Created
April 30, 2013 01:13
-
-
Save tristanwietsma/5486024 to your computer and use it in GitHub Desktop.
AdaBoost Python implementation of the AdaBoost (Adaptive Boosting) classification algorithm.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from __future__ import division | |
from numpy import * | |
class AdaBoost: | |
def __init__(self, training_set): | |
self.training_set = training_set | |
self.N = len(self.training_set) | |
self.weights = ones(self.N)/self.N | |
self.RULES = [] | |
self.ALPHA = [] | |
def set_rule(self, func, test=False): | |
errors = array([t[1]!=func(t[0]) for t in self.training_set]) | |
e = (errors*self.weights).sum() | |
if test: return e | |
alpha = 0.5 * log((1-e)/e) | |
print 'e=%.2f a=%.2f'%(e, alpha) | |
w = zeros(self.N) | |
for i in range(self.N): | |
if errors[i] == 1: w[i] = self.weights[i] * exp(alpha) | |
else: w[i] = self.weights[i] * exp(-alpha) | |
self.weights = w / w.sum() | |
self.RULES.append(func) | |
self.ALPHA.append(alpha) | |
def evaluate(self): | |
NR = len(self.RULES) | |
for (x,l) in self.training_set: | |
hx = [self.ALPHA[i]*self.RULES[i](x) for i in range(NR)] | |
print x, sign(l) == sign(sum(hx)) | |
if __name__ == '__main__': | |
examples = [] | |
examples.append(((1, 2 ), 1)) | |
examples.append(((1, 4 ), 1)) | |
examples.append(((2.5,5.5), 1)) | |
examples.append(((3.5,6.5), 1)) | |
examples.append(((4, 5.4), 1)) | |
examples.append(((2, 1 ),-1)) | |
examples.append(((2, 4 ),-1)) | |
examples.append(((3.5,3.5),-1)) | |
examples.append(((5, 2 ),-1)) | |
examples.append(((5, 5.5),-1)) | |
m = AdaBoost(examples) | |
m.set_rule(lambda x: 2*(x[0] < 1.5)-1) | |
m.set_rule(lambda x: 2*(x[0] < 4.5)-1) | |
m.set_rule(lambda x: 2*(x[1] > 5)-1) | |
m.evaluate() |
I'm totally new to adaboosting and still haven't found a way to make much sense of it. I'm not following on what the purpose of the function "set_rule" does and attributes RULES and ALPHA, as well as what the examples themselves are representing. Are they just coordinates on a graph and the values at those locations are either 1 or -1?
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
This version is based on Patrick Winston's lecture of Boosting (https://www.youtube.com/watch?v=UHBmv7qCey4). It turns out you do not have to calculate the error and do the exponential of the alpha. Instead, it is mathematically equivalent to just making sure that the weights for the correct predictions add up to 1/2 and the weights of the incorrect predictions add up to 1/2. I've included the alpha and error calculations above just to show that the weights are the same as the original code, but feel free to remove them and save some time.
-Tony