Created
March 17, 2017 16:54
-
-
Save toshi-k/ca75e614f1ac12fa44f62014ac1d6465 to your computer and use it in GitHub Desktop.
U-Net (Torch 7)
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
------------------------------ | |
-- library | |
------------------------------ | |
require 'torch' | |
require 'nn' | |
require 'cunn' | |
require 'cudnn' | |
require 'loadcaffe' | |
------------------------------ | |
-- function | |
------------------------------ | |
function branch(insert) | |
local block = nn.Sequential() | |
local max_pooling = nn.SpatialMaxPooling(2,2,2,2) | |
block:add(max_pooling) | |
block:add(insert) | |
-- block:add(nn.SpatialMaxUnpooling(max_pooling)) | |
block:add(nn.SpatialUpSamplingNearest(2)) | |
local parallel = nn.ConcatTable(2) | |
parallel:add(nn.Identity()) | |
parallel:add(block) | |
local model = nn.Sequential() | |
model:add(parallel) | |
model:add(nn.JoinTable(2)) | |
return model | |
end | |
function conv(n_input, n_middle, n_output, filtsize, out_bn) | |
local model = nn.Sequential() | |
model:add(cudnn.SpatialConvolution(n_input, n_middle, filtsize, filtsize, 1, 1, 1, 1)) | |
model:add(nn.SpatialBatchNormalization(n_middle)) | |
model:add(nn.LeakyReLU(0.1, true)) | |
model:add(cudnn.SpatialConvolution(n_middle, n_output, filtsize, filtsize, 1, 1, 1, 1)) | |
if out_bn == true then | |
model:add(nn.SpatialBatchNormalization(n_output)) | |
end | |
return model | |
end | |
function newmodel() | |
-- number of output | |
local num_output = num_class or 1 | |
-- filter size | |
local filtsize = 3 | |
local block0 = conv(512, 1024, 512, filtsize, true) | |
local block1 = nn.Sequential() | |
block1:add(conv(256, 512, 512, filtsize, true)) | |
block1:add(branch(block0)) | |
block1:add(conv(512*2, 512, 256, filtsize, true)) | |
local block2 = nn.Sequential() | |
block2:add(conv(128, 256, 256, filtsize, true)) | |
block2:add(branch(block1)) | |
block2:add(conv(256*2, 256, 128, filtsize, true)) | |
local block3 = nn.Sequential() | |
block3:add(conv(64, 128, 128, filtsize, true)) | |
block3:add(branch(block2)) | |
block3:add(conv(128*2, 128, 64, filtsize, true)) | |
local model = nn.Sequential() | |
model:add(conv(3, 64, 64, filtsize, true)) | |
model:add(branch(block3)) | |
model:add(conv(64*2, 64, num_output, filtsize, false)) | |
model:add(nn.Sigmoid()) | |
return model | |
end | |
--[[ | |
<<References>> | |
[1] U-Net: Convolutional Networks for Biomedical Image Segmentation | |
Olaf Ronneberger, Philipp Fischer, Thomas Brox | |
https://arxiv.org/abs/1505.04597 | |
--]] |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment