Created
November 19, 2013 16:20
-
-
Save tpoisot/7547954 to your computer and use it in GitHub Desktop.
Metapopulation model in 2 or 3D, using R / igraph
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# Metapop model in R | |
library(igraph) | |
library(plyr) | |
library(reshape2) | |
library(RColorBrewer) | |
colorize <- function(x, pal='Oranges') | |
{ | |
x <- x - min(x) | |
x <- x / max(x) | |
x <- round(x*100,0) | |
cols <- colorRampPalette(brewer.pal(9, pal))(100)[x] | |
return(cols) | |
} | |
createGeometricGraph <- function(n_sites, m_distance, dimensions) | |
{ | |
xy <- replicate(dimensions, runif(n_sites, 0, 1)) | |
A <- matrix(0, ncol=n_sites, nrow=n_sites) | |
distance_matrix <- as.matrix(dist(xy, upper=T, diag=T)) | |
A[distance_matrix <= m_distance] <- 1 | |
diag(A) <- 0 | |
return(list(xy = xy, graph = graph.adjacency(A))) | |
} | |
simulateMetaPop <- function(landscape, initial_occupancy, steps, migration_rate, extinction_rate, update_fraction) | |
{ | |
with(as.list(landscape), | |
{ | |
## Receivers | |
## Initiate population | |
initial_state <- rbinom(length(V(graph)), 1, initial_occupancy) | |
graph <- set.vertex.attribute(graph, 'state', V(graph), initial_state) | |
graphs = list(graph) | |
## Start the loop | |
for(now in c(1:steps)) | |
{ | |
## Nodes to update | |
n_updates <- round(update_fraction * length(V(graph)), 0) | |
updated_nodes <- sample(V(graph), n_updates, replace=FALSE) | |
for(patch in updated_nodes) | |
{ | |
neighbors <- graph[[patch]][[1]] | |
## First we test for migration | |
if(runif(1) < migration_rate) | |
{ | |
receiving_patch <- sample(neighbors, 1) | |
graph <- set.vertex.attribute(graph, 'state', receiving_patch, 1) | |
} | |
## Then we test for extinction | |
if(runif(1) < extinction_rate) graph <- set.vertex.attribute(graph, 'state', patch, 0) | |
} | |
graphs[[now+1]] = graph | |
} | |
return(graphs) | |
}) | |
} | |
## 2D landscape | |
landscape = createGeometricGraph(80, 0.2, 2) | |
#plot(landscape$graph, layout=as.matrix(landscape$xy), vertex.label=NA, vertex.size=5, vertex.color='white', edge.arrow.size=0.2) | |
output <- simulateMetaPop(landscape, 0.1, 500, 0.2, 0.1, 0.3) | |
time_series_occupancy <- laply(output, function(x) get.vertex.attribute(x, 'state')) | |
average_occupancy <- aaply(time_series_occupancy, 2, mean) | |
plot(output[[20]], layout=as.matrix(landscape$xy), vertex.label=NA, vertex.size=5, vertex.color=colorize(sqrt(1-average_occupancy)), edge.arrow.size=0.2) | |
## 3D landscape | |
landscape = createGeometricGraph(80, 0.35, 3) | |
output <- simulateMetaPop(landscape, 0.1, 100, 0.2, 0.1, 0.3) | |
time_series_occupancy <- laply(output, function(x) get.vertex.attribute(x, 'state')) | |
average_occupancy <- aaply(time_series_occupancy, 2, mean) | |
rglplot(landscape$graph, layout=landscape$xy, vertex.color=colorize(sqrt(1-average_occupancy)), vertex.label=NA, vertex.size=7) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment