Created
June 21, 2025 04:07
-
-
Save tori29umai0123/b78df24323e765bde4fd6c493bc68270 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# Copyright 2024-2025 The Alibaba Wan Team Authors. All rights reserved. | |
from typing import Optional | |
import torch | |
try: | |
import flash_attn_interface | |
FLASH_ATTN_3_AVAILABLE = True | |
except ModuleNotFoundError: | |
FLASH_ATTN_3_AVAILABLE = False | |
try: | |
import flash_attn | |
FLASH_ATTN_2_AVAILABLE = True | |
except ModuleNotFoundError: | |
FLASH_ATTN_2_AVAILABLE = False | |
try: | |
import sageattention | |
SAGE_ATTN_AVAILABLE = True | |
except ModuleNotFoundError: | |
SAGE_ATTN_AVAILABLE = False | |
try: | |
import xformers.ops as xops | |
XFORMERS_AVAILABLE = True | |
except ImportError: | |
XFORMERS_AVAILABLE = False | |
try: | |
from flash_attn.flash_attn_interface import flash_attn_varlen_func | |
import flash_attn.flash_attn_interface as flash_attn_interface | |
HAS_FLASH_ATTN = True | |
except ImportError: | |
HAS_FLASH_ATTN = False | |
flash_attn_interface = None | |
import warnings | |
__all__ = [ | |
"flash_attention", | |
"attention", | |
] | |
def flash_attention( | |
qkv, | |
q_lens=None, | |
k_lens=None, | |
dropout_p=0.0, | |
softmax_scale=None, | |
q_scale=None, | |
causal=False, | |
window_size=(-1, -1), | |
deterministic=False, | |
dtype=torch.bfloat16, | |
version=None, | |
attn_mode: Optional[str] = "torch", | |
split_attn: bool = False, | |
): | |
""" | |
q: [B, Lq, Nq, C1]. | |
k: [B, Lk, Nk, C1]. | |
v: [B, Lk, Nk, C2]. Nq must be divisible by Nk. | |
q_lens: [B]. | |
k_lens: [B]. | |
dropout_p: float. Dropout probability. | |
softmax_scale: float. The scaling of QK^T before applying softmax. | |
causal: bool. Whether to apply causal attention mask. | |
window_size: (left right). If not (-1, -1), apply sliding window local attention. | |
deterministic: bool. If True, slightly slower and uses more memory. | |
dtype: torch.dtype. Apply when dtype of q/k/v is not float16/bfloat16. | |
""" | |
q, k, v = qkv | |
qkv.clear() | |
half_dtypes = (torch.float16, torch.bfloat16) | |
assert dtype in half_dtypes | |
# assert q.device.type == "cuda" and q.size(-1) <= 256 | |
# params | |
b, lq, lk, out_dtype = q.size(0), q.size(1), k.size(1), q.dtype | |
def half(x): | |
return x if x.dtype in half_dtypes else x.to(dtype) | |
# We cannot test Flash attention 3 in musubi tuner, so keep the original code. | |
# Customized code (except for flash attention 3) is not supported q_lens and k_lens. | |
if attn_mode != "flash3" and attn_mode != "sageattn": | |
assert q_lens is None, "q_lens is not supported except for flash attention 3." | |
assert k_lens is None or ( | |
min(k_lens) == max(k_lens) and k_lens[0] == lk | |
), "k_lens is not supported except for flash attention 3." | |
# SDPA | |
if attn_mode == "torch" or attn_mode == "sdpa": | |
assert not deterministic, "deterministic is not supported in scaled_dot_product_attention." | |
if q_scale is not None: | |
q = q * q_scale | |
q = half(q.transpose(1, 2)) | |
k = half(k.transpose(1, 2)) | |
v = half(v.transpose(1, 2)) | |
if not split_attn: | |
q = torch.nn.functional.scaled_dot_product_attention( | |
q, k, v, is_causal=causal, dropout_p=dropout_p, scale=softmax_scale | |
) | |
x = q | |
else: | |
x = torch.empty_like(q) | |
for i in range(q.size(0)): | |
x[i : i + 1] = torch.nn.functional.scaled_dot_product_attention( | |
q[i : i + 1], k[i : i + 1], v[i : i + 1], is_causal=causal, dropout_p=dropout_p, scale=softmax_scale | |
) | |
del q, k, v | |
x = x.transpose(1, 2).contiguous() | |
return x.type(out_dtype) | |
# flash attention 2 | |
if attn_mode == "flash" or attn_mode == "flash2": | |
if q_scale is not None: | |
q = q * q_scale | |
q = half(q) | |
k = half(k) | |
v = half(v) | |
if not split_attn: | |
q = flash_attn.flash_attn_func(q, k, v, dropout_p, softmax_scale, causal, window_size, deterministic=deterministic) | |
x = q | |
else: | |
x = torch.empty_like(q) | |
for i in range(q.size(0)): | |
x[i : i + 1] = flash_attn.flash_attn_func( | |
q[i : i + 1], | |
k[i : i + 1], | |
v[i : i + 1], | |
dropout_p, | |
softmax_scale, | |
causal, | |
window_size, | |
deterministic=deterministic, | |
) | |
del q, k, v | |
return x.type(out_dtype) | |
# xformers | |
if attn_mode == "xformers": | |
assert not deterministic, "deterministic is not supported in xformers." | |
assert not causal, "causal is not supported in xformers." | |
if q_scale is not None: | |
q = q * q_scale | |
q = half(q) | |
k = half(k) | |
v = half(v) | |
if not split_attn: | |
q = xops.memory_efficient_attention(q, k, v, p=dropout_p, scale=softmax_scale) | |
x = q | |
else: | |
x = torch.empty_like(q) | |
for i in range(q.size(0)): | |
x[i : i + 1] = xops.memory_efficient_attention( | |
q[i : i + 1], k[i : i + 1], v[i : i + 1], p=dropout_p, scale=softmax_scale | |
) | |
del q, k, v | |
return x.type(out_dtype) | |
# sage attention with fixed length seems to cause NaN in I2V inference. | |
# # sage attention | |
# if attn_mode == "sageattn": | |
# print("Using sage attention") | |
# assert not deterministic, "deterministic is not supported in sage attention." | |
# if q_scale is not None: | |
# q = q * q_scale | |
# q, k, v = half(q), half(k), half(v) | |
# x = sageattention.sageattn(q, k, v, "NHD", is_causal=causal, sm_scale=softmax_scale) | |
# del q, k, v | |
# return x.type(out_dtype) | |
assert not split_attn, "split_attn is not supported in flash attention 3 or sage attention." | |
# preprocess query: in Wan 2.1, q_lens is always None. | |
if q_lens is None: | |
q = half(q.flatten(0, 1)) | |
q_lens = torch.tensor([lq] * b, dtype=torch.int32).to(device=q.device, non_blocking=True) | |
else: | |
q = half(torch.cat([u[:v] for u, v in zip(q, q_lens)])) | |
# preprocess key, value | |
if k_lens is None: | |
k = half(k.flatten(0, 1)) | |
v = half(v.flatten(0, 1)) | |
k_lens = torch.tensor([lk] * b, dtype=torch.int32).to(device=k.device, non_blocking=True) | |
else: | |
# Note: in Wan 2.1, all k_lens are same if we have same image size in the batch. | |
if min(k_lens) == max(k_lens) and k.shape[1] == k_lens[0]: | |
# B, L, N, C -> BN, L, C | |
k = half(k.flatten(0, 1)) | |
v = half(v.flatten(0, 1)) | |
else: | |
k = half(torch.cat([u[:v] for u, v in zip(k, k_lens)])) | |
v = half(torch.cat([u[:v] for u, v in zip(v, k_lens)])) | |
q = q.to(v.dtype) | |
k = k.to(v.dtype) | |
if q_scale is not None: | |
q = q * q_scale | |
# if version is not None and version == 3 and not FLASH_ATTN_3_AVAILABLE: | |
# warnings.warn("Flash attention 3 is not available, use flash attention 2 instead.") | |
# apply attention | |
# if (version is None or version == 3) and FLASH_ATTN_3_AVAILABLE: | |
if attn_mode == "flash3": | |
# Not tested yet in musubi tuner. | |
# Note: dropout_p, window_size are not supported in FA3 now. | |
# seq_lens(cumulative sequence lengths)を計算 | |
cu_seqlens_q = torch.cat([q_lens.new_zeros([1]), q_lens]).cumsum(0, dtype=torch.int32).to(q.device, non_blocking=True) | |
cu_seqlens_k = torch.cat([k_lens.new_zeros([1]), k_lens]).cumsum(0, dtype=torch.int32).to(k.device, non_blocking=True) | |
x = flash_attn_varlen_func( | |
q, | |
k, | |
v, | |
cu_seqlens_q=cu_seqlens_q, | |
cu_seqlens_k=cu_seqlens_k, | |
max_seqlen_q=lq, | |
max_seqlen_k=lk, | |
dropout_p=dropout_p, | |
softmax_scale=softmax_scale, | |
causal=causal, | |
# return_attn_probs=False, # この引数は不要の場合もある | |
).unflatten(0, (b, lq)) | |
# elif (version is None or version == 2) and FLASH_ATTN_2_AVAILABLE: | |
# # assert FLASH_ATTN_2_AVAILABLE | |
# x = flash_attn.flash_attn_varlen_func( | |
# q=q, | |
# k=k, | |
# v=v, | |
# cu_seqlens_q=torch.cat([q_lens.new_zeros([1]), q_lens]).cumsum(0, dtype=torch.int32).to(q.device, non_blocking=True), | |
# cu_seqlens_k=torch.cat([k_lens.new_zeros([1]), k_lens]).cumsum(0, dtype=torch.int32).to(q.device, non_blocking=True), | |
# max_seqlen_q=lq, | |
# max_seqlen_k=lk, | |
# dropout_p=dropout_p, | |
# softmax_scale=softmax_scale, | |
# causal=causal, | |
# window_size=window_size, | |
# deterministic=deterministic, | |
# ).unflatten(0, (b, lq)) | |
# elif version is None and SAGE_ATTN_AVAILABLE: | |
elif attn_mode == "sageattn": | |
# print("Using sage attention") | |
assert not causal, "SAGE attention does not support causal attention." | |
x = sageattention.sageattn_varlen( | |
q=q, | |
k=k, | |
v=v, | |
cu_seqlens_q=torch.cat([q_lens.new_zeros([1]), q_lens]).cumsum(0, dtype=torch.int32).to(q.device, non_blocking=True), | |
cu_seqlens_k=torch.cat([k_lens.new_zeros([1]), k_lens]).cumsum(0, dtype=torch.int32).to(q.device, non_blocking=True), | |
max_seqlen_q=lq, | |
max_seqlen_k=lk, | |
sm_scale=softmax_scale, | |
).unflatten(0, (b, lq)) | |
else: | |
raise ValueError(f"Unknown attention mode: {attn_mode}") | |
# output | |
return x.type(out_dtype) | |
def attention( | |
q, | |
k, | |
v, | |
q_lens=None, | |
k_lens=None, | |
dropout_p=0.0, | |
softmax_scale=None, | |
q_scale=None, | |
causal=False, | |
window_size=(-1, -1), | |
deterministic=False, | |
dtype=torch.bfloat16, | |
fa_version=None, | |
): | |
if FLASH_ATTN_2_AVAILABLE or FLASH_ATTN_3_AVAILABLE: | |
return flash_attention( | |
q=q, | |
k=k, | |
v=v, | |
q_lens=q_lens, | |
k_lens=k_lens, | |
dropout_p=dropout_p, | |
softmax_scale=softmax_scale, | |
q_scale=q_scale, | |
causal=causal, | |
window_size=window_size, | |
deterministic=deterministic, | |
dtype=dtype, | |
version=fa_version, | |
) | |
else: | |
if q_lens is not None or k_lens is not None: | |
warnings.warn( | |
"Padding mask is disabled when using scaled_dot_product_attention. It can have a significant impact on performance." | |
) | |
attn_mask = None | |
q = q.transpose(1, 2).to(dtype) | |
k = k.transpose(1, 2).to(dtype) | |
v = v.transpose(1, 2).to(dtype) | |
out = torch.nn.functional.scaled_dot_product_attention(q, k, v, attn_mask=attn_mask, is_causal=causal, dropout_p=dropout_p) | |
out = out.transpose(1, 2).contiguous() | |
return out |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment