Created
December 22, 2018 19:10
-
-
Save trivialfis/784fee1ccc3d0c9dd4322e66f912282f to your computer and use it in GitHub Desktop.
Re-implementation of "A Revealing Introduction to Hidden Markov Models".
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
''' | |
Copyright (c) 2018 [email protected] | |
Permission is hereby granted, free of charge, to any person obtaining a copy | |
of this software and associated documentation files (the "Software"), to deal | |
in the Software without restriction, including without limitation the rights | |
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell | |
copies of the Software, and to permit persons to whom the Software is | |
furnished to do so, subject to the following conditions: | |
The above copyright notice and this permission notice shall be included in all | |
copies or substantial portions of the Software. | |
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR | |
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, | |
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE | |
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER | |
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, | |
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE | |
SOFTWARE. | |
==== | |
Re-implementaion of: | |
A Revealing Introduction to Hidden Markov Models | |
https://www.cs.sjsu.edu/~stamp/RUA/HMM.pdf | |
''' | |
import numpy as np | |
import math | |
from time import time | |
class HMM(object): | |
def __init__(self, n_states: int, n_symbols: int, max_iter: int): | |
self.N: int = n_states | |
self.M: int = n_symbols | |
self.a: np.ndarray = np.zeros(shape=(self.N, self.N)) # transition | |
self.a.fill(1/self.N) | |
self.b: np.ndarray = np.zeros(shape=(self.N, self.M)) # emission | |
self.b.fill(1/self.M) | |
self.pi: np.ndarray = np.zeros(shape=(self.N,)) # initial distribution | |
self.pi.fill(1/self.N) | |
self.max_iter: int = max_iter | |
def __str__(self): | |
return ('\n{\n a:\n' + str(self.a) + | |
'\n b:\n' + str(self.b) + | |
'\n c:\n' + str(self.pi) + '\n}') | |
def forward(self, sequence: np.ndarray) -> np.ndarray: | |
assert len(sequence.shape) == 1, f'Got: {sequence.shape()}.' | |
self.c: np.ndarray = np.zeros(shape=(sequence.size,)) # scale factors | |
self.c[0] = 0 | |
alpha: np.ndarray = np.zeros(shape=(sequence.size, self.N)) | |
for i in range(0, self.N): | |
alpha[0, i] = self.pi[i] * self.b[i, sequence[0]] | |
self.c[0] = self.c[0] + alpha[0, i] | |
self.c[0] = 1 / self.c[0] | |
for i in range(0, self.N): | |
alpha[0, i] = self.c[0] * alpha[0, i] | |
for t in range(1, sequence.size): | |
self.c[t] = 0 | |
for i in range(0, self.N): | |
alpha[t, i] = 0 | |
for j in range(0, self.N): | |
alpha[t, i] = alpha[t, i] + alpha[t-1, j] * self.a[j, i] | |
alpha[t, i] = alpha[t, i] * self.b[i, sequence[t]] | |
self.c[t] = self.c[t] + alpha[t, i] | |
self.c[t] = 1 / self.c[t] | |
for i in range(0, self.N): | |
alpha[t, i] = self.c[t] * alpha[t, i] | |
return alpha | |
def backward(self, sequence: np.ndarray) -> np.ndarray: | |
T: int = sequence.size | |
beta: np.ndarray = np.zeros(shape=(T, self.N)) | |
for i in range(0, self.N): | |
beta[T-1, i] = self.c[T-1] | |
t: int = T-2 | |
while t >= 0: | |
for i in range(0, self.N): | |
beta[t, i] = 0 | |
for j in range(0, self.N): | |
beta[t, i] = ( | |
beta[t, i] + | |
self.a[i, j] * self.b[j, sequence[t+1]] * beta[t+1, j]) | |
beta[t, i] = self.c[t] * beta[t, i] | |
t = t - 1 | |
return beta | |
def gammas(self, sequence: np.ndarray) -> (np.ndarray, np.ndarray): | |
T: int = sequence.size | |
gamma: np.ndarray = np.zeros(shape=(T, self.N)) | |
digamma: np.ndarray = np.zeros(shape=(T, self.N, self.N)) | |
alpha: np.ndarray = self.forward(sequence) | |
beta: np.ndarray = self.backward(sequence) | |
for t in range(0, T-1): | |
for i in range(0, self.N): | |
gamma[t, i] = 0 | |
for j in range(0, self.N): | |
digamma[t, i, j] = ( | |
alpha[t, i] * self.a[i, j] * | |
self.b[j, sequence[t+1]] * beta[t+1, j]) | |
gamma[t, i] = gamma[t, i] + digamma[t, i, j] | |
for i in range(0, self.N): | |
gamma[T-1, i] = alpha[T-1, i] | |
return (gamma, digamma) | |
def restimate(self, sequence: np.ndarray): | |
gamma, digamma = self.gammas(sequence) | |
T: int = sequence.size | |
for i in range(0, self.N): | |
self.pi[i] = gamma[0, i] | |
for i in range(0, self.N): | |
denom = 0 | |
for t in range(0, T-1): | |
denom = denom + gamma[t, i] | |
for j in range(0, self.N): | |
numer = 0 | |
for t in range(0, T-1): | |
numer = numer + digamma[t, i, j] | |
self.a[i, j] = numer / denom | |
for i in range(0, self.N): | |
denom = 0 | |
for t in range(0, T): | |
denom = denom + gamma[t, i] | |
for j in range(0, self.M): | |
numer = 0 | |
for t in range(0, T): | |
if sequence[t] == j: | |
numer = numer + gamma[t, i] | |
self.b[i, j] = numer / denom | |
def train(self, sequence: np.ndarray) -> ( | |
np.ndarray, np.ndarray, np.ndarray): | |
it = 0 | |
old_prob = - np.inf | |
new_prob = - 1000 | |
while it < self.max_iter and new_prob >= old_prob: | |
old_prob = new_prob | |
self.restimate(sequence) | |
new_prob = self.log_prob(sequence) | |
print(f'It: {it}, Prob: {new_prob}') | |
it += 1 | |
return (self.pi, self.a, self.b) | |
def log_prob(self, sequence: np.ndarray): | |
prob, T = 0, sequence.size | |
for i in range(0, T): | |
prob = prob + math.log(self.c[i]) | |
prob = -prob | |
return prob | |
if __name__ == '__main__': | |
hmm = HMM(32, 16, max_iter=8) | |
np.random.seed(0) | |
sequence = np.random.randint(1, 16, size=32) | |
start = time() | |
model = hmm.train(sequence) | |
duration = time() - start | |
print(f'Duration: {duration}') |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment