Created
April 3, 2016 19:01
-
-
Save tpietzsch/a7323b5abee7973251a99eaba0afd3d5 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
package net.imglib2.algorithm.fitting; | |
import net.imglib2.util.LinAlgHelpers; | |
import Jama.CholeskyDecomposition; | |
import Jama.Matrix; | |
/** | |
* Adapted from BoneJ's FitEllipsoid. | |
* | |
* @author Tobias Pietzsch <[email protected]> | |
*/ | |
public class FitEllipsoid | |
{ | |
/** | |
* <p> | |
* Ellipsoid fitting method by Yury Petrov.<br> | |
* Fits an ellipsoid in the form <i>Ax</i><sup>2</sup> + | |
* <i>By</i><sup>2</sup> + <i>Cz</i><sup>2</sup> + 2<i>Dxy</i> + 2<i>Exz</i> | |
* + 2<i>Fyz</i> + 2<i>Gx</i> + 2<i>Hy</i> + 2<i>Iz</i> = 1 <br> | |
* To an n * 3 array of coordinates. | |
* </p> | |
* | |
* @see <p> | |
* <a href= | |
* "http://www.mathworks.com/matlabcentral/fileexchange/24693-ellipsoid-fit" | |
* >MATLAB script</a> | |
* </p> | |
*/ | |
public static Ellipsoid yuryPetrov( final double[][] points ) | |
{ | |
final int nPoints = points.length; | |
if ( nPoints < 9 ) | |
throw new IllegalArgumentException( "Too few points; need at least 9 to calculate a unique ellipsoid" ); | |
final double[][] d = new double[ nPoints ][ 9 ]; | |
final double[][] b = new double[ 9 ][ 1 ]; | |
for (int i = 0; i < nPoints; i++) { | |
final double x = points[i][0]; | |
final double y = points[i][1]; | |
final double z = points[i][2]; | |
d[i][0] = x * x; | |
d[i][1] = y * y; | |
d[i][2] = z * z; | |
d[i][3] = 2 * x * y; | |
d[i][4] = 2 * x * z; | |
d[i][5] = 2 * y * z; | |
d[i][6] = 2 * x; | |
d[i][7] = 2 * y; | |
d[i][8] = 2 * z; | |
for ( int j = 0; j < 9; ++j ) | |
b[j][0] += d[i][j]; | |
} | |
final double[][] DTD = new double[ 9 ][ 9 ]; | |
LinAlgHelpers.multATB( d, d, DTD ); | |
final Matrix V = new CholeskyDecomposition( new Matrix( DTD ) ).solve( new Matrix( b ) ); | |
return ellipsoidFromEquation( V ); | |
} | |
/** | |
* Calculate the matrix representation of the ellipsoid from the equation variables | |
* <i>ax</i><sup>2</sup> + <i>by</i><sup>2</sup> + <i>cz</i><sup>2</sup> + | |
* 2<i>dxy</i> + 2<i>exz</i> + 2<i>fyz</i> + 2<i>gx</i> + 2<i>hy</i> + | |
* 2<i>iz</i> = 1 <br /> | |
* | |
* @param V vector (a,b,c,d,e,f,g,h,i) | |
* @return the ellipsoid. | |
*/ | |
private static Ellipsoid ellipsoidFromEquation( final Matrix V ) | |
{ | |
final double a = V.get( 0, 0 ); | |
final double b = V.get( 1, 0 ); | |
final double c = V.get( 2, 0 ); | |
final double d = V.get( 3, 0 ); | |
final double e = V.get( 4, 0 ); | |
final double f = V.get( 5, 0 ); | |
final double g = V.get( 6, 0 ); | |
final double h = V.get( 7, 0 ); | |
final double i = V.get( 8, 0 ); | |
final double[][] aa = new double[][] { | |
{ a, d, e }, | |
{ d, b, f }, | |
{ e, f, c } }; | |
final double[] bb = new double[] { g, h, i }; | |
final double[] cc = new Matrix( aa ).solve( new Matrix( bb, 3 ) ).getRowPackedCopy(); | |
LinAlgHelpers.scale( cc, -1, cc ); | |
final double[] At = new double[ 3 ]; | |
LinAlgHelpers.mult( aa, cc, At ); | |
final double r33 = LinAlgHelpers.dot( cc, At ) + 2 * LinAlgHelpers.dot( bb, cc ) - 1; | |
LinAlgHelpers.scale( aa, -1 / r33, aa ); | |
return new Ellipsoid( cc, null, aa, null, null ); | |
} | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment