Last active
August 29, 2015 14:25
-
-
Save toshi-k/c663000bab75075e7cec to your computer and use it in GitHub Desktop.
Randomized LeakyReLU (Torch 7)
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
local RLReLU, parent = torch.class('nn.RLReLU','nn.Module') | |
function RLReLU:__init(l, u, version) | |
parent.__init(self) | |
self.train = true | |
self.l = l or 3 | |
self.u = u or 8 | |
self.v = version or 1 | |
self.a = (self.u + self.u) / 2 | |
self.ReLU_p = nn.ReLU() | |
-- version 1: element-wise random | |
-- version 2: layer-wise random | |
if self.v == 1 then | |
self.noise = torch.Tensor() | |
else | |
self.noise = self.a | |
end | |
end | |
function RLReLU:updateOutput(input) | |
self.output:resizeAs(input):copy(input) | |
if self.train then | |
if self.v==1 then | |
self.noise:resizeAs(input) | |
self.noise:uniform(self.l, self.u) | |
self.noise:pow(-1) | |
self.output:cmul(self.noise) | |
self.ReLU_p.output = self.ReLU_p:updateOutput(input) | |
self.ReLU_p.output:cmul(self.noise:add(-1):mul(-1)) | |
else | |
self.noise = torch.uniform(self.l, self.u) | |
self.noise = 1/self.noise | |
self.output:mul(self.noise) | |
self.ReLU_p.output = self.ReLU_p:updateOutput(input) | |
self.ReLU_p.output:mul(1-self.noise) | |
end | |
else | |
self.output:mul(1/self.a) | |
self.ReLU_p.output = self.ReLU_p:updateOutput(input) | |
self.ReLU_p.output:mul(1-1/self.a) | |
end | |
self.output:add(self.ReLU_p.output) | |
return self.output | |
end | |
function RLReLU:updateGradInput(input, gradOutput) | |
self.gradInput:resizeAs(gradOutput):copy(gradOutput) | |
if self.train then | |
if self.v==1 then | |
self.gradInput:cmul(self.noise) | |
self.ReLU_p.gradInput = self.ReLU_p:updateGradInput(input, gradOutput) | |
self.ReLU_p.gradInput:cmul(self.noise:add(-1):mul(-1)) | |
else | |
self.gradInput:mul(self.noise) | |
self.ReLU_p.gradInput = self.ReLU_p:updateGradInput(input, gradOutput) | |
self.ReLU_p.gradInput:mul(1-self.noise) | |
end | |
else | |
self.gradInput:mul(1/self.a) | |
self.ReLU_p.gradInput = self.ReLU_p:updateGradInput(input, gradOutput) | |
self.ReLU_p.gradInput:mul(1-1/self.a) | |
end | |
self.gradInput:add(self.ReLU_p.gradInput) | |
return self.gradInput | |
end | |
function RLReLU:__tostring__() | |
if self.v==1 then | |
return string.format('%s(element-wise [%f,%f])', torch.type(self), self.l, self.u) | |
else | |
return string.format('%s(layer-wise [%f,%f])', torch.type(self), self.l, self.u) | |
end | |
end | |
--[[ | |
<<References>> | |
[1] Empirical Evaluation of Rectified Activations in Convolutional Network | |
Bing Xu, Naiyan Wang, Tianqi Chen, Mu Li | |
http://arxiv.org/abs/1505.00853 | |
--]] |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment