Last active
July 26, 2022 20:24
-
-
Save torridgristle/cfa644a74e1a3ad96080127a7ef627ba to your computer and use it in GitHub Desktop.
VQGAN F8 Decoding with downscaled attention
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
def vqgan_dec_skip_lores_attn(h, temb=None): | |
# middle | |
h = vqgan.decoder.mid.block_1(h, temb) | |
h_half = F.upsample(h,scale_factor=0.5,mode='bicubic',align_corners=False) | |
h_half = vqgan.decoder.mid.attn_1(h_half) - h_half | |
h_half = F.upsample(h_half,scale_factor=2,mode='bicubic',align_corners=False) | |
h = h + h_half | |
h = vqgan.decoder.mid.block_2(h, temb) | |
# upsampling | |
for i_level in reversed(range(vqgan.decoder.num_resolutions)): | |
for i_block in range(vqgan.decoder.num_res_blocks+1): | |
h = vqgan.decoder.up[i_level].block[i_block](h, temb) | |
if len(vqgan.decoder.up[i_level].attn) > 0: | |
h_half = F.upsample(h,scale_factor=0.5,mode='bicubic',align_corners=False) | |
h_half = vqgan.decoder.up[i_level].attn[i_block](h_half) - h_half | |
h_half = F.upsample(h_half,scale_factor=2,mode='bicubic',align_corners=False) | |
h = h + h_half | |
if i_level != 0: | |
h = vqgan.decoder.up[i_level].upsample(h) | |
# end | |
if vqgan.decoder.give_pre_end: | |
return h | |
h = vqgan.decoder.norm_out(h) | |
h = h*torch.sigmoid(h) | |
h = vqgan.decoder.conv_out(h) | |
return h * 0.5 + 0.5 | |
# The conv_in is split from the rest due to a project involving modifying an image's latents | |
# with a small conv model in an attempt to retain content and change style | |
decoded_image = vqgan.decoder.conv_in(vqgan.post_quant_conv(encoded_image)) | |
decoded_image = vqgan_dec_skip_lores_attn(encoded_image) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment