Last active
March 21, 2018 19:00
-
-
Save trcook/9fc8698cf7dc848a953f8e7a7e5f1aad to your computer and use it in GitHub Desktop.
basic mix of tensorflow and keras in the same file. Also makes use of tf.data
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from keras import backend as K | |
import keras as k | |
from keras.layers import * | |
import tensorflow as tf | |
tf.reset_default_graph() | |
g=tf.get_default_graph() | |
sess=tf.Session() | |
K.set_session(sess) | |
steps_epoch=100 | |
total_epochs=30 | |
batch_size=4 | |
total_repeats=steps_epoch*total_epochs*batch_size | |
def train_fn(): | |
x=tf.constant([ | |
[[0,1]], | |
[[0,0]], | |
[[1,0]], | |
[[1,1]] | |
],dtype=tf.float32) | |
y=tf.constant([ | |
[[1]], | |
[[0]], | |
[[1]], | |
[[0]] | |
],dtype=tf.int32) | |
data=tf.data.Dataset.from_tensor_slices((x,y)) | |
data=data.repeat(total_repeats) | |
data=data.batch(batch_size) | |
return data | |
def val_fn(): | |
x=tf.constant([ | |
[[1,1]], | |
[[1,0]], | |
[[1,0]], | |
[[1,1]] | |
],dtype=tf.float32) | |
y=tf.constant([ | |
[[0]], | |
[[1]], | |
[[1]], | |
[[0]] | |
],dtype=tf.int32) | |
data=tf.data.Dataset.from_tensor_slices((x,y)) | |
data=data.repeat(total_repeats) | |
data=data.batch(batch_size) | |
return data | |
def mk_iterators(train_fn,val_fn): | |
train_data=train_fn() | |
val_data=val_fn() | |
it=tf.data.Iterator.from_structure(train_data.output_types,train_data.output_shapes) | |
val_init=it.make_initializer(val_data) | |
train_init=it.make_initializer(train_data) | |
x,y=it.get_next() | |
return x,y,val_init,train_init | |
x,y,val_init,train_init=mk_iterators(train_fn,val_fn) | |
input_=Input(tensor=x) | |
labs=Input(tensor=y) | |
net=Dense(24,activation='relu')(input_) | |
net=Dense(24,activation='relu')(net) | |
output=Dense(1,activation='sigmoid')(net) | |
model=k.Model(input_,output) | |
loss=tf.losses.mean_squared_error(labs,output) | |
model.add_loss(loss) | |
model.compile('adam') | |
sess.run(train_init) | |
model.fit(steps_per_epoch=steps_epoch,epochs=total_epochs,verbose=0) | |
# swap datasets and run evaluation step | |
sess.run(val_init) | |
model.evaluate(steps=1) | |
# model.predict() will not work, but you can just call the final layer to get predictions | |
# (call x and y too if you want to iterate to the next batch for prediction): | |
sess.run({"input_":x,"OUTPUT":output,"LABS":y}) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment