None: | |
| args.slg_layers = list(map(int, args.slg_layers.split(","))) | |
| return args | |
| def check_inputs(args: argparse.Namespace) -> Tuple[int, int, int]: | |
| """Validate video size and length | |
| Args: | |
| args: command line arguments | |
| Returns: | |
| Tuple[int, int, int]: (height, width, video_length) | |
| """ | |
| height = args.video_size[0] | |
| width = args.video_size[1] | |
| size = f"{width}*{height}" | |
| if size not in SUPPORTED_SIZES[args.task]: | |
| logger.warning(f"Size {size} is not supported for task {args.task}. Supported sizes are {SUPPORTED_SIZES[args.task]}.") | |
| video_length = args.video_length | |
| if height % 8 != 0 or width % 8 != 0: | |
| raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.") | |
| return height, width, video_length | |
| def calculate_dimensions(video_size: Tuple[int, int], video_length: int, config) -> Tuple[Tuple[int, int, int, int], int]: | |
| """calculate dimensions for the generation | |
| Args: | |
| video_size: video frame size (height, width) | |
| video_length: number of frames in the video | |
| config: model configuration | |
| Returns: | |
| Tuple[Tuple[int, int, int, int], int]: | |
| ((channels, frames, height, width), seq_len) | |
| """ | |
| height, width = video_size | |
| frames = video_length | |
| # calculate latent space dimensions | |
| lat_f = (frames - 1) // config.vae_stride[0] + 1 | |
| lat_h = height // config.vae_stride[1] | |
| lat_w = width // config.vae_stride[2] | |
| # calculate sequence length | |
| seq_len = math.ceil((lat_h * lat_w) / (config.patch_size[1] * config.patch_size[2]) * lat_f) | |
| return ((16, lat_f, lat_h, lat_w), seq_len) | |
| def load_vae(args: argparse.Namespace, config, device: torch.device, dtype: torch.dtype) -> WanVAE: | |
| """load VAE model | |
| Args: | |
| args: command line arguments | |
| config: model configuration | |
| device: device to use | |
| dtype: data type for the model | |
| Returns: | |
| WanVAE: loaded VAE model | |
| """ | |
| vae_path = args.vae if args.vae is not None else os.path.join(args.ckpt_dir, config.vae_checkpoint) | |
| logger.info(f"Loading VAE model from {vae_path}") | |
| cache_device = torch.device("cpu") if args.vae_cache_cpu else None | |
| vae = WanVAE(vae_path=vae_path, device=device, dtype=dtype, cache_device=cache_device) | |
| return vae | |
| def load_text_encoder(args: argparse.Namespace, config, device: torch.device) -> T5EncoderModel: | |
| """load text encoder (T5) model | |
| Args: | |
| args: command line arguments | |
| config: model configuration | |
| device: device to use | |
| Returns: | |
| T5EncoderModel: loaded text encoder model | |
| """ | |
| checkpoint_path = None if args.ckpt_dir is None else os.path.join(args.ckpt_dir, config.t5_checkpoint) | |
| tokenizer_path = None if args.ckpt_dir is None else os.path.join(args.ckpt_dir, config.t5_tokenizer) | |
| text_encoder = T5EncoderModel( | |
| text_len=config.text_len, | |
| dtype=config.t5_dtype, | |
| device=device, | |
| checkpoint_path=checkpoint_path, | |
| tokenizer_path=tokenizer_path, | |
| weight_path=args.t5, | |
| fp8=args.fp8_t5, | |
| ) | |
| return text_encoder | |
| def load_clip_model(args: argparse.Namespace, config, device: torch.device) -> CLIPModel: | |
| """load CLIP model (for I2V only) | |
| Args: | |
| args: command line arguments | |
| config: model configuration | |
| device: device to use | |
| Returns: | |
| CLIPModel: loaded CLIP model | |
| """ | |
| checkpoint_path = None if args.ckpt_dir is None else os.path.join(args.ckpt_dir, config.clip_checkpoint) | |
| tokenizer_path = None if args.ckpt_dir is None else os.path.join(args.ckpt_dir, config.clip_tokenizer) | |
| clip = CLIPModel( | |
| dtype=config.clip_dtype, | |
| device=device, | |
| checkpoint_path=checkpoint_path, | |
| tokenizer_path=tokenizer_path, | |
| weight_path=args.clip, | |
| ) | |
| return clip | |
| def load_dit_model( | |
| args: argparse.Namespace, | |
| config, | |
| device: torch.device, | |
| dit_dtype: torch.dtype, | |
| dit_weight_dtype: Optional[torch.dtype] = None, | |
| is_i2v: bool = False, | |
| ) -> WanModel: | |
| """load DiT model | |
| Args: | |
| args: command line arguments | |
| config: model configuration | |
| device: device to use | |
| dit_dtype: data type for the model | |
| dit_weight_dtype: data type for the model weights. None for as-is | |
| is_i2v: I2V mode | |
| Returns: | |
| WanModel: loaded DiT model | |
| """ | |
| loading_device = "cpu" | |
| if args.blocks_to_swap == 0 and args.lora_weight is None and not args.fp8_scaled: | |
| loading_device = device | |
| loading_weight_dtype = dit_weight_dtype | |
| if args.fp8_scaled or args.lora_weight is not None: | |
| loading_weight_dtype = dit_dtype # load as-is | |
| # do not fp8 optimize because we will merge LoRA weights | |
| model = load_wan_model(config, device, args.dit, args.attn_mode, False, loading_device, loading_weight_dtype, False) | |
| return model | |
| def merge_lora_weights( | |
| lora_module: ModuleType, | |
| model: torch.nn.Module, | |
| args: argparse.Namespace, | |
| device: torch.device, | |
| converter: Optional[callable] = None, | |
| ) -> None: | |
| """merge LoRA weights to the model | |
| Args: | |
| lora_module: LoRA module, e.g. lora_wan | |
| model: DiT model | |
| args: command line arguments | |
| device: device to use | |
| converter: Optional callable to convert weights | |
| """ | |
| if args.lora_weight is None or len(args.lora_weight) == 0: | |
| return | |
| for i, lora_weight in enumerate(args.lora_weight): | |
| if args.lora_multiplier is not None and len(args.lora_multiplier) > i: | |
| lora_multiplier = args.lora_multiplier[i] | |
| else: | |
| lora_multiplier = 1.0 | |
| logger.info(f"Loading LoRA weights from {lora_weight} with multiplier {lora_multiplier}") | |
| weights_sd = load_file(lora_weight) | |
| if converter is not None: | |
| weights_sd = converter(weights_sd) | |
| # apply include/exclude patterns | |
| original_key_count = len(weights_sd.keys()) | |
| if args.include_patterns is not None and len(args.include_patterns) > i: | |
| include_pattern = args.include_patterns[i] | |
| regex_include = re.compile(include_pattern) | |
| weights_sd = {k: v for k, v in weights_sd.items() if regex_include.search(k)} | |
| logger.info(f"Filtered keys with include pattern {include_pattern}: {original_key_count} -> {len(weights_sd.keys())}") | |
| if args.exclude_patterns is not None and len(args.exclude_patterns) > i: | |
| original_key_count_ex = len(weights_sd.keys()) | |
| exclude_pattern = args.exclude_patterns[i] | |
| regex_exclude = re.compile(exclude_pattern) | |
| weights_sd = {k: v for k, v in weights_sd.items() if not regex_exclude.search(k)} | |
| logger.info( | |
| f"Filtered keys with exclude pattern {exclude_pattern}: {original_key_count_ex} -> {len(weights_sd.keys())}" | |
| ) | |
| if len(weights_sd) != original_key_count: | |
| remaining_keys = list(set([k.split(".", 1)[0] for k in weights_sd.keys()])) | |
| remaining_keys.sort() | |
| logger.info(f"Remaining LoRA modules after filtering: {remaining_keys}") | |
| if len(weights_sd) == 0: | |
| logger.warning(f"No keys left after filtering.") | |
| if args.lycoris: | |
| lycoris_net, _ = create_network_from_weights( | |
| multiplier=lora_multiplier, | |
| file=None, | |
| weights_sd=weights_sd, | |
| unet=model, | |
| text_encoder=None, | |
| vae=None, | |
| for_inference=True, | |
| ) | |
| lycoris_net.merge_to(None, model, weights_sd, dtype=None, device=device) | |
| else: | |
| network = lora_module.create_arch_network_from_weights(lora_multiplier, weights_sd, unet=model, for_inference=True) | |
| network.merge_to(None, model, weights_sd, device=device, non_blocking=True) | |
| synchronize_device(device) | |
| logger.info("LoRA weights loaded") | |
| # save model here before casting to dit_weight_dtype | |
| if args.save_merged_model: | |
| logger.info(f"Saving merged model to {args.save_merged_model}") | |
| mem_eff_save_file(model.state_dict(), args.save_merged_model) # save_file needs a lot of memory | |
| logger.info("Merged model saved") | |
| def optimize_model( | |
| model: WanModel, args: argparse.Namespace, device: torch.device, dit_dtype: torch.dtype, dit_weight_dtype: torch.dtype | |
| ) -> None: | |
| """optimize the model (FP8 conversion, device move etc.) | |
| Args: | |
| model: dit model | |
| args: command line arguments | |
| device: device to use | |
| dit_dtype: dtype for the model | |
| dit_weight_dtype: dtype for the model weights | |
| """ | |
| if args.fp8_scaled: | |
| # load state dict as-is and optimize to fp8 | |
| state_dict = model.state_dict() | |
| # if no blocks to swap, we can move the weights to GPU after optimization on GPU (omit redundant CPU->GPU copy) | |
| move_to_device = args.blocks_to_swap == 0 # if blocks_to_swap > 0, we will keep the model on CPU | |
| state_dict = model.fp8_optimization(state_dict, device, move_to_device, use_scaled_mm=args.fp8_fast) | |
| info = model.load_state_dict(state_dict, strict=True, assign=True) | |
| logger.info(f"Loaded FP8 optimized weights: {info}") | |
| if args.blocks_to_swap == 0: | |
| model.to(device) # make sure all parameters are on the right device (e.g. RoPE etc.) | |
| else: | |
| # simple cast to dit_dtype | |
| target_dtype = None # load as-is (dit_weight_dtype == dtype of the weights in state_dict) | |
| target_device = None | |
| if dit_weight_dtype is not None: # in case of args.fp8 and not args.fp8_scaled | |
| logger.info(f"Convert model to {dit_weight_dtype}") | |
| target_dtype = dit_weight_dtype | |
| if args.blocks_to_swap == 0: | |
| logger.info(f"Move model to device: {device}") | |
| target_device = device | |
| model.to(target_device, target_dtype) # move and cast at the same time. this reduces redundant copy operations | |
| if args.compile: | |
| compile_backend, compile_mode, compile_dynamic, compile_fullgraph = args.compile_args | |
| logger.info( | |
| f"Torch Compiling[Backend: {compile_backend}; Mode: {compile_mode}; Dynamic: {compile_dynamic}; Fullgraph: {compile_fullgraph}]" | |
| ) | |
| torch._dynamo.config.cache_size_limit = 32 | |
| for i in range(len(model.blocks)): | |
| model.blocks[i] = torch.compile( | |
| model.blocks[i], | |
| backend=compile_backend, | |
| mode=compile_mode, | |
| dynamic=compile_dynamic.lower() in "true", | |
| fullgraph=compile_fullgraph.lower() in "true", | |
| ) | |
| if args.blocks_to_swap > 0: | |
| logger.info(f"Enable swap {args.blocks_to_swap} blocks to CPU from device: {device}") | |
| model.enable_block_swap(args.blocks_to_swap, device, supports_backward=False) | |
| model.move_to_device_except_swap_blocks(device) | |
| model.prepare_block_swap_before_forward() | |
| else: | |
| # make sure the model is on the right device | |
| model.to(device) | |
| model.eval().requires_grad_(False) | |
| clean_memory_on_device(device) | |
| def prepare_t2v_inputs( | |
| args: argparse.Namespace, | |
| config, | |
| accelerator: Accelerator, | |
| device: torch.device, | |
| vae: Optional[WanVAE] = None, | |
| encoded_context: Optional[Dict] = None, | |
| ) -> Tuple[torch.Tensor, Tuple[dict, dict]]: | |
| """Prepare inputs for T2V | |
| Args: | |
| args: command line arguments | |
| config: model configuration | |
| accelerator: Accelerator instance | |
| device: device to use | |
| vae: VAE model for control video encoding | |
| encoded_context: Pre-encoded text context | |
| Returns: | |
| Tuple[torch.Tensor, torch.Tensor, torch.Tensor, Tuple[dict, dict]]: | |
| (noise, context, context_null, (arg_c, arg_null)) | |
| """ | |
| # Prepare inputs for T2V | |
| # calculate dimensions and sequence length | |
| height, width = args.video_size | |
| frames = args.video_length | |
| (_, lat_f, lat_h, lat_w), seq_len = calculate_dimensions(args.video_size, args.video_length, config) | |
| target_shape = (16, lat_f, lat_h, lat_w) | |
| # configure negative prompt | |
| n_prompt = args.negative_prompt if args.negative_prompt else config.sample_neg_prompt | |
| # set seed | |
| seed = args.seed if args.seed is not None else random.randint(0, 2**32 - 1) | |
| if not args.cpu_noise: | |
| seed_g = torch.Generator(device=device) | |
| seed_g.manual_seed(seed) | |
| else: | |
| # ComfyUI compatible noise | |
| seed_g = torch.manual_seed(seed) | |
| if encoded_context is None: | |
| # load text encoder | |
| text_encoder = load_text_encoder(args, config, device) | |
| text_encoder.model.to(device) | |
| # encode prompt | |
| with torch.no_grad(): | |
| if args.fp8_t5: | |
| with torch.amp.autocast(device_type=device.type, dtype=config.t5_dtype): | |
| context = text_encoder([args.prompt], device) | |
| context_null = text_encoder([n_prompt], device) | |
| else: | |
| context = text_encoder([args.prompt], device) | |
| context_null = text_encoder([n_prompt], device) | |
| # free text encoder and clean memory | |
| del text_encoder | |
| clean_memory_on_device(device) | |
| else: | |
| # Use pre-encoded context | |
| context = encoded_context["context"] | |
| context_null = encoded_context["context_null"] | |
| # Fun-Control: encode control video to latent space | |
| if config.is_fun_control: | |
| # TODO use same resizing as for image | |
| logger.info(f"Encoding control video to latent space") | |
| # C, F, H, W | |
| control_video = load_control_video(args.control_path, frames, height, width).to(device) | |
| vae.to_device(device) | |
| with torch.autocast(device_type=device.type, dtype=vae.dtype), torch.no_grad(): | |
| control_latent = vae.encode([control_video])[0] | |
| y = torch.concat([control_latent, torch.zeros_like(control_latent)], dim=0) # add control video latent | |
| vae.to_device("cpu") | |
| else: | |
| y = None | |
| # generate noise | |
| noise = torch.randn(target_shape, dtype=torch.float32, generator=seed_g, device=device if not args.cpu_noise else "cpu") | |
| noise = noise.to(device) | |
| # prepare model input arguments | |
| arg_c = {"context": context, "seq_len": seq_len} | |
| arg_null = {"context": context_null, "seq_len": seq_len} | |
| if y is not None: | |
| arg_c["y"] = [y] | |
| arg_null["y"] = [y] | |
| return noise, (arg_c, arg_null) | |
| def parse_one_frame_inference_args(one_frame_inference_arg: str) -> Tuple[int, List[int], List[int], int]: | |
| """Parse one frame inference arguments""" | |
| one_frame_inference = set() | |
| for mode in one_frame_inference_arg.split(","): | |
| one_frame_inference.add(mode.strip()) | |
| target_index = 0 | |
| control_indices = [] | |
| for one_frame_param in one_frame_inference: | |
| if one_frame_param.startswith("target_index="): | |
| target_index = int(one_frame_param.split("=")[1]) | |
| logger.info(f"Set index for target: {target_index}") | |
| elif one_frame_param.startswith("control_index="): | |
| control_indices = one_frame_param.split("=")[1].split(";") | |
| control_indices = [int(idx) for idx in control_indices] | |
| logger.info(f"Set control indices: {control_indices}") | |
| target_and_control_latent_indices = control_indices + [target_index] | |
| f_indices = sorted(target_and_control_latent_indices) | |
| one_frame_inference_index = f_indices.index(target_index) | |
| return target_index, control_indices, f_indices, one_frame_inference_index | |
| def prepare_one_frame_inference( | |
| args: argparse.Namespace, | |
| accelerator: Accelerator, | |
| vae: WanVAE, | |
| device: torch.device, | |
| lat_h: int, | |
| lat_w: int, | |
| height: int, | |
| width: int, | |
| ) -> Tuple[int, torch.Tensor, List[int]]: | |
| target_index, _, f_indices, one_frame_inference_index = parse_one_frame_inference_args(args.one_frame_inference) | |
| # prepare image | |
| def preprocess_image(image_path: str): | |
| image = Image.open(image_path) | |
| if image.mode == "RGBA": | |
| alpha = image.split()[-1] | |
| else: | |
| alpha = None | |
| image = image.convert("RGB") | |
| image_np = np.array(image) # PIL to numpy, HWC | |
| image_np = image_video_dataset.resize_image_to_bucket(image_np, (width, height)) | |
| image_tensor = torch.from_numpy(image_np).float() / 127.5 - 1.0 # -1 to 1.0, HWC | |
| image_tensor = image_tensor.permute(2, 0, 1)[:, None] # HWC -> CHW -> CFHW, C=3, F=1 | |
| return image_tensor, image_np, alpha | |
| # check control images | |
| control_image_tensors = [] | |
| control_mask_images = [] | |
| if args.control_image_path is not None and len(args.control_image_path) > 0: | |
| for ctrl_image_path in args.control_image_path: | |
| control_image_tensor, _, control_mask = preprocess_image(ctrl_image_path) | |
| control_image_tensors.append(control_image_tensor) | |
| control_mask_images.append(control_mask) | |
| # TODO mask is not supported yet | |
| vae.to_device(device) | |
| with accelerator.autocast(), torch.no_grad(): | |
| black_image_latent = vae.encode([torch.zeros((3, 1, height, width), dtype=torch.float32, device=device)])[0] | |
| control_latents = [] | |
| if control_image_tensors is not None: | |
| # encode image to latent space with VAE | |
| logger.info(f"Encoding image to latent space") | |
| for ctrl_image_tensor in control_image_tensors: | |
| # encode image one by one | |
| with accelerator.autocast(), torch.no_grad(): | |
| control_latent = vae.encode([ctrl_image_tensor.to(device)])[0] | |
| control_latents.append(control_latent) | |
| vae.to_device("cpu") | |
| lat_f = 1 + (len(control_latents) if control_latents is not None else 0) | |
| # Create latent and mask for the required number of frames | |
| y = torch.zeros(4 + 16, lat_f, lat_h, lat_w, dtype=torch.float32, device=device) | |
| ci = 0 | |
| for j, index in enumerate(f_indices): | |
| if index == target_index: | |
| y[4:, j : j + 1, :, :] = black_image_latent # set target latent to black image | |
| else: | |
| y[:4, j, :, :] = 1.0 # set mask to 1.0 for the clean latent frames | |
| y[4:, j : j + 1, :, :] = control_latents[ci] # set control latent | |
| ci += 1 | |
| return one_frame_inference_index, y, f_indices | |
| def prepare_i2v_inputs( | |
| args: argparse.Namespace, | |
| config, | |
| accelerator: Accelerator, | |
| device: torch.device, | |
| vae: WanVAE, | |
| encoded_context: Optional[Dict] = None, | |
| ) -> Tuple[torch.Tensor, Tuple[dict, dict], Optional[int]]: | |
| """Prepare inputs for I2V | |
| Args: | |
| args: command line arguments | |
| config: model configuration | |
| accelerator: Accelerator instance | |
| device: device to use | |
| vae: VAE model, used for image encoding | |
| encoded_context: Pre-encoded text context | |
| Returns: | |
| Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, Tuple[dict, dict]]: | |
| (noise, context, context_null, y, (arg_c, arg_null)) | |
| """ | |
| # get video dimensions | |
| height, width = args.video_size | |
| frames = args.video_length | |
| max_area = width * height | |
| # load image | |
| img = Image.open(args.image_path).convert("RGB") | |
| # convert to numpy | |
| img_cv2 = np.array(img) # PIL to numpy | |
| # convert to tensor (-1 to 1) | |
| img_tensor = TF.to_tensor(img).sub_(0.5).div_(0.5).to(device) | |
| # end frame image | |
| if args.end_image_path is not None: | |
| end_img = Image.open(args.end_image_path).convert("RGB") | |
| end_img_cv2 = np.array(end_img) # PIL to numpy | |
| else: | |
| end_img = None | |
| end_img_cv2 = None | |
| has_end_image = end_img is not None | |
| additional_frames = 1 if has_end_image and not config.flf2v else 0 | |
| # calculate latent dimensions: keep aspect ratio | |
| height, width = img_tensor.shape[1:] | |
| aspect_ratio = height / width | |
| lat_h = round(np.sqrt(max_area * aspect_ratio) // config.vae_stride[1] // config.patch_size[1] * config.patch_size[1]) | |
| lat_w = round(np.sqrt(max_area / aspect_ratio) // config.vae_stride[2] // config.patch_size[2] * config.patch_size[2]) | |
| height = lat_h * config.vae_stride[1] | |
| width = lat_w * config.vae_stride[2] | |
| lat_f = (frames - 1) // config.vae_stride[0] + 1 # size of latent frames | |
| max_seq_len = (lat_f + additional_frames) * lat_h * lat_w // (config.patch_size[1] * config.patch_size[2]) | |
| # set seed | |
| seed = args.seed if args.seed is not None else random.randint(0, 2**32 - 1) | |
| if not args.cpu_noise: | |
| seed_g = torch.Generator(device=device) | |
| seed_g.manual_seed(seed) | |
| else: | |
| # ComfyUI compatible noise | |
| seed_g = torch.manual_seed(seed) | |
| # configure negative prompt | |
| n_prompt = args.negative_prompt if args.negative_prompt else config.sample_neg_prompt | |
| if encoded_context is None: | |
| # load text encoder | |
| text_encoder = load_text_encoder(args, config, device) | |
| text_encoder.model.to(device) | |
| # encode prompt | |
| with torch.no_grad(): | |
| if args.fp8_t5: | |
| with torch.amp.autocast(device_type=device.type, dtype=config.t5_dtype): | |
| context = text_encoder([args.prompt], device) | |
| context_null = text_encoder([n_prompt], device) | |
| else: | |
| context = text_encoder([args.prompt], device) | |
| context_null = text_encoder([n_prompt], device) | |
| # free text encoder and clean memory | |
| del text_encoder | |
| clean_memory_on_device(device) | |
| # load CLIP model | |
| clip = load_clip_model(args, config, device) | |
| clip.model.to(device) | |
| # encode image to CLIP context | |
| logger.info(f"Encoding image to CLIP context") | |
| with torch.amp.autocast(device_type=device.type, dtype=torch.float16), torch.no_grad(): | |
| clip_context = clip.visual([img_tensor[:, None, :, :]]) | |
| if end_img is not None: | |
| end_img_tensor = TF.to_tensor(end_img).sub_(0.5).div_(0.5).to(device) | |
| end_clip_context = clip.visual([end_img_tensor[:, None, :, :]]) | |
| clip_context = torch.concat([clip_context, end_clip_context], dim=0) | |
| print(f"CLIP context shape: {clip_context.shape}") | |
| # **修正箇所: one_frame_inferenceの場合はCLIPエンコーディングを調整** | |
| if args.one_frame_inference is not None: | |
| logger.info(f"Adjusting CLIP context for one_frame_inference") | |
| # one_frame_inferenceの場合、モデルは開始フレームと終了フレームの2つのCLIP featureのみを期待 | |
| # 通常のI2Vと同じ構造を保持(main image + end imageまたはtarget image) | |
| if args.control_image_path is not None and len(args.control_image_path) > 0: | |
| # 最初のcontrol imageを"end image"として使用 | |
| target_ctrl_img = Image.open(args.control_image_path[-1]).convert("RGB") # 最後のcontrol imageを使用 | |
| target_ctrl_img_tensor = TF.to_tensor(target_ctrl_img).sub_(0.5).div_(0.5).to(device) | |
| target_clip_context = clip.visual([target_ctrl_img_tensor[:, None, :, :]]) | |
| clip_context = torch.concat([clip_context, target_clip_context], dim=0) | |
| print(f"CLIP context shape for one_frame_inference: {clip_context.shape}") | |
| elif end_img is None: | |
| # end imageもcontrol imageもない場合、main imageを複製 | |
| clip_context = torch.concat([clip_context, clip_context], dim=0) | |
| print(f"CLIP context shape (duplicated): {clip_context.shape}") | |
| logger.info(f"Encoding complete") | |
| # free CLIP model and clean memory | |
| del clip | |
| clean_memory_on_device(device) | |
| else: | |
| # Use pre-encoded context | |
| context = encoded_context["context"] | |
| context_null = encoded_context["context_null"] | |
| clip_context = encoded_context["clip_context"] | |
| # check if one frame inference is enabled | |
| if args.one_frame_inference is not None: | |
| one_frame_inference_index, y, f_indices = prepare_one_frame_inference( | |
| args, accelerator, vae, device, lat_h, lat_w, height, width | |
| ) | |
| else: | |
| one_frame_inference_index, f_indices = None, None | |
| # encode image to latent space with VAE | |
| logger.info(f"Encoding image to latent space") | |
| vae.to_device(device) | |
| # resize image | |
| interpolation = cv2.INTER_AREA if height < img_cv2.shape[0] else cv2.INTER_CUBIC | |
| img_resized = cv2.resize(img_cv2, (width, height), interpolation=interpolation) | |
| img_resized = TF.to_tensor(img_resized).sub_(0.5).div_(0.5).to(device) # -1 to 1, CHW | |
| img_resized = img_resized.unsqueeze(1) # CFHW | |
| if has_end_image: | |
| interpolation = cv2.INTER_AREA if height < end_img_cv2.shape[1] else cv2.INTER_CUBIC | |
| end_img_resized = cv2.resize(end_img_cv2, (width, height), interpolation=interpolation) | |
| end_img_resized = TF.to_tensor(end_img_resized).sub_(0.5).div_(0.5).to(device) # -1 to 1, CHW | |
| end_img_resized = end_img_resized.unsqueeze(1) # CFHW | |
| # create mask for the first frame | |
| # if unofficial end image is used, we need to add an additional frame for it | |
| msk = torch.zeros(4, lat_f + additional_frames, lat_h, lat_w, device=device) | |
| msk[:, 0] = 1 | |
| if has_end_image: | |
| # this process is confirmed by official code for FLF2V | |
| msk[:, -1] = 1 | |
| # encode image to latent space | |
| with accelerator.autocast(), torch.no_grad(): | |
| # padding to match the required number of frames | |
| padding_frames = frames - 1 # the first frame is image | |
| img_resized = torch.concat([img_resized, torch.zeros(3, padding_frames, height, width, device=device)], dim=1) | |
| y = vae.encode([img_resized])[0] | |
| if has_end_image: | |
| y_end = vae.encode([end_img_resized])[0] | |
| y = torch.concat([y, y_end], dim=1) # add end frame | |
| y = torch.concat([msk, y]) | |
| logger.info(f"Encoding complete") | |
| # Fun-Control: encode control video to latent space | |
| if config.is_fun_control: | |
| # TODO use same resizing as for image | |
| logger.info(f"Encoding control video to latent space") | |
| # C, F, H, W | |
| control_video = load_control_video(args.control_path, frames + (1 if has_end_image else 0), height, width).to(device) | |
| with accelerator.autocast(), torch.no_grad(): | |
| control_latent = vae.encode([control_video])[0] | |
| y = y[msk.shape[0] :] # remove mask because Fun-Control does not need it | |
| if has_end_image: | |
| y[:, 1:-1] = 0 # remove image latent except first and last frame. according to WanVideoWrapper, this doesn't work | |
| else: | |
| y[:, 1:] = 0 # remove image latent except first frame | |
| y = torch.concat([control_latent, y], dim=0) # add control video latent | |
| # generate noise | |
| noise = torch.randn( | |
| 16, | |
| y.shape[1], # number of frames in latent space | |
| lat_h, | |
| lat_w, | |
| dtype=torch.float32, | |
| generator=seed_g, | |
| device=device if not args.cpu_noise else "cpu", | |
| ) | |
| noise = noise.to(device) | |
| print( | |
| f"noise shape: {noise.shape}, y shape: {y.shape}, context shape: {context[0].shape}, clip_context shape: {clip_context.shape}" | |
| ) | |
| # prepare model input arguments | |
| arg_c = { | |
| "context": [context[0]], | |
| "clip_fea": clip_context, | |
| "seq_len": max_seq_len, | |
| "y": [y], | |
| "f_indices": [f_indices] if f_indices is not None else None, | |
| } | |
| arg_null = { | |
| "context": context_null, | |
| "clip_fea": clip_context, | |
| "seq_len": max_seq_len, | |
| "y": [y], | |
| "f_indices": [f_indices] if f_indices is not None else None, | |
| } | |
| vae.to_device("cpu") # move VAE to CPU to save memory | |
| clean_memory_on_device(device) | |
| return noise, (arg_c, arg_null), one_frame_inference_index | |
| def load_control_video(control_path: str, frames: int, height: int, width: int) -> torch.Tensor: | |
| """load control video to latent space | |
| Args: | |
| control_path: path to control video | |
| frames: number of frames in the video | |
| height: height of the video | |
| width: width of the video | |
| Returns: | |
| torch.Tensor: control video latent, CFHW | |
| """ | |
| logger.info(f"Load control video from {control_path}") | |
| video = load_video(control_path, 0, frames, bucket_reso=(width, height)) # list of frames | |
| if len(video) < frames: | |
| raise ValueError(f"Video length is less than {frames}") | |
| # video = np.stack(video, axis=0) # F, H, W, C | |
| video = torch.stack([TF.to_tensor(frame).sub_(0.5).div_(0.5) for frame in video], dim=0) # F, C, H, W, -1 to 1 | |
| video = video.permute(1, 0, 2, 3) # C, F, H, W | |
| return video | |
| def setup_scheduler(args: argparse.Namespace, config, device: torch.device) -> Tuple[Any, torch.Tensor]: | |
| """setup scheduler for sampling | |
| Args: | |
| args: command line arguments | |
| config: model configuration | |
| device: device to use | |
| Returns: | |
| Tuple[Any, torch.Tensor]: (scheduler, timesteps) | |
| """ | |
| if args.sample_solver == "unipc": | |
| scheduler = FlowUniPCMultistepScheduler(num_train_timesteps=config.num_train_timesteps, shift=1, use_dynamic_shifting=False) | |
| scheduler.set_timesteps(args.infer_steps, device=device, shift=args.flow_shift) | |
| timesteps = scheduler.timesteps | |
| elif args.sample_solver == "dpm++": | |
| scheduler = FlowDPMSolverMultistepScheduler( | |
| num_train_timesteps=config.num_train_timesteps, shift=1, use_dynamic_shifting=False | |
| ) | |
| sampling_sigmas = get_sampling_sigmas(args.infer_steps, args.flow_shift) | |
| timesteps, _ = retrieve_timesteps(scheduler, device=device, sigmas=sampling_sigmas) | |
| elif args.sample_solver == "vanilla": | |
| scheduler = FlowMatchDiscreteScheduler(num_train_timesteps=config.num_train_timesteps, shift=args.flow_shift) | |
| scheduler.set_timesteps(args.infer_steps, device=device) | |
| timesteps = scheduler.timesteps | |
| # FlowMatchDiscreteScheduler does not support generator argument in step method | |
| org_step = scheduler.step | |
| def step_wrapper( | |
| model_output: torch.Tensor, | |
| timestep: Union[int, torch.Tensor], | |
| sample: torch.Tensor, | |
| return_dict: bool = True, | |
| generator=None, | |
| ): | |
| return org_step(model_output, timestep, sample, return_dict=return_dict) | |
| scheduler.step = step_wrapper | |
| else: | |
| raise NotImplementedError("Unsupported solver.") | |
| return scheduler, timesteps | |
| def run_sampling( | |
| model: WanModel, | |
| noise: torch.Tensor, | |
| scheduler: Any, | |
| timesteps: torch.Tensor, | |
| args: argparse.Namespace, | |
| inputs: Tuple[dict, dict], | |
| device: torch.device, | |
| seed_g: torch.Generator, | |
| accelerator: Accelerator, | |
| is_i2v: bool = False, | |
| use_cpu_offload: bool = True, | |
| ) -> torch.Tensor: | |
| """run sampling | |
| Args: | |
| model: dit model | |
| noise: initial noise | |
| scheduler: scheduler for sampling | |
| timesteps: time steps for sampling | |
| args: command line arguments | |
| inputs: model input (arg_c, arg_null) | |
| device: device to use | |
| seed_g: random generator | |
| accelerator: Accelerator instance | |
| is_i2v: I2V mode (False means T2V mode) | |
| use_cpu_offload: Whether to offload tensors to CPU during processing | |
| Returns: | |
| torch.Tensor: generated latent | |
| """ | |
| arg_c, arg_null = inputs | |
| latent = noise | |
| latent_storage_device = device if not use_cpu_offload else "cpu" | |
| latent = latent.to(latent_storage_device) | |
| # cfg skip | |
| apply_cfg_array = [] | |
| num_timesteps = len(timesteps) | |
| if args.cfg_skip_mode != "none" and args.cfg_apply_ratio is not None: | |
| # Calculate thresholds based on cfg_apply_ratio | |
| apply_steps = int(num_timesteps * args.cfg_apply_ratio) | |
| if args.cfg_skip_mode == "early": | |
| # Skip CFG in early steps, apply in late steps | |
| start_index = num_timesteps - apply_steps | |
| end_index = num_timesteps | |
| elif args.cfg_skip_mode == "late": | |
| # Skip CFG in late steps, apply in early steps | |
| start_index = 0 | |
| end_index = apply_steps | |
| elif args.cfg_skip_mode == "early_late": | |
| # Skip CFG in early and late steps, apply in middle steps | |
| start_index = (num_timesteps - apply_steps) // 2 | |
| end_index = start_index + apply_steps | |
| elif args.cfg_skip_mode == "middle": | |
| # Skip CFG in middle steps, apply in early and late steps | |
| skip_steps = num_timesteps - apply_steps | |
| middle_start = (num_timesteps - skip_steps) // 2 | |
| middle_end = middle_start + skip_steps | |
| w = 0.0 | |
| for step_idx in range(num_timesteps): | |
| if args.cfg_skip_mode == "alternate": | |
| # accumulate w and apply CFG when w >= 1.0 | |
| w += args.cfg_apply_ratio | |
| apply = w >= 1.0 | |
| if apply: | |
| w -= 1.0 | |
| elif args.cfg_skip_mode == "middle": | |
| # Skip CFG in early and late steps, apply in middle steps | |
| apply = step_idx < middle_start or step_idx >= middle_end | |
| else: | |
| # Apply CFG on some steps based on ratio | |
| apply = step_idx >= start_index and step_idx < end_index | |
| apply_cfg_array.append(apply) | |
| pattern = ["A" if apply else "S" for apply in apply_cfg_array] | |
| pattern = "".join(pattern) | |
| logger.info(f"CFG skip mode: {args.cfg_skip_mode}, apply ratio: {args.cfg_apply_ratio}, pattern: {pattern}") | |
| else: | |
| # Apply CFG on all steps | |
| apply_cfg_array = [True] * num_timesteps | |
| # SLG original implementation is based on https://github.com/Stability-AI/sd3.5/blob/main/sd3_impls.py | |
| slg_start_step = int(args.slg_start * num_timesteps) | |
| slg_end_step = int(args.slg_end * num_timesteps) | |
| for i, t in enumerate(tqdm(timesteps)): | |
| # latent is on CPU if use_cpu_offload is True | |
| latent_model_input = [latent.to(device)] | |
| timestep = torch.stack([t]).to(device) | |
| with accelerator.autocast(), torch.no_grad(): | |
| noise_pred_cond = model(latent_model_input, t=timestep, **arg_c)[0].to(latent_storage_device) | |
| apply_cfg = apply_cfg_array[i] # apply CFG or not | |
| if apply_cfg: | |
| apply_slg = i >= slg_start_step and i < slg_end_step | |
| # print(f"Applying SLG: {apply_slg}, i: {i}, slg_start_step: {slg_start_step}, slg_end_step: {slg_end_step}") | |
| if args.slg_mode == "original" and apply_slg: | |
| noise_pred_uncond = model(latent_model_input, t=timestep, **arg_null)[0].to(latent_storage_device) | |
| # apply guidance | |
| # SD3 formula: scaled = neg_out + (pos_out - neg_out) * cond_scale | |
| noise_pred = noise_pred_uncond + args.guidance_scale * (noise_pred_cond - noise_pred_uncond) | |
| # calculate skip layer out | |
| skip_layer_out = model(latent_model_input, t=timestep, skip_block_indices=args.slg_layers, **arg_null)[0].to( | |
| latent_storage_device | |
| ) | |
| # apply skip layer guidance | |
| # SD3 formula: scaled = scaled + (pos_out - skip_layer_out) * self.slg | |
| noise_pred = noise_pred + args.slg_scale * (noise_pred_cond - skip_layer_out) | |
| elif args.slg_mode == "uncond" and apply_slg: | |
| # noise_pred_uncond is skip layer out | |
| noise_pred_uncond = model(latent_model_input, t=timestep, skip_block_indices=args.slg_layers, **arg_null)[0].to( | |
| latent_storage_device | |
| ) | |
| # apply guidance | |
| noise_pred = noise_pred_uncond + args.guidance_scale * (noise_pred_cond - noise_pred_uncond) | |
| else: | |
| # normal guidance | |
| noise_pred_uncond = model(latent_model_input, t=timestep, **arg_null)[0].to(latent_storage_device) | |
| # apply guidance | |
| noise_pred = noise_pred_uncond + args.guidance_scale * (noise_pred_cond - noise_pred_uncond) | |
| else: | |
| noise_pred = noise_pred_cond | |
| # step | |
| latent_input = latent.unsqueeze(0) | |
| temp_x0 = scheduler.step(noise_pred.unsqueeze(0), t, latent_input, return_dict=False, generator=seed_g)[0] | |
| # update latent | |
| latent = temp_x0.squeeze(0) | |
| return latent | |
| def generate( | |
| args: argparse.Namespace, gen_settings: GenerationSettings, shared_models: Optional[Dict] = None | |
| ) -> tuple[torch.Tensor, Optional[int]]: | |
| """main function for generation | |
| Args: | |
| args: command line arguments | |
| shared_models: dictionary containing pre-loaded models and encoded data | |
| Returns: | |
| tuple[torch.Tensor, Optional[int]]: (latent tensor, one frame inference index) | |
| """ | |
| device, cfg, dit_dtype, dit_weight_dtype, vae_dtype = ( | |
| gen_settings.device, | |
| gen_settings.cfg, | |
| gen_settings.dit_dtype, | |
| gen_settings.dit_weight_dtype, | |
| gen_settings.vae_dtype, | |
| ) | |
| # prepare accelerator | |
| mixed_precision = "bf16" if dit_dtype == torch.bfloat16 else "fp16" | |
| accelerator = accelerate.Accelerator(mixed_precision=mixed_precision) | |
| # I2V or T2V | |
| is_i2v = "i2v" in args.task or "flf2v" in args.task | |
| # prepare seed | |
| seed = args.seed if args.seed is not None else random.randint(0, 2**32 - 1) | |
| args.seed = seed # set seed to args for saving | |
| # Check if we have shared models | |
| one_frame_inference_index = None | |
| if shared_models is not None: | |
| # Use shared models and encoded data | |
| vae = shared_models.get("vae") | |
| model = shared_models.get("model") | |
| encoded_context = shared_models.get("encoded_contexts", {}).get(args.prompt) | |
| # prepare inputs | |
| if is_i2v: | |
| # I2V | |
| noise, inputs, one_frame_inference_index = prepare_i2v_inputs(args, cfg, accelerator, device, vae, encoded_context) | |
| else: | |
| # T2V | |
| noise, inputs = prepare_t2v_inputs(args, cfg, accelerator, device, vae, encoded_context) | |
| else: | |
| # prepare inputs without shared models | |
| if is_i2v: | |
| # I2V: need text encoder, VAE and CLIP | |
| vae = load_vae(args, cfg, device, vae_dtype) | |
| noise, inputs, one_frame_inference_index = prepare_i2v_inputs(args, cfg, accelerator, device, vae) | |
| # vae is on CPU after prepare_i2v_inputs | |
| else: | |
| # T2V: need text encoder | |
| vae = None | |
| if cfg.is_fun_control: | |
| # Fun-Control: need VAE for encoding control video | |
| vae = load_vae(args, cfg, device, vae_dtype) | |
| noise, inputs = prepare_t2v_inputs(args, cfg, accelerator, device, vae) | |
| # load DiT model | |
| model = load_dit_model(args, cfg, device, dit_dtype, dit_weight_dtype, is_i2v) | |
| # merge LoRA weights | |
| if args.lora_weight is not None and len(args.lora_weight) > 0: | |
| merge_lora_weights(lora_wan, model, args, device) | |
| # if we only want to save the model, we can skip the rest | |
| if args.save_merged_model: | |
| return None | |
| # optimize model: fp8 conversion, block swap etc. | |
| optimize_model(model, args, device, dit_dtype, dit_weight_dtype) | |
| # setup scheduler | |
| scheduler, timesteps = setup_scheduler(args, cfg, device) | |
| # set random generator | |
| seed_g = torch.Generator(device=device) | |
| seed_g.manual_seed(seed) | |
| # run sampling | |
| latent = run_sampling(model, noise, scheduler, timesteps, args, inputs, device, seed_g, accelerator, is_i2v) | |
| if one_frame_inference_index is not None: | |
| latent = latent[:, one_frame_inference_index : one_frame_inference_index + 1, :] | |
| latent = latent.contiguous() # safetensors requires contiguous tensors :( | |
| # Only clean up shared models if they were created within this function | |
| if shared_models is None: | |
| # free memory | |
| del model | |
| del scheduler | |
| synchronize_device(device) | |
| # wait for 5 seconds until block swap is done | |
| if args.blocks_to_swap > 0: | |
| logger.info("Waiting for 5 seconds to finish block swap") | |
| time.sleep(5) | |
| gc.collect() | |
| clean_memory_on_device(device) | |
| # save VAE model for decoding | |
| if vae is None: | |
| args._vae = None | |
| else: | |
| args._vae = vae | |
| return latent | |
| def decode_latent(latent: torch.Tensor, args: argparse.Namespace, cfg) -> torch.Tensor: | |
| """decode latent | |
| Args: | |
| latent: latent tensor | |
| args: command line arguments | |
| cfg: model configuration | |
| Returns: | |
| torch.Tensor: decoded video or image | |
| """ | |
| device = torch.device(args.device) | |
| # load VAE model or use the one from the generation | |
| vae_dtype = str_to_dtype(args.vae_dtype) if args.vae_dtype is not None else torch.bfloat16 | |
| if hasattr(args, "_vae") and args._vae is not None: | |
| vae = args._vae | |
| else: | |
| vae = load_vae(args, cfg, device, vae_dtype) | |
| vae.to_device(device) | |
| x0 = latent.to(device) | |
| logger.info(f"Decoding video from latents: {latent.shape}") | |
| with torch.autocast(device_type=device.type, dtype=vae_dtype), torch.no_grad(): | |
| videos = vae.decode(x0) | |
| # some tail frames may be corrupted when end frame is used, we add an option to remove them | |
| if args.trim_tail_frames: | |
| videos[0] = videos[0][:, : -args.trim_tail_frames] | |
| video = videos[0] | |
| del videos | |
| video = video.to(torch.float32).cpu() | |
| logger.info(f"Decoding complete") | |
| return video | |
| def save_latent(latent: torch.Tensor, args: argparse.Namespace, height: int, width: int) -> str: | |
| """Save latent to file | |
| Args: | |
| latent: latent tensor | |
| args: command line arguments | |
| height: height of frame | |
| width: width of frame | |
| Returns: | |
| str: Path to saved latent file | |
| """ | |
| save_path = args.save_path | |
| os.makedirs(save_path, exist_ok=True) | |
| time_flag = datetime.fromtimestamp(time.time()).strftime("%Y%m%d-%H%M%S") | |
| seed = args.seed | |
| video_length = args.video_length | |
| latent_path = f"{save_path}/{time_flag}_{seed}_latent.safetensors" | |
| if args.no_metadata: | |
| metadata = None | |
| else: | |
| metadata = { | |
| "seeds": f"{seed}", | |
| "prompt": f"{args.prompt}", | |
| "height": f"{height}", | |
| "width": f"{width}", | |
| "video_length": f"{video_length}", | |
| "infer_steps": f"{args.infer_steps}", | |
| "guidance_scale": f"{args.guidance_scale}", | |
| } | |
| if args.negative_prompt is not None: | |
| metadata["negative_prompt"] = f"{args.negative_prompt}" | |
| sd = {"latent": latent} | |
| save_file(sd, latent_path, metadata=metadata) | |
| logger.info(f"Latent saved to: {latent_path}") | |
| return latent_path | |
| def save_video(video: torch.Tensor, args: argparse.Namespace, original_base_name: Optional[str] = None) -> str: | |
| """Save video to file | |
| Args: | |
| video: Video tensor | |
| args: command line arguments | |
| original_base_name: Original base name (if latents are loaded from files) | |
| Returns: | |
| str: Path to saved video file | |
| """ | |
| save_path = args.save_path | |
| os.makedirs(save_path, exist_ok=True) | |
| time_flag = datetime.fromtimestamp(time.time()).strftime("%Y%m%d-%H%M%S") | |
| seed = args.seed | |
| original_name = "" if original_base_name is None else f"_{original_base_name}" | |
| video_path = f"{save_path}/{time_flag}_{seed}{original_name}.mp4" | |
| video = video.unsqueeze(0) | |
| save_videos_grid(video, video_path, fps=args.fps, rescale=True) | |
| logger.info(f"Video saved to: {video_path}") | |
| return video_path | |
| def save_images(sample: torch.Tensor, args: argparse.Namespace, original_base_name: Optional[str] = None) -> str: | |
| """Save images to directory | |
| Args: | |
| sample: Video tensor | |
| args: command line arguments | |
| original_base_name: Original base name (if latents are loaded from files) | |
| Returns: | |
| str: Path to saved images directory | |
| """ | |
| save_path = args.save_path | |
| os.makedirs(save_path, exist_ok=True) | |
| time_flag = datetime.fromtimestamp(time.time()).strftime("%Y%m%d-%H%M%S") | |
| seed = args.seed | |
| original_name = "" if original_base_name is None else f"_{original_base_name}" | |
| image_name = f"{time_flag}_{seed}{original_name}" | |
| sample = sample.unsqueeze(0) | |
| one_frame_inference = sample.shape[2] == 1 # check if one frame inference is used | |
| save_images_grid(sample, save_path, image_name, rescale=True, create_subdir=not one_frame_inference) | |
| logger.info(f"Sample images saved to: {save_path}/{image_name}") | |
| return f"{save_path}/{image_name}" | |
| def save_output( | |
| latent: torch.Tensor, args: argparse.Namespace, cfg, height: int, width: int, original_base_names: Optional[List[str]] = None | |
| ) -> None: | |
| """save output | |
| Args: | |
| latent: latent tensor | |
| args: command line arguments | |
| cfg: model configuration | |
| height: height of frame | |
| width: width of frame | |
| original_base_names: original base names (if latents are loaded from files) | |
| """ | |
| if args.output_type == "latent" or args.output_type == "both" or args.output_type == "latent_images": | |
| # save latent | |
| save_latent(latent, args, height, width) | |
| if args.output_type == "video" or args.output_type == "both": | |
| # save video | |
| sample = decode_latent(latent.unsqueeze(0), args, cfg) | |
| original_name = "" if original_base_names is None else f"_{original_base_names[0]}" | |
| save_video(sample, args, original_name) | |
| elif args.output_type == "images": | |
| # save images | |
| sample = decode_latent(latent.unsqueeze(0), args, cfg) | |
| original_name = "" if original_base_names is None else f"_{original_base_names[0]}" | |
| save_images(sample, args, original_name) | |
| def preprocess_prompts_for_batch(prompt_lines: List[str], base_args: argparse.Namespace) -> List[Dict]: | |
| """Process multiple prompts for batch mode | |
| Args: | |
| prompt_lines: List of prompt lines | |
| base_args: Base command line arguments | |
| Returns: | |
| List[Dict]: List of prompt data dictionaries | |
| """ | |
| prompts_data = [] | |
| for line in prompt_lines: | |
| line = line.strip() | |
| if not line or line.startswith("#"): # Skip empty lines and comments | |
| continue | |
| # Parse prompt line and create override dictionary | |
| prompt_data = parse_prompt_line(line) | |
| logger.info(f"Parsed prompt data: {prompt_data}") | |
| prompts_data.append(prompt_data) | |
| return prompts_data | |
| def process_batch_prompts(prompts_data: List[Dict], args: argparse.Namespace) -> None: | |
| """Process multiple prompts with model reuse | |
| Args: | |
| prompts_data: List of prompt data dictionaries | |
| args: Base command line arguments | |
| """ | |
| if not prompts_data: | |
| logger.warning("No valid prompts found") | |
| return | |
| # 1. Load configuration | |
| gen_settings = get_generation_settings(args) | |
| device, cfg, dit_dtype, dit_weight_dtype, vae_dtype = ( | |
| gen_settings.device, | |
| gen_settings.cfg, | |
| gen_settings.dit_dtype, | |
| gen_settings.dit_weight_dtype, | |
| gen_settings.vae_dtype, | |
| ) | |
| is_i2v = "i2v" in args.task | |
| # 2. Encode all prompts | |
| logger.info("Loading text encoder to encode all prompts") | |
| text_encoder = load_text_encoder(args, cfg, device) | |
| text_encoder.model.to(device) | |
| encoded_contexts = {} | |
| with torch.no_grad(): | |
| for prompt_data in prompts_data: | |
| prompt = prompt_data["prompt"] | |
| prompt_args = apply_overrides(args, prompt_data) | |
| n_prompt = prompt_data.get( | |
| "negative_prompt", prompt_args.negative_prompt if prompt_args.negative_prompt else cfg.sample_neg_prompt | |
| ) | |
| if args.fp8_t5: | |
| with torch.amp.autocast(device_type=device.type, dtype=cfg.t5_dtype): | |
| context = text_encoder([prompt], device) | |
| context_null = text_encoder([n_prompt], device) | |
| else: | |
| context = text_encoder([prompt], device) | |
| context_null = text_encoder([n_prompt], device) | |
| encoded_contexts[prompt] = {"context": context, "context_null": context_null} | |
| # Free text encoder and clean memory | |
| del text_encoder | |
| clean_memory_on_device(device) | |
| # 3. Process I2V additional encodings if needed | |
| vae = None | |
| if is_i2v: | |
| logger.info("Loading VAE and CLIP for I2V preprocessing") | |
| vae = load_vae(args, cfg, device, vae_dtype) | |
| vae.to_device(device) | |
| clip = load_clip_model(args, cfg, device) | |
| clip.model.to(device) | |
| # Process each image and encode with CLIP | |
| for prompt_data in prompts_data: | |
| if "image_path" not in prompt_data: | |
| continue | |
| prompt_args = apply_overrides(args, prompt_data) | |
| if not os.path.exists(prompt_args.image_path): | |
| logger.warning(f"Image path not found: {prompt_args.image_path}") | |
| continue | |
| # Load and encode image with CLIP | |
| img = Image.open(prompt_args.image_path).convert("RGB") | |
| img_tensor = TF.to_tensor(img).sub_(0.5).div_(0.5).to(device) | |
| with torch.amp.autocast(device_type=device.type, dtype=torch.float16), torch.no_grad(): | |
| clip_context = clip.visual([img_tensor[:, None, :, :]]) | |
| encoded_contexts[prompt_data["prompt"]]["clip_context"] = clip_context | |
| # Free CLIP and clean memory | |
| del clip | |
| clean_memory_on_device(device) | |
| # Keep VAE in CPU memory for later use | |
| vae.to_device("cpu") | |
| elif cfg.is_fun_control: | |
| # For Fun-Control, we need VAE but keep it on CPU | |
| vae = load_vae(args, cfg, device, vae_dtype) | |
| vae.to_device("cpu") | |
| # 4. Load DiT model | |
| logger.info("Loading DiT model") | |
| model = load_dit_model(args, cfg, device, dit_dtype, dit_weight_dtype, is_i2v) | |
| # 5. Merge LoRA weights if needed | |
| if args.lora_weight is not None and len(args.lora_weight) > 0: | |
| merge_lora_weights(lora_wan, model, args, device) | |
| if args.save_merged_model: | |
| logger.info("Model merged and saved. Exiting.") | |
| return | |
| # 6. Optimize model | |
| optimize_model(model, args, device, dit_dtype, dit_weight_dtype) | |
| # Create shared models dict for generate function | |
| shared_models = {"vae": vae, "model": model, "encoded_contexts": encoded_contexts} | |
| # 7. Generate for each prompt | |
| all_latents = [] | |
| all_prompt_args = [] | |
| for i, prompt_data in enumerate(prompts_data): | |
| logger.info(f"Processing prompt {i+1}/{len(prompts_data)}: {prompt_data['prompt'][:50]}...") | |
| # Apply overrides for this prompt | |
| prompt_args = apply_overrides(args, prompt_data) | |
| # Generate latent | |
| latent = generate(prompt_args, gen_settings, shared_models) | |
| # Save latent if needed | |
| height, width, _ = check_inputs(prompt_args) | |
| if prompt_args.output_type == "latent" or prompt_args.output_type == "both" or prompt_args.output_type == "latent_images": | |
| save_latent(latent, prompt_args, height, width) | |
| all_latents.append(latent) | |
| all_prompt_args.append(prompt_args) | |
| # 8. Free DiT model | |
| del model | |
| clean_memory_on_device(device) | |
| synchronize_device(device) | |
| # wait for 5 seconds until block swap is done | |
| if args.blocks_to_swap > 0: | |
| logger.info("Waiting for 5 seconds to finish block swap") | |
| time.sleep(5) | |
| gc.collect() | |
| clean_memory_on_device(device) | |
| # 9. Decode latents if needed | |
| if args.output_type != "latent": | |
| logger.info("Decoding latents to videos/images") | |
| if vae is None: | |
| vae = load_vae(args, cfg, device, vae_dtype) | |
| vae.to_device(device) | |
| for i, (latent, prompt_args) in enumerate(zip(all_latents, all_prompt_args)): | |
| logger.info(f"Decoding output {i+1}/{len(all_latents)}") | |
| # Decode latent | |
| video = decode_latent(latent.unsqueeze(0), prompt_args, cfg) | |
| # Save as video or images | |
| if prompt_args.output_type == "video" or prompt_args.output_type == "both": | |
| save_video(video, prompt_args) | |
| elif prompt_args.output_type == "images": | |
| save_images(video, prompt_args) | |
| # Free VAE | |
| del vae | |
| clean_memory_on_device(device) | |
| gc.collect() | |
| def process_interactive(args: argparse.Namespace) -> None: | |
| """Process prompts in interactive mode | |
| Args: | |
| args: Base command line arguments | |
| """ | |
| gen_settings = get_generation_settings(args) | |
| device, cfg, dit_dtype, dit_weight_dtype, vae_dtype = ( | |
| gen_settings.device, | |
| gen_settings.cfg, | |
| gen_settings.dit_dtype, | |
| gen_settings.dit_weight_dtype, | |
| gen_settings.vae_dtype, | |
| ) | |
| is_i2v = "i2v" in args.task | |
| # Initialize models to None | |
| text_encoder = None | |
| vae = None | |
| model = None | |
| clip = None | |
| print("Interactive mode. Enter prompts (Ctrl+D or Ctrl+Z (Windows) to exit):") | |
| try: | |
| import prompt_toolkit | |
| except ImportError: | |
| logger.warning("prompt_toolkit not found. Using basic input instead.") | |
| prompt_toolkit = None | |
| if prompt_toolkit: | |
| session = prompt_toolkit.PromptSession() | |
| def input_line(prompt: str) -> str: | |
| return session.prompt(prompt) | |
| else: | |
| def input_line(prompt: str) -> str: | |
| return input(prompt) | |
| try: | |
| while True: | |
| try: | |
| line = input_line("> ") | |
| if not line.strip(): | |
| continue | |
| if len(line.strip()) == 1 and line.strip() in ["\x04", "\x1a"]: # Ctrl+D or Ctrl+Z with prompt_toolkit | |
| raise EOFError # Exit on Ctrl+D or Ctrl+Z | |
| # Parse prompt | |
| prompt_data = parse_prompt_line(line) | |
| prompt_args = apply_overrides(args, prompt_data) | |
| # Ensure we have all the models we need | |
| # 1. Load text encoder if not already loaded | |
| if text_encoder is None: | |
| logger.info("Loading text encoder") | |
| text_encoder = load_text_encoder(args, cfg, device) | |
| text_encoder.model.to(device) | |
| # Encode prompt | |
| n_prompt = prompt_data.get( | |
| "negative_prompt", prompt_args.negative_prompt if prompt_args.negative_prompt else cfg.sample_neg_prompt | |
| ) | |
| with torch.no_grad(): | |
| if args.fp8_t5: | |
| with torch.amp.autocast(device_type=device.type, dtype=cfg.t5_dtype): | |
| context = text_encoder([prompt_data["prompt"]], device) | |
| context_null = text_encoder([n_prompt], device) | |
| else: | |
| context = text_encoder([prompt_data["prompt"]], device) | |
| context_null = text_encoder([n_prompt], device) | |
| encoded_context = {"context": context, "context_null": context_null} | |
| # Move text encoder to CPU after use | |
| text_encoder.model.to("cpu") | |
| # 2. For I2V, we need CLIP and VAE | |
| if is_i2v: | |
| if clip is None: | |
| logger.info("Loading CLIP model") | |
| clip = load_clip_model(args, cfg, device) | |
| clip.model.to(device) | |
| # Encode image with CLIP if there's an image path | |
| if prompt_args.image_path and os.path.exists(prompt_args.image_path): | |
| img = Image.open(prompt_args.image_path).convert("RGB") | |
| img_tensor = TF.to_tensor(img).sub_(0.5).div_(0.5).to(device) | |
| with torch.amp.autocast(device_type=device.type, dtype=torch.float16), torch.no_grad(): | |
| clip_context = clip.visual([img_tensor[:, None, :, :]]) | |
| encoded_context["clip_context"] = clip_context | |
| # Move CLIP to CPU after use | |
| clip.model.to("cpu") | |
| # Load VAE if needed | |
| if vae is None: | |
| logger.info("Loading VAE model") | |
| vae = load_vae(args, cfg, device, vae_dtype) | |
| elif cfg.is_fun_control and vae is None: | |
| # For Fun-Control, we need VAE | |
| logger.info("Loading VAE model for Fun-Control") | |
| vae = load_vae(args, cfg, device, vae_dtype) | |
| # 3. Load DiT model if not already loaded | |
| if model is None: | |
| logger.info("Loading DiT model") | |
| model = load_dit_model(args, cfg, device, dit_dtype, dit_weight_dtype, is_i2v) | |
| # Merge LoRA weights if needed | |
| if args.lora_weight is not None and len(args.lora_weight) > 0: | |
| merge_lora_weights(lora_wan, model, args, device) | |
| # Optimize model | |
| optimize_model(model, args, device, dit_dtype, dit_weight_dtype) | |
| else: | |
| # Move model to GPU if it was offloaded | |
| model.to(device) | |
| # Create shared models dict | |
| shared_models = {"vae": vae, "model": model, "encoded_contexts": {prompt_data["prompt"]: encoded_context}} | |
| # Generate latent | |
| latent = generate(prompt_args, gen_settings, shared_models) | |
| # Move model to CPU after generation | |
| model.to("cpu") | |
| # Save latent if needed | |
| height, width, _ = check_inputs(prompt_args) | |
| if ( | |
| prompt_args.output_type == "latent" | |
| or prompt_args.output_type == "both" | |
| or prompt_args.output_type == "latent_images" | |
| ): | |
| save_latent(latent, prompt_args, height, width) | |
| # Decode and save output | |
| if prompt_args.output_type != "latent": | |
| if vae is None: | |
| vae = load_vae(args, cfg, device, vae_dtype) | |
| vae.to_device(device) | |
| video = decode_latent(latent.unsqueeze(0), prompt_args, cfg) | |
| if prompt_args.output_type == "video" or prompt_args.output_type == "both": | |
| save_video(video, prompt_args) | |
| elif prompt_args.output_type == "images": | |
| save_images(video, prompt_args) | |
| # Move VAE to CPU after use | |
| vae.to_device("cpu") | |
| clean_memory_on_device(device) | |
| except KeyboardInterrupt: | |
| print("\nInterrupted. Continue (Ctrl+D or Ctrl+Z (Windows) to exit)") | |
| continue | |
| except EOFError: | |
| print("\nExiting interactive mode") | |
| # Clean up all models | |
| if text_encoder is not None: | |
| del text_encoder | |
| if clip is not None: | |
| del clip | |
| if vae is not None: | |
| del vae | |
| if model is not None: | |
| del model | |
| clean_memory_on_device(device) | |
| gc.collect() | |
| def get_generation_settings(args: argparse.Namespace) -> GenerationSettings: | |
| device = torch.device(args.device) | |
| cfg = WAN_CONFIGS[args.task] | |
| # select dtype | |
| dit_dtype = detect_wan_sd_dtype(args.dit) if args.dit is not None else torch.bfloat16 | |
| if dit_dtype.itemsize == 1: | |
| # if weight is in fp8, use bfloat16 for DiT (input/output) | |
| dit_dtype = torch.bfloat16 | |
| if args.fp8_scaled: | |
| raise ValueError( | |
| "DiT weights is already in fp8 format, cannot scale to fp8. Please use fp16/bf16 weights / DiTの重みはすでにfp8形式です。fp8にスケーリングできません。fp16/bf16の重みを使用してください" | |
| ) | |
| dit_weight_dtype = dit_dtype # default | |
| if args.fp8_scaled: | |
| dit_weight_dtype = None # various precision weights, so don't cast to specific dtype | |
| elif args.fp8: | |
| dit_weight_dtype = torch.float8_e4m3fn | |
| vae_dtype = str_to_dtype(args.vae_dtype) if args.vae_dtype is not None else dit_dtype | |
| logger.info( | |
| f"Using device: {device}, DiT precision: {dit_dtype}, weight precision: {dit_weight_dtype}, VAE precision: {vae_dtype}" | |
| ) | |
| gen_settings = GenerationSettings( | |
| device=device, | |
| cfg=cfg, | |
| dit_dtype=dit_dtype, | |
| dit_weight_dtype=dit_weight_dtype, | |
| vae_dtype=vae_dtype, | |
| ) | |
| return gen_settings | |
| def main(): | |
| # Parse arguments | |
| args = parse_args() | |
| # Check if latents are provided | |
| latents_mode = args.latent_path is not None and len(args.latent_path) > 0 | |
| # Set device | |
| device = args.device if args.device is not None else "cuda" if torch.cuda.is_available() else "cpu" | |
| device = torch.device(device) | |
| logger.info(f"Using device: {device}") | |
| args.device = device | |
| if latents_mode: | |
| # Original latent decode mode | |
| cfg = WAN_CONFIGS[args.task] # any task is fine | |
| original_base_names = [] | |
| latents_list = [] | |
| seeds = [] | |
| assert len(args.latent_path) == 1, "Only one latent path is supported for now" | |
| for latent_path in args.latent_path: | |
| original_base_names.append(os.path.splitext(os.path.basename(latent_path))[0]) | |
| seed = 0 | |
| if os.path.splitext(latent_path)[1] != ".safetensors": | |
| latents = torch.load(latent_path, map_location="cpu") | |
| else: | |
| latents = load_file(latent_path)["latent"] | |
| with safe_open(latent_path, framework="pt") as f: | |
| metadata = f.metadata() | |
| if metadata is None: | |
| metadata = {} | |
| logger.info(f"Loaded metadata: {metadata}") | |
| if "seeds" in metadata: | |
| seed = int(metadata["seeds"]) | |
| if "height" in metadata and "width" in metadata: | |
| height = int(metadata["height"]) | |
| width = int(metadata["width"]) | |
| args.video_size = [height, width] | |
| if "video_length" in metadata: | |
| args.video_length = int(metadata["video_length"]) | |
| seeds.append(seed) | |
| latents_list.append(latents) | |
| logger.info(f"Loaded latent from {latent_path}. Shape: {latents.shape}") | |
| latent = torch.stack(latents_list, dim=0) # [N, ...], must be same shape | |
| height = latents.shape[-2] | |
| width = latents.shape[-1] | |
| height *= cfg.patch_size[1] * cfg.vae_stride[1] | |
| width *= cfg.patch_size[2] * cfg.vae_stride[2] | |
| video_length = latents.shape[1] | |
| video_length = (video_length - 1) * cfg.vae_stride[0] + 1 | |
| args.seed = seeds[0] | |
| save_output(latent[0], args, cfg, height, width, original_base_names) | |
| elif args.from_file: | |
| # Batch mode from file | |
| args = setup_args(args) | |
| # Read prompts from file | |
| with open(args.from_file, "r", encoding="utf-8") as f: | |
| prompt_lines = f.readlines() | |
| # Process prompts | |
| prompts_data = preprocess_prompts_for_batch(prompt_lines, args) | |
| process_batch_prompts(prompts_data, args) | |
| elif args.interactive: | |
| # Interactive mode | |
| args = setup_args(args) | |
| process_interactive(args) | |
| else: | |
| # Single prompt mode (original behavior) | |
| args = setup_args(args) | |
| height, width, video_length = check_inputs(args) | |
| logger.info( | |
| f"Video size: {height}x{width}@{video_length} (HxW@F), fps: {args.fps}, " | |
| f"infer_steps: {args.infer_steps}, flow_shift: {args.flow_shift}" | |
| ) | |
| # Generate latent | |
| gen_settings = get_generation_settings(args) | |
| latent = generate(args, gen_settings) | |
| # Make sure the model is freed from GPU memory | |
| gc.collect() | |
| clean_memory_on_device(args.device) | |
| # Save latent and video | |
| if args.save_merged_model: | |
| return | |
| # Add batch dimension | |
| latent = latent.unsqueeze(0) | |
| save_output(latent[0], args, WAN_CONFIGS[args.task], height, width) | |
| logger.info("Done!") | |
| if __name__ == "__main__": | |
| main() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment