Skip to content

Instantly share code, notes, and snippets.

@travishsu
Last active July 19, 2024 01:51
Show Gist options
  • Save travishsu/6efa5c9fb92ece37b4748036026342f6 to your computer and use it in GitHub Desktop.
Save travishsu/6efa5c9fb92ece37b4748036026342f6 to your computer and use it in GitHub Desktop.
Convert COCO format segmentation annotation to LabelMe format
import os
import json
import subprocess
import numpy as np
import pandas as pd
from skimage.measure import find_contours
class CocoDatasetHandler:
def __init__(self, jsonpath, imgpath):
with open(jsonpath, 'r') as jsonfile:
ann = json.load(jsonfile)
images = pd.DataFrame.from_dict(ann['images']).set_index('id')
annotations = pd.DataFrame.from_dict(ann['annotations']).set_index('id')
categories = pd.DataFrame.from_dict(ann['categories']).set_index('id')
annotations = annotations.merge(images, left_on='image_id', right_index=True)
annotations = annotations.merge(categories, left_on='category_id', right_index=True)
annotations = annotations.assign(
shapes=annotations.apply(self.coco2shape, axis=1))
self.annotations = annotations
self.labelme = {}
self.imgpath = imgpath
self.images = pd.DataFrame.from_dict(ann['images']).set_index('file_name')
def coco2shape(self, row):
if row.iscrowd == 1:
shapes = self.rle2shape(row)
elif row.iscrowd == 0:
shapes = self.polygon2shape(row)
return shapes
def rle2shape(self, row):
rle, shape = row['segmentation']['counts'], row['segmentation']['size']
mask = self._rle_decode(rle, shape)
padded_mask = np.zeros(
(mask.shape[0]+2, mask.shape[1]+2),
dtype=np.uint8,
)
padded_mask[1:-1, 1:-1] = mask
points = find_contours(mask, 0.5)
shapes = [
[[int(point[1]), int(point[0])] for point in polygon]
for polygon in points
]
return shapes
def _rle_decode(self, rle, shape):
mask = np.zeros([shape[0] * shape[1]], np.bool)
for idx, r in enumerate(rle):
if idx < 1:
s = 0
else:
s = sum(rle[:idx])
e = s + r
if e == s:
continue
assert 0 <= s < mask.shape[0]
assert 1 <= e <= mask.shape[0], "shape: {} s {} e {} r {}".format(shape, s, e, r)
if idx % 2 == 1:
mask[s:e] = 1
# Reshape and transpose
mask = mask.reshape([shape[1], shape[0]]).T
return mask
def polygon2shape(self, row):
# shapes: (n_polygons, n_points, 2)
shapes = [
[[int(points[2*i]), int(points[2*i+1])] for i in range(len(points)//2)]
for points in row.segmentation
]
return shapes
def coco2labelme(self):
fillColor = [255, 0, 0, 128]
lineColor = [0, 255, 0, 128]
groups = self.annotations.groupby('file_name')
for file_idx, (filename, df) in enumerate(groups):
record = {
'imageData': None,
'fillColor': fillColor,
'lineColor': lineColor,
'imagePath': filename,
'imageHeight': int(self.images.loc[filename].height),
'imageWidth': int(self.images.loc[filename].width),
}
record['shapes'] = []
instance = {
'line_color': None,
'fill_color': None,
'shape_type': "polygon",
}
for inst_idx, (_, row) in enumerate(df.iterrows()):
for polygon in row.shapes:
copy_instance = instance.copy()
copy_instance.update({
'label': row['name'],
'group_id': inst_idx,
'points': polygon
})
record['shapes'].append(copy_instance)
if filename not in self.labelme.keys():
self.labelme[filename] = record
def save_labelme(self, file_names, dirpath, save_json_only=False):
if not os.path.exists(dirpath):
os.makedirs(dirpath)
else:
raise ValueError(f"{dirpath} has existed")
for file in file_names:
filename = os.path.basename(os.path.splitext(file)[0])
with open(os.path.join(dirpath, filename+'.json'), 'w') as jsonfile:
json.dump(self.labelme[file], jsonfile, ensure_ascii=True, indent=2)
if not save_json_only:
subprocess.call(['cp', os.path.join(self.imgpath, file), dirpath])
ds = CocoDatasetHandler('cocodataset/annotations/instances_train2014.json', 'cocodataset/train2014/')
ds.coco2labelme()
ds.save_labelme(ds.labelme.keys(), 'cocodataset/labelme/train2014')
@travishsu
Copy link
Author

Hi @manaswakchaure,

Could you provide the entire value of the key "segmentation" in this example?
This script might call polygon2shape(L68) since "iscrowd" is 0.

@manaswakchaure
Copy link

@travishsu Thank you, sir, for your reply.

I have attached the files here https://drive.google.com/drive/folders/1cvPGxPGLCb-6fbDGVEHPDVX2bxPEvx3m?usp=sharing

Thank you!

@manaswakchaure
Copy link

This script might call polygon2shape(L68) since "iscrowd" is 0.

most of my images are crowded so should I fix it to 1? inorder to get the exact mask number?

@travishsu
Copy link
Author

Hi @manaswakchaure,

截圖 2022-12-02 上午7 16 00

I found there are multiple lists nested in the value of segmentation so there'll be multiple converted masks for a single instance, and the converted masks will have the same group_id.

Besides, using iscrowd=0 is correct if the value of segmentation is in polygon format instead of RLE format.

@manaswakchaure
Copy link

Dear sir,

Thank you so much!

I got it. I made some modifications for getting those multiple masks as one single instance under one grup_id as needed. And verified it!

Thank you so much for your time.

@stphtan94117
Copy link

不知道發這邊好不好
想請問作者有考慮新增png to json嗎?
也就是mask.png 轉成 coco.json (png2coco)
我原本參考這位作者的程式碼執行,他的資料集確實可以跑
但用我的資料去跑,產生COCO裡面的segmentatiom的點的座標,有些是負值,導致無法開起來
https://github.com/chrise96/image-to-coco-json-converter

我只有改動這邊,不曉得為何coco點座標會有負值
image

這是我的資料集檔案連結
https://drive.google.com/drive/folders/1butmjjGTgMIEr6bq1nQ3ejjm0M7oN_YR?usp=share_link
謝謝你

@stphtan94117
Copy link

你好,我最後查出原因,只有把照片改成JPG即可
但有個極為困難的點,如果圖形是甜甜圈那種形狀,中間需要挖空
似乎coco json無法表示

用實際例子說明,假設有個正方形的農田,正中間有個農舍房子
因此農田polygon要正方形減去正中間農舍
但coco json的polygon的點,是輪廓組成,因此無法形成

不曉得你這邊有無辦法解決重疊的地方把它去除

@travishsu
Copy link
Author

Hi @stphtan94117,
我想 png2coco 可能不適合放在這個 coco2labelme 底下。

那位作者用的是多個 polygon 放在同一個 segmentation 且設定 iscrowd 為 0,
但如果有沒辦法用 polygon 表示的 instance,我想你可以考慮用將同一個 instance 的 mask 轉成 RLE format,且讓 iscrowd 設為 1

References

  1. 找mask2rle
  2. COCO Format

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment