Last active
April 26, 2016 19:35
-
-
Save treeowl/b80c2c490563765fc7881be30f3dba24 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
ix :: Applicative f => Int -> (a -> f a) -> Seq a -> f (Seq a) | |
ix i@(I# i') f (Seq xs) | |
| 0 <= i && i < size xs = Seq <$> ixTreeE (\_ (Elem a) -> Elem <$> f a) i' xs | |
| otherwise = pure (Seq xs) | |
unInt :: Int -> Int# | |
unInt (I# n) = n | |
ixTreeE :: Applicative f | |
=> (Int# -> Elem a -> f (Elem a)) -> Int# -> FingerTree (Elem a) -> f (FingerTree (Elem a)) | |
ixTreeE _ _ EmptyT = pure EmptyT | |
ixTreeE f i (Single x) = Single <$> f i x | |
ixTreeE f i (Deep s pr m sf) | |
| I# i < spr = (\q -> Deep s q m sf) <$> ixDigitE f i pr | |
| I# i < spm = (\q -> Deep s pr q sf) <$> ixTreeN (ixNodeE f) (unInt $ I# i - spr) m | |
| otherwise = (\q -> Deep s pr m q) <$> ixDigitE f (unInt $ I# i - spm) sf | |
where | |
spr = size pr | |
spm = spr + size m | |
ixTreeN :: Applicative f | |
=> (Int# -> Node a -> f (Node a)) -> Int# -> FingerTree (Node a) -> f (FingerTree (Node a)) | |
ixTreeN _ _ EmptyT = pure EmptyT | |
ixTreeN f i (Single x) = Single <$> f i x | |
ixTreeN f i (Deep s pr m sf) | |
| I# i < spr = (\q -> Deep s q m sf) <$> ixDigitN f i pr | |
| I# i < spm = (\q -> Deep s pr q sf) <$> ixTreeN (ixNodeN f) (unInt $ I# i - spr) m | |
| otherwise = (\q -> Deep s pr m q) <$> ixDigitN f (unInt $ I# i - spm) sf | |
where | |
spr = size pr | |
spm = spr + size m | |
ixNodeE :: Applicative f => (Int# -> Elem a -> f (Elem a)) -> Int# -> Node (Elem a) -> f (Node (Elem a)) | |
ixNodeE f i t = ixNode f i t | |
ixNodeN :: Applicative f => (Int# -> Node a -> f (Node a)) -> Int# -> Node (Node a) -> f (Node (Node a)) | |
ixNodeN f i t = ixNode f i t | |
{-# INLINE ixNode #-} | |
ixNode :: (Applicative f, Sized a) => (Int# -> a -> f a) -> Int# -> Node a -> f (Node a) | |
ixNode f i (Node2 s a b) | |
| I# i < sa = (\q -> Node2 s q b) <$> f i a | |
| otherwise = (\q -> Node2 s a q) <$> f (unInt $ I# i - sa) b | |
where | |
sa = size a | |
ixNode f i (Node3 s a b c) | |
| I# i < sa = (\q -> Node3 s q b c) <$> f i a | |
| I# i < sab = (\q -> Node3 s a q c) <$> f (unInt $ I# i - sa) b | |
| otherwise = (\q -> Node3 s a b q) <$> f (unInt $ I# i - sab) c | |
where | |
sa = size a | |
sab = sa + size b | |
ixDigitE :: Applicative f => (Int# -> Elem a -> f (Elem a)) -> Int# -> Digit (Elem a) -> f (Digit (Elem a)) | |
ixDigitE f i t = ixDigit f i t | |
ixDigitN :: Applicative f => (Int# -> Node a -> f (Node a)) -> Int# -> Digit (Node a) -> f (Digit (Node a)) | |
ixDigitN f i t = ixDigit f i t | |
{-# INLINE ixDigit #-} | |
ixDigit :: (Applicative f, Sized a) => (Int# -> a -> f a) -> Int# -> Digit a -> f (Digit a) | |
ixDigit f i (One a) = One <$> f i a | |
ixDigit f i (Two a b) | |
| I# i < sa = (\q -> Two q b) <$> f i a | |
| otherwise = (\q -> Two a q) <$> f (unInt $ I# i - sa) b | |
where | |
sa = size a | |
ixDigit f i (Three a b c) | |
| I# i < sa = (\q -> Three q b c) <$> f i a | |
| I# i < sab = (\q -> Three a q c) <$> f (unInt $ I# i - sa) b | |
| otherwise = (\q -> Three a b q) <$> f (unInt $ I# i - sab) c | |
where | |
sa = size a | |
sab = sa + size b | |
ixDigit f i (Four a b c d) | |
| I# i < sa = (\q -> Four q b c d) <$> f i a | |
| I# i < sab = (\q -> Four a q c d) <$> f (unInt $ I# i - sa) b | |
| I# i < sabc = (\q -> Four a b q d) <$> f (unInt $ I# i - sab) c | |
| otherwise = (\q -> Four a b c q) <$> f (unInt $ I# i - sabc) d | |
where | |
sa = size a | |
sab = sa + size b | |
sabc = sab + size c |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment