Skip to content

Instantly share code, notes, and snippets.

@tripulse
Created April 27, 2020 16:53
Show Gist options
  • Save tripulse/517594469dc0e794709457de278f520f to your computer and use it in GitHub Desktop.
Save tripulse/517594469dc0e794709457de278f520f to your computer and use it in GitHub Desktop.
# DCT is required for quantising coefficients, this always
# performs a orthonormal DCT and IDCT.
from scipy.fftpack import dctn,idctn
from numpy import any, clip, floor, array, asarray, zeros, round, resize
from functools import partial
# Explicitly specify that Type-II DCT is required.
dctn = partial(dctn, type=2, norm='ortho')
idctn = partial(idctn, type=2, norm='ortho')
ceilmod = lambda n,mod: n if n % mod == 0 else n + mod - n % mod
# Generate a quantisation table based on the IJG formula
# provided, this is not considered great but still okay.
def genqtab(Q):
"""Generate 8x8 quantisation table from a given Q factor
in (24..100] range (24=worst, 100=best)."""
# base table for quantization of values.
base = array([
[16, 11, 10, 16, 24, 40, 51, 61],
[12, 12, 14, 19, 26, 58, 60, 55],
[14, 13, 16, 24, 40, 57, 69, 56],
[14, 17, 22, 29, 51, 87, 80, 62],
[18, 22, 37, 56, 68, 109, 103, 77],
[24, 35, 55, 64, 81, 104, 113, 92],
[49, 64, 78, 87, 103, 121, 120, 101],
[72, 92, 95, 98, 112, 100, 103, 99]])
# find the S factor from the Q factor.
Q = clip(Q, 24, 100)
S = 5000/Q if Q < 50 else 200 - 2*Q
# build the quantisation table from the S factor by
# applying some math on Annex-K table.
qstable = floor((base * S + 50) / 100)
qstable[qstable == 0] = 1
return qstable.astype('B')
def jpeglike_quant(imagein, Q=100):
sw, sh = imagein.size
imagein = resize(asarray(
imagein.convert('YCbCr')).copy(),
(ceilmod(sh, 8), ceilmod(sw, 8), 3))
# generate quantization table for a given factor.
qtab = genqtab(abs(int(Q)))
# convert 8-bit pixel values into dct coefficients and quantize
# them the generated quantization table and de-quantize them
# immdieately and replace at the same position.
h,w,_ = imagein.shape
for y in range(0, h, 8):
for x in range(0, w, 8):
for c in range(3):
qsimg = round(dctn(imagein[y:y+8,x:x+8,c]) / qtab)
imagein[y:y+8,x:x+8,c] = idctn(qsimg * qtab)
return Image.fromarray(
resize(imagein, (sh, sw, 3)),
mode='YCbCr')
if __name__ == "__main__":
from PIL import Image
from argparse import ArgumentParser, FileType, RawTextHelpFormatter
parser = ArgumentParser(__file__,
description=
"This app is used to simulate JPEG encoding by doing\n"
"actual DCT quantisation and dequantisation of coefficients.\n"
"This is made for getting those artefacts generated from\n"
"DCT coefficient quantisation.\n",
formatter_class=RawTextHelpFormatter)
parser.add_argument('-q',
type=int,
default=95,
help="Q-factor to use for generating a quantisation table.\n"
"(lesser values result in a coarse table).")
parser.add_argument('FILE',
type=FileType('rb'),
help="Input file to process through PIL.")
parser.add_argument('OUTPUT',
type=FileType('wb'),
help="Output file to dump the processed image.")
argv = parser.parse_args()
jpeglike_quant(Image.open(argv.FILE), argv.q) \
.convert('RGB') \
.save(argv.OUTPUT)
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment