Skip to content

Instantly share code, notes, and snippets.

@trungv0
Created July 31, 2018 14:58
Show Gist options
  • Save trungv0/40329b0f1d33bea9bd9367601439b2e6 to your computer and use it in GitHub Desktop.
Save trungv0/40329b0f1d33bea9bd9367601439b2e6 to your computer and use it in GitHub Desktop.
name: "ResNet-101"
input: "data"
input_shape{
dim: 1
dim: 3
dim: 224
dim: 224
}
input: "rois"
input_shape{
dim: 1
dim: 1
dim: 1
dim: 5
}
layer {
bottom: "data"
top: "conv1"
name: "conv1"
type: "Convolution"
convolution_param {
num_output: 64
kernel_size: 7
pad: 3
stride: 2
bias_term: false
}
}
layer {
bottom: "conv1"
top: "conv1"
name: "bn_conv1"
type: "BatchNorm"
batch_norm_param {
use_global_stats: true
}
}
layer {
bottom: "conv1"
top: "conv1"
name: "scale_conv1"
type: "Scale"
scale_param {
bias_term: true
}
}
layer {
top: "conv1"
bottom: "conv1"
name: "conv1_relu"
type: "ReLU"
}
layer {
bottom: "conv1"
top: "pool1"
name: "pool1"
type: "Pooling"
pooling_param {
kernel_size: 3
stride: 2
pool: MAX
}
}
layer {
bottom: "pool1"
top: "res2a_branch1"
name: "res2a_branch1"
type: "Convolution"
convolution_param {
num_output: 256
kernel_size: 1
pad: 0
stride: 1
bias_term: false
}
}
layer {
bottom: "res2a_branch1"
top: "res2a_branch1"
name: "bn2a_branch1"
type: "BatchNorm"
batch_norm_param {
use_global_stats: true
}
}
layer {
bottom: "res2a_branch1"
top: "res2a_branch1"
name: "scale2a_branch1"
type: "Scale"
scale_param {
bias_term: true
}
}
layer {
bottom: "pool1"
top: "res2a_branch2a"
name: "res2a_branch2a"
type: "Convolution"
convolution_param {
num_output: 64
kernel_size: 1
pad: 0
stride: 1
bias_term: false
}
}
layer {
bottom: "res2a_branch2a"
top: "res2a_branch2a"
name: "bn2a_branch2a"
type: "BatchNorm"
batch_norm_param {
use_global_stats: true
}
}
layer {
bottom: "res2a_branch2a"
top: "res2a_branch2a"
name: "scale2a_branch2a"
type: "Scale"
scale_param {
bias_term: true
}
}
layer {
top: "res2a_branch2a"
bottom: "res2a_branch2a"
name: "res2a_branch2a_relu"
type: "ReLU"
}
layer {
bottom: "res2a_branch2a"
top: "res2a_branch2b"
name: "res2a_branch2b"
type: "Convolution"
convolution_param {
num_output: 64
kernel_size: 3
pad: 1
stride: 1
bias_term: false
}
}
layer {
bottom: "res2a_branch2b"
top: "res2a_branch2b"
name: "bn2a_branch2b"
type: "BatchNorm"
batch_norm_param {
use_global_stats: true
}
}
layer {
bottom: "res2a_branch2b"
top: "res2a_branch2b"
name: "scale2a_branch2b"
type: "Scale"
scale_param {
bias_term: true
}
}
layer {
top: "res2a_branch2b"
bottom: "res2a_branch2b"
name: "res2a_branch2b_relu"
type: "ReLU"
}
layer {
bottom: "res2a_branch2b"
top: "res2a_branch2c"
name: "res2a_branch2c"
type: "Convolution"
convolution_param {
num_output: 256
kernel_size: 1
pad: 0
stride: 1
bias_term: false
}
}
layer {
bottom: "res2a_branch2c"
top: "res2a_branch2c"
name: "bn2a_branch2c"
type: "BatchNorm"
batch_norm_param {
use_global_stats: true
}
}
layer {
bottom: "res2a_branch2c"
top: "res2a_branch2c"
name: "scale2a_branch2c"
type: "Scale"
scale_param {
bias_term: true
}
}
layer {
bottom: "res2a_branch1"
bottom: "res2a_branch2c"
top: "res2a"
name: "res2a"
type: "Eltwise"
}
layer {
bottom: "res2a"
top: "res2a"
name: "res2a_relu"
type: "ReLU"
}
layer {
bottom: "res2a"
top: "res2b_branch2a"
name: "res2b_branch2a"
type: "Convolution"
convolution_param {
num_output: 64
kernel_size: 1
pad: 0
stride: 1
bias_term: false
}
}
layer {
bottom: "res2b_branch2a"
top: "res2b_branch2a"
name: "bn2b_branch2a"
type: "BatchNorm"
batch_norm_param {
use_global_stats: true
}
}
layer {
bottom: "res2b_branch2a"
top: "res2b_branch2a"
name: "scale2b_branch2a"
type: "Scale"
scale_param {
bias_term: true
}
}
layer {
top: "res2b_branch2a"
bottom: "res2b_branch2a"
name: "res2b_branch2a_relu"
type: "ReLU"
}
layer {
bottom: "res2b_branch2a"
top: "res2b_branch2b"
name: "res2b_branch2b"
type: "Convolution"
convolution_param {
num_output: 64
kernel_size: 3
pad: 1
stride: 1
bias_term: false
}
}
layer {
bottom: "res2b_branch2b"
top: "res2b_branch2b"
name: "bn2b_branch2b"
type: "BatchNorm"
batch_norm_param {
use_global_stats: true
}
}
layer {
bottom: "res2b_branch2b"
top: "res2b_branch2b"
name: "scale2b_branch2b"
type: "Scale"
scale_param {
bias_term: true
}
}
layer {
top: "res2b_branch2b"
bottom: "res2b_branch2b"
name: "res2b_branch2b_relu"
type: "ReLU"
}
layer {
bottom: "res2b_branch2b"
top: "res2b_branch2c"
name: "res2b_branch2c"
type: "Convolution"
convolution_param {
num_output: 256
kernel_size: 1
pad: 0
stride: 1
bias_term: false
}
}
layer {
bottom: "res2b_branch2c"
top: "res2b_branch2c"
name: "bn2b_branch2c"
type: "BatchNorm"
batch_norm_param {
use_global_stats: true
}
}
layer {
bottom: "res2b_branch2c"
top: "res2b_branch2c"
name: "scale2b_branch2c"
type: "Scale"
scale_param {
bias_term: true
}
}
layer {
bottom: "res2a"
bottom: "res2b_branch2c"
top: "res2b"
name: "res2b"
type: "Eltwise"
}
layer {
bottom: "res2b"
top: "res2b"
name: "res2b_relu"
type: "ReLU"
}
layer {
bottom: "res2b"
top: "res2c_branch2a"
name: "res2c_branch2a"
type: "Convolution"
convolution_param {
num_output: 64
kernel_size: 1
pad: 0
stride: 1
bias_term: false
}
}
layer {
bottom: "res2c_branch2a"
top: "res2c_branch2a"
name: "bn2c_branch2a"
type: "BatchNorm"
batch_norm_param {
use_global_stats: true
}
}
layer {
bottom: "res2c_branch2a"
top: "res2c_branch2a"
name: "scale2c_branch2a"
type: "Scale"
scale_param {
bias_term: true
}
}
layer {
top: "res2c_branch2a"
bottom: "res2c_branch2a"
name: "res2c_branch2a_relu"
type: "ReLU"
}
layer {
bottom: "res2c_branch2a"
top: "res2c_branch2b"
name: "res2c_branch2b"
type: "Convolution"
convolution_param {
num_output: 64
kernel_size: 3
pad: 1
stride: 1
bias_term: false
}
}
layer {
bottom: "res2c_branch2b"
top: "res2c_branch2b"
name: "bn2c_branch2b"
type: "BatchNorm"
batch_norm_param {
use_global_stats: true
}
}
layer {
bottom: "res2c_branch2b"
top: "res2c_branch2b"
name: "scale2c_branch2b"
type: "Scale"
scale_param {
bias_term: true
}
}
layer {
top: "res2c_branch2b"
bottom: "res2c_branch2b"
name: "res2c_branch2b_relu"
type: "ReLU"
}
layer {
bottom: "res2c_branch2b"
top: "res2c_branch2c"
name: "res2c_branch2c"
type: "Convolution"
convolution_param {
num_output: 256
kernel_size: 1
pad: 0
stride: 1
bias_term: false
}
}
layer {
bottom: "res2c_branch2c"
top: "res2c_branch2c"
name: "bn2c_branch2c"
type: "BatchNorm"
batch_norm_param {
use_global_stats: true
}
}
layer {
bottom: "res2c_branch2c"
top: "res2c_branch2c"
name: "scale2c_branch2c"
type: "Scale"
scale_param {
bias_term: true
}
}
layer {
bottom: "res2b"
bottom: "res2c_branch2c"
top: "res2c"
name: "res2c"
type: "Eltwise"
}
layer {
bottom: "res2c"
top: "res2c"
name: "res2c_relu"
type: "ReLU"
}
layer {
bottom: "res2c"
top: "res3a_branch1"
name: "res3a_branch1"
type: "Convolution"
convolution_param {
num_output: 512
kernel_size: 1
pad: 0
stride: 2
bias_term: false
}
}
layer {
bottom: "res3a_branch1"
top: "res3a_branch1"
name: "bn3a_branch1"
type: "BatchNorm"
batch_norm_param {
use_global_stats: true
}
}
layer {
bottom: "res3a_branch1"
top: "res3a_branch1"
name: "scale3a_branch1"
type: "Scale"
scale_param {
bias_term: true
}
}
layer {
bottom: "res2c"
top: "res3a_branch2a"
name: "res3a_branch2a"
type: "Convolution"
convolution_param {
num_output: 128
kernel_size: 1
pad: 0
stride: 2
bias_term: false
}
}
layer {
bottom: "res3a_branch2a"
top: "res3a_branch2a"
name: "bn3a_branch2a"
type: "BatchNorm"
batch_norm_param {
use_global_stats: true
}
}
layer {
bottom: "res3a_branch2a"
top: "res3a_branch2a"
name: "scale3a_branch2a"
type: "Scale"
scale_param {
bias_term: true
}
}
layer {
top: "res3a_branch2a"
bottom: "res3a_branch2a"
name: "res3a_branch2a_relu"
type: "ReLU"
}
layer {
bottom: "res3a_branch2a"
top: "res3a_branch2b"
name: "res3a_branch2b"
type: "Convolution"
convolution_param {
num_output: 128
kernel_size: 3
pad: 1
stride: 1
bias_term: false
}
}
layer {
bottom: "res3a_branch2b"
top: "res3a_branch2b"
name: "bn3a_branch2b"
type: "BatchNorm"
batch_norm_param {
use_global_stats: true
}
}
layer {
bottom: "res3a_branch2b"
top: "res3a_branch2b"
name: "scale3a_branch2b"
type: "Scale"
scale_param {
bias_term: true
}
}
layer {
top: "res3a_branch2b"
bottom: "res3a_branch2b"
name: "res3a_branch2b_relu"
type: "ReLU"
}
layer {
bottom: "res3a_branch2b"
top: "res3a_branch2c"
name: "res3a_branch2c"
type: "Convolution"
convolution_param {
num_output: 512
kernel_size: 1
pad: 0
stride: 1
bias_term: false
}
}
layer {
bottom: "res3a_branch2c"
top: "res3a_branch2c"
name: "bn3a_branch2c"
type: "BatchNorm"
batch_norm_param {
use_global_stats: true
}
}
layer {
bottom: "res3a_branch2c"
top: "res3a_branch2c"
name: "scale3a_branch2c"
type: "Scale"
scale_param {
bias_term: true
}
}
layer {
bottom: "res3a_branch1"
bottom: "res3a_branch2c"
top: "res3a"
name: "res3a"
type: "Eltwise"
}
layer {
bottom: "res3a"
top: "res3a"
name: "res3a_relu"
type: "ReLU"
}
layer {
bottom: "res3a"
top: "res3b1_branch2a"
name: "res3b1_branch2a"
type: "Convolution"
convolution_param {
num_output: 128
kernel_size: 1
pad: 0
stride: 1
bias_term: false
}
}
layer {
bottom: "res3b1_branch2a"
top: "res3b1_branch2a"
name: "bn3b1_branch2a"
type: "BatchNorm"
batch_norm_param {
use_global_stats: true
}
}
layer {
bottom: "res3b1_branch2a"
top: "res3b1_branch2a"
name: "scale3b1_branch2a"
type: "Scale"
scale_param {
bias_term: true
}
}
layer {
top: "res3b1_branch2a"
bottom: "res3b1_branch2a"
name: "res3b1_branch2a_relu"
type: "ReLU"
}
layer {
bottom: "res3b1_branch2a"
top: "res3b1_branch2b"
name: "res3b1_branch2b"
type: "Convolution"
convolution_param {
num_output: 128
kernel_size: 3
pad: 1
stride: 1
bias_term: false
}
}
layer {
bottom: "res3b1_branch2b"
top: "res3b1_branch2b"
name: "bn3b1_branch2b"
type: "BatchNorm"
batch_norm_param {
use_global_stats: true
}
}
layer {
bottom: "res3b1_branch2b"
top: "res3b1_branch2b"
name: "scale3b1_branch2b"
type: "Scale"
scale_param {
bias_term: true
}
}
layer {
top: "res3b1_branch2b"
bottom: "res3b1_branch2b"
name: "res3b1_branch2b_relu"
type: "ReLU"
}
layer {
bottom: "res3b1_branch2b"
top: "res3b1_branch2c"
name: "res3b1_branch2c"
type: "Convolution"
convolution_param {
num_output: 512
kernel_size: 1
pad: 0
stride: 1
bias_term: false
}
}
layer {
bottom: "res3b1_branch2c"
top: "res3b1_branch2c"
name: "bn3b1_branch2c"
type: "BatchNorm"
batch_norm_param {
use_global_stats: true
}
}
layer {
bottom: "res3b1_branch2c"
top: "res3b1_branch2c"
name: "scale3b1_branch2c"
type: "Scale"
scale_param {
bias_term: true
}
}
layer {
bottom: "res3a"
bottom: "res3b1_branch2c"
top: "res3b1"
name: "res3b1"
type: "Eltwise"
}
layer {
bottom: "res3b1"
top: "res3b1"
name: "res3b1_relu"
type: "ReLU"
}
layer {
bottom: "res3b1"
top: "res3b2_branch2a"
name: "res3b2_branch2a"
type: "Convolution"
convolution_param {
num_output: 128
kernel_size: 1
pad: 0
stride: 1
bias_term: false
}
}
layer {
bottom: "res3b2_branch2a"
top: "res3b2_branch2a"
name: "bn3b2_branch2a"
type: "BatchNorm"
batch_norm_param {
use_global_stats: true
}
}
layer {
bottom: "res3b2_branch2a"
top: "res3b2_branch2a"
name: "scale3b2_branch2a"
type: "Scale"
scale_param {
bias_term: true
}
}
layer {
top: "res3b2_branch2a"
bottom: "res3b2_branch2a"
name: "res3b2_branch2a_relu"
type: "ReLU"
}
layer {
bottom: "res3b2_branch2a"
top: "res3b2_branch2b"
name: "res3b2_branch2b"
type: "Convolution"
convolution_param {
num_output: 128
kernel_size: 3
pad: 1
stride: 1
bias_term: false
}
}
layer {
bottom: "res3b2_branch2b"
top: "res3b2_branch2b"
name: "bn3b2_branch2b"
type: "BatchNorm"
batch_norm_param {
use_global_stats: true
}
}
layer {
bottom: "res3b2_branch2b"
top: "res3b2_branch2b"
name: "scale3b2_branch2b"
type: "Scale"
scale_param {
bias_term: true
}
}
layer {
top: "res3b2_branch2b"
bottom: "res3b2_branch2b"
name: "res3b2_branch2b_relu"
type: "ReLU"
}
layer {
bottom: "res3b2_branch2b"
top: "res3b2_branch2c"
name: "res3b2_branch2c"
type: "Convolution"
convolution_param {
num_output: 512
kernel_size: 1
pad: 0
stride: 1
bias_term: false
}
}
layer {
bottom: "res3b2_branch2c"
top: "res3b2_branch2c"
name: "bn3b2_branch2c"
type: "BatchNorm"
batch_norm_param {
use_global_stats: true
}
}
layer {
bottom: "res3b2_branch2c"
top: "res3b2_branch2c"
name: "scale3b2_branch2c"
type: "Scale"
scale_param {
bias_term: true
}
}
layer {
bottom: "res3b1"
bottom: "res3b2_branch2c"
top: "res3b2"
name: "res3b2"
type: "Eltwise"
}
layer {
bottom: "res3b2"
top: "res3b2"
name: "res3b2_relu"
type: "ReLU"
}
layer {
bottom: "res3b2"
top: "res3b3_branch2a"
name: "res3b3_branch2a"
type: "Convolution"
convolution_param {
num_output: 128
kernel_size: 1
pad: 0
stride: 1
bias_term: false
}
}
layer {
bottom: "res3b3_branch2a"
top: "res3b3_branch2a"
name: "bn3b3_branch2a"
type: "BatchNorm"
batch_norm_param {
use_global_stats: true
}
}
layer {
bottom: "res3b3_branch2a"
top: "res3b3_branch2a"
name: "scale3b3_branch2a"
type: "Scale"
scale_param {
bias_term: true
}
}
layer {
top: "res3b3_branch2a"
bottom: "res3b3_branch2a"
name: "res3b3_branch2a_relu"
type: "ReLU"
}
layer {
bottom: "res3b3_branch2a"
top: "res3b3_branch2b"
name: "res3b3_branch2b"
type: "Convolution"
convolution_param {
num_output: 128
kernel_size: 3
pad: 1
stride: 1
bias_term: false
}
}
layer {
bottom: "res3b3_branch2b"
top: "res3b3_branch2b"
name: "bn3b3_branch2b"
type: "BatchNorm"
batch_norm_param {
use_global_stats: true
}
}
layer {
bottom: "res3b3_branch2b"
top: "res3b3_branch2b"
name: "scale3b3_branch2b"
type: "Scale"
scale_param {
bias_term: true
}
}
layer {
top: "res3b3_branch2b"
bottom: "res3b3_branch2b"
name: "res3b3_branch2b_relu"
type: "ReLU"
}
layer {
bottom: "res3b3_branch2b"
top: "res3b3_branch2c"
name: "res3b3_branch2c"
type: "Convolution"
convolution_param {
num_output: 512
kernel_size: 1
pad: 0
stride: 1
bias_term: false
}
}
layer {
bottom: "res3b3_branch2c"
top: "res3b3_branch2c"
name: "bn3b3_branch2c"
type: "BatchNorm"
batch_norm_param {
use_global_stats: true
}
}
layer {
bottom: "res3b3_branch2c"
top: "res3b3_branch2c"
name: "scale3b3_branch2c"
type: "Scale"
scale_param {
bias_term: true
}
}
layer {
bottom: "res3b2"
bottom: "res3b3_branch2c"
top: "res3b3"
name: "res3b3"
type: "Eltwise"
}
layer {
bottom: "res3b3"
top: "res3b3"
name: "res3b3_relu"
type: "ReLU"
}
layer {
bottom: "res3b3"
top: "res4a_branch1"
name: "res4a_branch1"
type: "Convolution"
convolution_param {
num_output: 1024
kernel_size: 1
pad: 0
stride: 2
bias_term: false
}
}
layer {
bottom: "res4a_branch1"
top: "res4a_branch1"
name: "bn4a_branch1"
type: "BatchNorm"
batch_norm_param {
use_global_stats: true
}
}
layer {
bottom: "res4a_branch1"
top: "res4a_branch1"
name: "scale4a_branch1"
type: "Scale"
scale_param {
bias_term: true
}
}
layer {
bottom: "res3b3"
top: "res4a_branch2a"
name: "res4a_branch2a"
type: "Convolution"
convolution_param {
num_output: 256
kernel_size: 1
pad: 0
stride: 2
bias_term: false
}
}
layer {
bottom: "res4a_branch2a"
top: "res4a_branch2a"
name: "bn4a_branch2a"
type: "BatchNorm"
batch_norm_param {
use_global_stats: true
}
}
layer {
bottom: "res4a_branch2a"
top: "res4a_branch2a"
name: "scale4a_branch2a"
type: "Scale"
scale_param {
bias_term: true
}
}
layer {
top: "res4a_branch2a"
bottom: "res4a_branch2a"
name: "res4a_branch2a_relu"
type: "ReLU"
}
layer {
bottom: "res4a_branch2a"
top: "res4a_branch2b"
name: "res4a_branch2b"
type: "Convolution"
convolution_param {
num_output: 256
kernel_size: 3
pad: 1
stride: 1
bias_term: false
}
}
layer {
bottom: "res4a_branch2b"
top: "res4a_branch2b"
name: "bn4a_branch2b"
type: "BatchNorm"
batch_norm_param {
use_global_stats: true
}
}
layer {
bottom: "res4a_branch2b"
top: "res4a_branch2b"
name: "scale4a_branch2b"
type: "Scale"
scale_param {
bias_term: true
}
}
layer {
top: "res4a_branch2b"
bottom: "res4a_branch2b"
name: "res4a_branch2b_relu"
type: "ReLU"
}
layer {
bottom: "res4a_branch2b"
top: "res4a_branch2c"
name: "res4a_branch2c"
type: "Convolution"
convolution_param {
num_output: 1024
kernel_size: 1
pad: 0
stride: 1
bias_term: false
}
}
layer {
bottom: "res4a_branch2c"
top: "res4a_branch2c"
name: "bn4a_branch2c"
type: "BatchNorm"
batch_norm_param {
use_global_stats: true
}
}
layer {
bottom: "res4a_branch2c"
top: "res4a_branch2c"
name: "scale4a_branch2c"
type: "Scale"
scale_param {
bias_term: true
}
}
layer {
bottom: "res4a_branch1"
bottom: "res4a_branch2c"
top: "res4a"
name: "res4a"
type: "Eltwise"
}
layer {
bottom: "res4a"
top: "res4a"
name: "res4a_relu"
type: "ReLU"
}
layer {
bottom: "res4a"
top: "res4b1_branch2a"
name: "res4b1_branch2a"
type: "Convolution"
convolution_param {
num_output: 256
kernel_size: 1
pad: 0
stride: 1
bias_term: false
}
}
layer {
bottom: "res4b1_branch2a"
top: "res4b1_branch2a"
name: "bn4b1_branch2a"
type: "BatchNorm"
batch_norm_param {
use_global_stats: true
}
}
layer {
bottom: "res4b1_branch2a"
top: "res4b1_branch2a"
name: "scale4b1_branch2a"
type: "Scale"
scale_param {
bias_term: true
}
}
layer {
top: "res4b1_branch2a"
bottom: "res4b1_branch2a"
name: "res4b1_branch2a_relu"
type: "ReLU"
}
layer {
bottom: "res4b1_branch2a"
top: "res4b1_branch2b"
name: "res4b1_branch2b"
type: "Convolution"
convolution_param {
num_output: 256
kernel_size: 3
pad: 1
stride: 1
bias_term: false
}
}
layer {
bottom: "res4b1_branch2b"
top: "res4b1_branch2b"
name: "bn4b1_branch2b"
type: "BatchNorm"
batch_norm_param {
use_global_stats: true
}
}
layer {
bottom: "res4b1_branch2b"
top: "res4b1_branch2b"
name: "scale4b1_branch2b"
type: "Scale"
scale_param {
bias_term: true
}
}
layer {
top: "res4b1_branch2b"
bottom: "res4b1_branch2b"
name: "res4b1_branch2b_relu"
type: "ReLU"
}
layer {
bottom: "res4b1_branch2b"
top: "res4b1_branch2c"
name: "res4b1_branch2c"
type: "Convolution"
convolution_param {
num_output: 1024
kernel_size: 1
pad: 0
stride: 1
bias_term: false
}
}
layer {
bottom: "res4b1_branch2c"
top: "res4b1_branch2c"
name: "bn4b1_branch2c"
type: "BatchNorm"
batch_norm_param {
use_global_stats: true
}
}
layer {
bottom: "res4b1_branch2c"
top: "res4b1_branch2c"
name: "scale4b1_branch2c"
type: "Scale"
scale_param {
bias_term: true
}
}
layer {
bottom: "res4a"
bottom: "res4b1_branch2c"
top: "res4b1"
name: "res4b1"
type: "Eltwise"
}
layer {
bottom: "res4b1"
top: "res4b1"
name: "res4b1_relu"
type: "ReLU"
}
layer {
bottom: "res4b1"
top: "res4b2_branch2a"
name: "res4b2_branch2a"
type: "Convolution"
convolution_param {
num_output: 256
kernel_size: 1
pad: 0
stride: 1
bias_term: false
}
}
layer {
bottom: "res4b2_branch2a"
top: "res4b2_branch2a"
name: "bn4b2_branch2a"
type: "BatchNorm"
batch_norm_param {
use_global_stats: true
}
}
layer {
bottom: "res4b2_branch2a"
top: "res4b2_branch2a"
name: "scale4b2_branch2a"
type: "Scale"
scale_param {
bias_term: true
}
}
layer {
top: "res4b2_branch2a"
bottom: "res4b2_branch2a"
name: "res4b2_branch2a_relu"
type: "ReLU"
}
layer {
bottom: "res4b2_branch2a"
top: "res4b2_branch2b"
name: "res4b2_branch2b"
type: "Convolution"
convolution_param {
num_output: 256
kernel_size: 3
pad: 1
stride: 1
bias_term: false
}
}
layer {
bottom: "res4b2_branch2b"
top: "res4b2_branch2b"
name: "bn4b2_branch2b"
type: "BatchNorm"
batch_norm_param {
use_global_stats: true
}
}
layer {
bottom: "res4b2_branch2b"
top: "res4b2_branch2b"
name: "scale4b2_branch2b"
type: "Scale"
scale_param {
bias_term: true
}
}
layer {
top: "res4b2_branch2b"
bottom: "res4b2_branch2b"
name: "res4b2_branch2b_relu"
type: "ReLU"
}
layer {
bottom: "res4b2_branch2b"
top: "res4b2_branch2c"
name: "res4b2_branch2c"
type: "Convolution"
convolution_param {
num_output: 1024
kernel_size: 1
pad: 0
stride: 1
bias_term: false
}
}
layer {
bottom: "res4b2_branch2c"
top: "res4b2_branch2c"
name: "bn4b2_branch2c"
type: "BatchNorm"
batch_norm_param {
use_global_stats: true
}
}
layer {
bottom: "res4b2_branch2c"
top: "res4b2_branch2c"
name: "scale4b2_branch2c"
type: "Scale"
scale_param {
bias_term: true
}
}
layer {
bottom: "res4b1"
bottom: "res4b2_branch2c"
top: "res4b2"
name: "res4b2"
type: "Eltwise"
}
layer {
bottom: "res4b2"
top: "res4b2"
name: "res4b2_relu"
type: "ReLU"
}
layer {
bottom: "res4b2"
top: "res4b3_branch2a"
name: "res4b3_branch2a"
type: "Convolution"
convolution_param {
num_output: 256
kernel_size: 1
pad: 0
stride: 1
bias_term: false
}
}
layer {
bottom: "res4b3_branch2a"
top: "res4b3_branch2a"
name: "bn4b3_branch2a"
type: "BatchNorm"
batch_norm_param {
use_global_stats: true
}
}
layer {
bottom: "res4b3_branch2a"
top: "res4b3_branch2a"
name: "scale4b3_branch2a"
type: "Scale"
scale_param {
bias_term: true
}
}
layer {
top: "res4b3_branch2a"
bottom: "res4b3_branch2a"
name: "res4b3_branch2a_relu"
type: "ReLU"
}
layer {
bottom: "res4b3_branch2a"
top: "res4b3_branch2b"
name: "res4b3_branch2b"
type: "Convolution"
convolution_param {
num_output: 256
kernel_size: 3
pad: 1
stride: 1
bias_term: false
}
}
layer {
bottom: "res4b3_branch2b"
top: "res4b3_branch2b"
name: "bn4b3_branch2b"
type: "BatchNorm"
batch_norm_param {
use_global_stats: true
}
}
layer {
bottom: "res4b3_branch2b"
top: "res4b3_branch2b"
name: "scale4b3_branch2b"
type: "Scale"
scale_param {
bias_term: true
}
}
layer {
top: "res4b3_branch2b"
bottom: "res4b3_branch2b"
name: "res4b3_branch2b_relu"
type: "ReLU"
}
layer {
bottom: "res4b3_branch2b"
top: "res4b3_branch2c"
name: "res4b3_branch2c"
type: "Convolution"
convolution_param {
num_output: 1024
kernel_size: 1
pad: 0
stride: 1
bias_term: false
}
}
layer {
bottom: "res4b3_branch2c"
top: "res4b3_branch2c"
name: "bn4b3_branch2c"
type: "BatchNorm"
batch_norm_param {
use_global_stats: true
}
}
layer {
bottom: "res4b3_branch2c"
top: "res4b3_branch2c"
name: "scale4b3_branch2c"
type: "Scale"
scale_param {
bias_term: true
}
}
layer {
bottom: "res4b2"
bottom: "res4b3_branch2c"
top: "res4b3"
name: "res4b3"
type: "Eltwise"
}
layer {
bottom: "res4b3"
top: "res4b3"
name: "res4b3_relu"
type: "ReLU"
}
layer {
bottom: "res4b3"
top: "res4b4_branch2a"
name: "res4b4_branch2a"
type: "Convolution"
convolution_param {
num_output: 256
kernel_size: 1
pad: 0
stride: 1
bias_term: false
}
}
layer {
bottom: "res4b4_branch2a"
top: "res4b4_branch2a"
name: "bn4b4_branch2a"
type: "BatchNorm"
batch_norm_param {
use_global_stats: true
}
}
layer {
bottom: "res4b4_branch2a"
top: "res4b4_branch2a"
name: "scale4b4_branch2a"
type: "Scale"
scale_param {
bias_term: true
}
}
layer {
top: "res4b4_branch2a"
bottom: "res4b4_branch2a"
name: "res4b4_branch2a_relu"
type: "ReLU"
}
layer {
bottom: "res4b4_branch2a"
top: "res4b4_branch2b"
name: "res4b4_branch2b"
type: "Convolution"
convolution_param {
num_output: 256
kernel_size: 3
pad: 1
stride: 1
bias_term: false
}
}
layer {
bottom: "res4b4_branch2b"
top: "res4b4_branch2b"
name: "bn4b4_branch2b"
type: "BatchNorm"
batch_norm_param {
use_global_stats: true
}
}
layer {
bottom: "res4b4_branch2b"
top: "res4b4_branch2b"
name: "scale4b4_branch2b"
type: "Scale"
scale_param {
bias_term: true
}
}
layer {
top: "res4b4_branch2b"
bottom: "res4b4_branch2b"
name: "res4b4_branch2b_relu"
type: "ReLU"
}
layer {
bottom: "res4b4_branch2b"
top: "res4b4_branch2c"
name: "res4b4_branch2c"
type: "Convolution"
convolution_param {
num_output: 1024
kernel_size: 1
pad: 0
stride: 1
bias_term: false
}
}
layer {
bottom: "res4b4_branch2c"
top: "res4b4_branch2c"
name: "bn4b4_branch2c"
type: "BatchNorm"
batch_norm_param {
use_global_stats: true
}
}
layer {
bottom: "res4b4_branch2c"
top: "res4b4_branch2c"
name: "scale4b4_branch2c"
type: "Scale"
scale_param {
bias_term: true
}
}
layer {
bottom: "res4b3"
bottom: "res4b4_branch2c"
top: "res4b4"
name: "res4b4"
type: "Eltwise"
}
layer {
bottom: "res4b4"
top: "res4b4"
name: "res4b4_relu"
type: "ReLU"
}
layer {
bottom: "res4b4"
top: "res4b5_branch2a"
name: "res4b5_branch2a"
type: "Convolution"
convolution_param {
num_output: 256
kernel_size: 1
pad: 0
stride: 1
bias_term: false
}
}
layer {
bottom: "res4b5_branch2a"
top: "res4b5_branch2a"
name: "bn4b5_branch2a"
type: "BatchNorm"
batch_norm_param {
use_global_stats: true
}
}
layer {
bottom: "res4b5_branch2a"
top: "res4b5_branch2a"
name: "scale4b5_branch2a"
type: "Scale"
scale_param {
bias_term: true
}
}
layer {
top: "res4b5_branch2a"
bottom: "res4b5_branch2a"
name: "res4b5_branch2a_relu"
type: "ReLU"
}
layer {
bottom: "res4b5_branch2a"
top: "res4b5_branch2b"
name: "res4b5_branch2b"
type: "Convolution"
convolution_param {
num_output: 256
kernel_size: 3
pad: 1
stride: 1
bias_term: false
}
}
layer {
bottom: "res4b5_branch2b"
top: "res4b5_branch2b"
name: "bn4b5_branch2b"
type: "BatchNorm"
batch_norm_param {
use_global_stats: true
}
}
layer {
bottom: "res4b5_branch2b"
top: "res4b5_branch2b"
name: "scale4b5_branch2b"
type: "Scale"
scale_param {
bias_term: true
}
}
layer {
top: "res4b5_branch2b"
bottom: "res4b5_branch2b"
name: "res4b5_branch2b_relu"
type: "ReLU"
}
layer {
bottom: "res4b5_branch2b"
top: "res4b5_branch2c"
name: "res4b5_branch2c"
type: "Convolution"
convolution_param {
num_output: 1024
kernel_size: 1
pad: 0
stride: 1
bias_term: false
}
}
layer {
bottom: "res4b5_branch2c"
top: "res4b5_branch2c"
name: "bn4b5_branch2c"
type: "BatchNorm"
batch_norm_param {
use_global_stats: true
}
}
layer {
bottom: "res4b5_branch2c"
top: "res4b5_branch2c"
name: "scale4b5_branch2c"
type: "Scale"
scale_param {
bias_term: true
}
}
layer {
bottom: "res4b4"
bottom: "res4b5_branch2c"
top: "res4b5"
name: "res4b5"
type: "Eltwise"
}
layer {
bottom: "res4b5"
top: "res4b5"
name: "res4b5_relu"
type: "ReLU"
}
layer {
bottom: "res4b5"
top: "res4b6_branch2a"
name: "res4b6_branch2a"
type: "Convolution"
convolution_param {
num_output: 256
kernel_size: 1
pad: 0
stride: 1
bias_term: false
}
}
layer {
bottom: "res4b6_branch2a"
top: "res4b6_branch2a"
name: "bn4b6_branch2a"
type: "BatchNorm"
batch_norm_param {
use_global_stats: true
}
}
layer {
bottom: "res4b6_branch2a"
top: "res4b6_branch2a"
name: "scale4b6_branch2a"
type: "Scale"
scale_param {
bias_term: true
}
}
layer {
top: "res4b6_branch2a"
bottom: "res4b6_branch2a"
name: "res4b6_branch2a_relu"
type: "ReLU"
}
layer {
bottom: "res4b6_branch2a"
top: "res4b6_branch2b"
name: "res4b6_branch2b"
type: "Convolution"
convolution_param {
num_output: 256
kernel_size: 3
pad: 1
stride: 1
bias_term: false
}
}
layer {
bottom: "res4b6_branch2b"
top: "res4b6_branch2b"
name: "bn4b6_branch2b"
type: "BatchNorm"
batch_norm_param {
use_global_stats: true
}
}
layer {
bottom: "res4b6_branch2b"
top: "res4b6_branch2b"
name: "scale4b6_branch2b"
type: "Scale"
scale_param {
bias_term: true
}
}
layer {
top: "res4b6_branch2b"
bottom: "res4b6_branch2b"
name: "res4b6_branch2b_relu"
type: "ReLU"
}
layer {
bottom: "res4b6_branch2b"
top: "res4b6_branch2c"
name: "res4b6_branch2c"
type: "Convolution"
convolution_param {
num_output: 1024
kernel_size: 1
pad: 0
stride: 1
bias_term: false
}
}
layer {
bottom: "res4b6_branch2c"
top: "res4b6_branch2c"
name: "bn4b6_branch2c"
type: "BatchNorm"
batch_norm_param {
use_global_stats: true
}
}
layer {
bottom: "res4b6_branch2c"
top: "res4b6_branch2c"
name: "scale4b6_branch2c"
type: "Scale"
scale_param {
bias_term: true
}
}
layer {
bottom: "res4b5"
bottom: "res4b6_branch2c"
top: "res4b6"
name: "res4b6"
type: "Eltwise"
}
layer {
bottom: "res4b6"
top: "res4b6"
name: "res4b6_relu"
type: "ReLU"
}
layer {
bottom: "res4b6"
top: "res4b7_branch2a"
name: "res4b7_branch2a"
type: "Convolution"
convolution_param {
num_output: 256
kernel_size: 1
pad: 0
stride: 1
bias_term: false
}
}
layer {
bottom: "res4b7_branch2a"
top: "res4b7_branch2a"
name: "bn4b7_branch2a"
type: "BatchNorm"
batch_norm_param {
use_global_stats: true
}
}
layer {
bottom: "res4b7_branch2a"
top: "res4b7_branch2a"
name: "scale4b7_branch2a"
type: "Scale"
scale_param {
bias_term: true
}
}
layer {
top: "res4b7_branch2a"
bottom: "res4b7_branch2a"
name: "res4b7_branch2a_relu"
type: "ReLU"
}
layer {
bottom: "res4b7_branch2a"
top: "res4b7_branch2b"
name: "res4b7_branch2b"
type: "Convolution"
convolution_param {
num_output: 256
kernel_size: 3
pad: 1
stride: 1
bias_term: false
}
}
layer {
bottom: "res4b7_branch2b"
top: "res4b7_branch2b"
name: "bn4b7_branch2b"
type: "BatchNorm"
batch_norm_param {
use_global_stats: true
}
}
layer {
bottom: "res4b7_branch2b"
top: "res4b7_branch2b"
name: "scale4b7_branch2b"
type: "Scale"
scale_param {
bias_term: true
}
}
layer {
top: "res4b7_branch2b"
bottom: "res4b7_branch2b"
name: "res4b7_branch2b_relu"
type: "ReLU"
}
layer {
bottom: "res4b7_branch2b"
top: "res4b7_branch2c"
name: "res4b7_branch2c"
type: "Convolution"
convolution_param {
num_output: 1024
kernel_size: 1
pad: 0
stride: 1
bias_term: false
}
}
layer {
bottom: "res4b7_branch2c"
top: "res4b7_branch2c"
name: "bn4b7_branch2c"
type: "BatchNorm"
batch_norm_param {
use_global_stats: true
}
}
layer {
bottom: "res4b7_branch2c"
top: "res4b7_branch2c"
name: "scale4b7_branch2c"
type: "Scale"
scale_param {
bias_term: true
}
}
layer {
bottom: "res4b6"
bottom: "res4b7_branch2c"
top: "res4b7"
name: "res4b7"
type: "Eltwise"
}
layer {
bottom: "res4b7"
top: "res4b7"
name: "res4b7_relu"
type: "ReLU"
}
layer {
bottom: "res4b7"
top: "res4b8_branch2a"
name: "res4b8_branch2a"
type: "Convolution"
convolution_param {
num_output: 256
kernel_size: 1
pad: 0
stride: 1
bias_term: false
}
}
layer {
bottom: "res4b8_branch2a"
top: "res4b8_branch2a"
name: "bn4b8_branch2a"
type: "BatchNorm"
batch_norm_param {
use_global_stats: true
}
}
layer {
bottom: "res4b8_branch2a"
top: "res4b8_branch2a"
name: "scale4b8_branch2a"
type: "Scale"
scale_param {
bias_term: true
}
}
layer {
top: "res4b8_branch2a"
bottom: "res4b8_branch2a"
name: "res4b8_branch2a_relu"
type: "ReLU"
}
layer {
bottom: "res4b8_branch2a"
top: "res4b8_branch2b"
name: "res4b8_branch2b"
type: "Convolution"
convolution_param {
num_output: 256
kernel_size: 3
pad: 1
stride: 1
bias_term: false
}
}
layer {
bottom: "res4b8_branch2b"
top: "res4b8_branch2b"
name: "bn4b8_branch2b"
type: "BatchNorm"
batch_norm_param {
use_global_stats: true
}
}
layer {
bottom: "res4b8_branch2b"
top: "res4b8_branch2b"
name: "scale4b8_branch2b"
type: "Scale"
scale_param {
bias_term: true
}
}
layer {
top: "res4b8_branch2b"
bottom: "res4b8_branch2b"
name: "res4b8_branch2b_relu"
type: "ReLU"
}
layer {
bottom: "res4b8_branch2b"
top: "res4b8_branch2c"
name: "res4b8_branch2c"
type: "Convolution"
convolution_param {
num_output: 1024
kernel_size: 1
pad: 0
stride: 1
bias_term: false
}
}
layer {
bottom: "res4b8_branch2c"
top: "res4b8_branch2c"
name: "bn4b8_branch2c"
type: "BatchNorm"
batch_norm_param {
use_global_stats: true
}
}
layer {
bottom: "res4b8_branch2c"
top: "res4b8_branch2c"
name: "scale4b8_branch2c"
type: "Scale"
scale_param {
bias_term: true
}
}
layer {
bottom: "res4b7"
bottom: "res4b8_branch2c"
top: "res4b8"
name: "res4b8"
type: "Eltwise"
}
layer {
bottom: "res4b8"
top: "res4b8"
name: "res4b8_relu"
type: "ReLU"
}
layer {
bottom: "res4b8"
top: "res4b9_branch2a"
name: "res4b9_branch2a"
type: "Convolution"
convolution_param {
num_output: 256
kernel_size: 1
pad: 0
stride: 1
bias_term: false
}
}
layer {
bottom: "res4b9_branch2a"
top: "res4b9_branch2a"
name: "bn4b9_branch2a"
type: "BatchNorm"
batch_norm_param {
use_global_stats: true
}
}
layer {
bottom: "res4b9_branch2a"
top: "res4b9_branch2a"
name: "scale4b9_branch2a"
type: "Scale"
scale_param {
bias_term: true
}
}
layer {
top: "res4b9_branch2a"
bottom: "res4b9_branch2a"
name: "res4b9_branch2a_relu"
type: "ReLU"
}
layer {
bottom: "res4b9_branch2a"
top: "res4b9_branch2b"
name: "res4b9_branch2b"
type: "Convolution"
convolution_param {
num_output: 256
kernel_size: 3
pad: 1
stride: 1
bias_term: false
}
}
layer {
bottom: "res4b9_branch2b"
top: "res4b9_branch2b"
name: "bn4b9_branch2b"
type: "BatchNorm"
batch_norm_param {
use_global_stats: true
}
}
layer {
bottom: "res4b9_branch2b"
top: "res4b9_branch2b"
name: "scale4b9_branch2b"
type: "Scale"
scale_param {
bias_term: true
}
}
layer {
top: "res4b9_branch2b"
bottom: "res4b9_branch2b"
name: "res4b9_branch2b_relu"
type: "ReLU"
}
layer {
bottom: "res4b9_branch2b"
top: "res4b9_branch2c"
name: "res4b9_branch2c"
type: "Convolution"
convolution_param {
num_output: 1024
kernel_size: 1
pad: 0
stride: 1
bias_term: false
}
}
layer {
bottom: "res4b9_branch2c"
top: "res4b9_branch2c"
name: "bn4b9_branch2c"
type: "BatchNorm"
batch_norm_param {
use_global_stats: true
}
}
layer {
bottom: "res4b9_branch2c"
top: "res4b9_branch2c"
name: "scale4b9_branch2c"
type: "Scale"
scale_param {
bias_term: true
}
}
layer {
bottom: "res4b8"
bottom: "res4b9_branch2c"
top: "res4b9"
name: "res4b9"
type: "Eltwise"
}
layer {
bottom: "res4b9"
top: "res4b9"
name: "res4b9_relu"
type: "ReLU"
}
layer {
bottom: "res4b9"
top: "res4b10_branch2a"
name: "res4b10_branch2a"
type: "Convolution"
convolution_param {
num_output: 256
kernel_size: 1
pad: 0
stride: 1
bias_term: false
}
}
layer {
bottom: "res4b10_branch2a"
top: "res4b10_branch2a"
name: "bn4b10_branch2a"
type: "BatchNorm"
batch_norm_param {
use_global_stats: true
}
}
layer {
bottom: "res4b10_branch2a"
top: "res4b10_branch2a"
name: "scale4b10_branch2a"
type: "Scale"
scale_param {
bias_term: true
}
}
layer {
top: "res4b10_branch2a"
bottom: "res4b10_branch2a"
name: "res4b10_branch2a_relu"
type: "ReLU"
}
layer {
bottom: "res4b10_branch2a"
top: "res4b10_branch2b"
name: "res4b10_branch2b"
type: "Convolution"
convolution_param {
num_output: 256
kernel_size: 3
pad: 1
stride: 1
bias_term: false
}
}
layer {
bottom: "res4b10_branch2b"
top: "res4b10_branch2b"
name: "bn4b10_branch2b"
type: "BatchNorm"
batch_norm_param {
use_global_stats: true
}
}
layer {
bottom: "res4b10_branch2b"
top: "res4b10_branch2b"
name: "scale4b10_branch2b"
type: "Scale"
scale_param {
bias_term: true
}
}
layer {
top: "res4b10_branch2b"
bottom: "res4b10_branch2b"
name: "res4b10_branch2b_relu"
type: "ReLU"
}
layer {
bottom: "res4b10_branch2b"
top: "res4b10_branch2c"
name: "res4b10_branch2c"
type: "Convolution"
convolution_param {
num_output: 1024
kernel_size: 1
pad: 0
stride: 1
bias_term: false
}
}
layer {
bottom: "res4b10_branch2c"
top: "res4b10_branch2c"
name: "bn4b10_branch2c"
type: "BatchNorm"
batch_norm_param {
use_global_stats: true
}
}
layer {
bottom: "res4b10_branch2c"
top: "res4b10_branch2c"
name: "scale4b10_branch2c"
type: "Scale"
scale_param {
bias_term: true
}
}
layer {
bottom: "res4b9"
bottom: "res4b10_branch2c"
top: "res4b10"
name: "res4b10"
type: "Eltwise"
}
layer {
bottom: "res4b10"
top: "res4b10"
name: "res4b10_relu"
type: "ReLU"
}
layer {
bottom: "res4b10"
top: "res4b11_branch2a"
name: "res4b11_branch2a"
type: "Convolution"
convolution_param {
num_output: 256
kernel_size: 1
pad: 0
stride: 1
bias_term: false
}
}
layer {
bottom: "res4b11_branch2a"
top: "res4b11_branch2a"
name: "bn4b11_branch2a"
type: "BatchNorm"
batch_norm_param {
use_global_stats: true
}
}
layer {
bottom: "res4b11_branch2a"
top: "res4b11_branch2a"
name: "scale4b11_branch2a"
type: "Scale"
scale_param {
bias_term: true
}
}
layer {
top: "res4b11_branch2a"
bottom: "res4b11_branch2a"
name: "res4b11_branch2a_relu"
type: "ReLU"
}
layer {
bottom: "res4b11_branch2a"
top: "res4b11_branch2b"
name: "res4b11_branch2b"
type: "Convolution"
convolution_param {
num_output: 256
kernel_size: 3
pad: 1
stride: 1
bias_term: false
}
}
layer {
bottom: "res4b11_branch2b"
top: "res4b11_branch2b"
name: "bn4b11_branch2b"
type: "BatchNorm"
batch_norm_param {
use_global_stats: true
}
}
layer {
bottom: "res4b11_branch2b"
top: "res4b11_branch2b"
name: "scale4b11_branch2b"
type: "Scale"
scale_param {
bias_term: true
}
}
layer {
top: "res4b11_branch2b"
bottom: "res4b11_branch2b"
name: "res4b11_branch2b_relu"
type: "ReLU"
}
layer {
bottom: "res4b11_branch2b"
top: "res4b11_branch2c"
name: "res4b11_branch2c"
type: "Convolution"
convolution_param {
num_output: 1024
kernel_size: 1
pad: 0
stride: 1
bias_term: false
}
}
layer {
bottom: "res4b11_branch2c"
top: "res4b11_branch2c"
name: "bn4b11_branch2c"
type: "BatchNorm"
batch_norm_param {
use_global_stats: true
}
}
layer {
bottom: "res4b11_branch2c"
top: "res4b11_branch2c"
name: "scale4b11_branch2c"
type: "Scale"
scale_param {
bias_term: true
}
}
layer {
bottom: "res4b10"
bottom: "res4b11_branch2c"
top: "res4b11"
name: "res4b11"
type: "Eltwise"
}
layer {
bottom: "res4b11"
top: "res4b11"
name: "res4b11_relu"
type: "ReLU"
}
layer {
bottom: "res4b11"
top: "res4b12_branch2a"
name: "res4b12_branch2a"
type: "Convolution"
convolution_param {
num_output: 256
kernel_size: 1
pad: 0
stride: 1
bias_term: false
}
}
layer {
bottom: "res4b12_branch2a"
top: "res4b12_branch2a"
name: "bn4b12_branch2a"
type: "BatchNorm"
batch_norm_param {
use_global_stats: true
}
}
layer {
bottom: "res4b12_branch2a"
top: "res4b12_branch2a"
name: "scale4b12_branch2a"
type: "Scale"
scale_param {
bias_term: true
}
}
layer {
top: "res4b12_branch2a"
bottom: "res4b12_branch2a"
name: "res4b12_branch2a_relu"
type: "ReLU"
}
layer {
bottom: "res4b12_branch2a"
top: "res4b12_branch2b"
name: "res4b12_branch2b"
type: "Convolution"
convolution_param {
num_output: 256
kernel_size: 3
pad: 1
stride: 1
bias_term: false
}
}
layer {
bottom: "res4b12_branch2b"
top: "res4b12_branch2b"
name: "bn4b12_branch2b"
type: "BatchNorm"
batch_norm_param {
use_global_stats: true
}
}
layer {
bottom: "res4b12_branch2b"
top: "res4b12_branch2b"
name: "scale4b12_branch2b"
type: "Scale"
scale_param {
bias_term: true
}
}
layer {
top: "res4b12_branch2b"
bottom: "res4b12_branch2b"
name: "res4b12_branch2b_relu"
type: "ReLU"
}
layer {
bottom: "res4b12_branch2b"
top: "res4b12_branch2c"
name: "res4b12_branch2c"
type: "Convolution"
convolution_param {
num_output: 1024
kernel_size: 1
pad: 0
stride: 1
bias_term: false
}
}
layer {
bottom: "res4b12_branch2c"
top: "res4b12_branch2c"
name: "bn4b12_branch2c"
type: "BatchNorm"
batch_norm_param {
use_global_stats: true
}
}
layer {
bottom: "res4b12_branch2c"
top: "res4b12_branch2c"
name: "scale4b12_branch2c"
type: "Scale"
scale_param {
bias_term: true
}
}
layer {
bottom: "res4b11"
bottom: "res4b12_branch2c"
top: "res4b12"
name: "res4b12"
type: "Eltwise"
}
layer {
bottom: "res4b12"
top: "res4b12"
name: "res4b12_relu"
type: "ReLU"
}
layer {
bottom: "res4b12"
top: "res4b13_branch2a"
name: "res4b13_branch2a"
type: "Convolution"
convolution_param {
num_output: 256
kernel_size: 1
pad: 0
stride: 1
bias_term: false
}
}
layer {
bottom: "res4b13_branch2a"
top: "res4b13_branch2a"
name: "bn4b13_branch2a"
type: "BatchNorm"
batch_norm_param {
use_global_stats: true
}
}
layer {
bottom: "res4b13_branch2a"
top: "res4b13_branch2a"
name: "scale4b13_branch2a"
type: "Scale"
scale_param {
bias_term: true
}
}
layer {
top: "res4b13_branch2a"
bottom: "res4b13_branch2a"
name: "res4b13_branch2a_relu"
type: "ReLU"
}
layer {
bottom: "res4b13_branch2a"
top: "res4b13_branch2b"
name: "res4b13_branch2b"
type: "Convolution"
convolution_param {
num_output: 256
kernel_size: 3
pad: 1
stride: 1
bias_term: false
}
}
layer {
bottom: "res4b13_branch2b"
top: "res4b13_branch2b"
name: "bn4b13_branch2b"
type: "BatchNorm"
batch_norm_param {
use_global_stats: true
}
}
layer {
bottom: "res4b13_branch2b"
top: "res4b13_branch2b"
name: "scale4b13_branch2b"
type: "Scale"
scale_param {
bias_term: true
}
}
layer {
top: "res4b13_branch2b"
bottom: "res4b13_branch2b"
name: "res4b13_branch2b_relu"
type: "ReLU"
}
layer {
bottom: "res4b13_branch2b"
top: "res4b13_branch2c"
name: "res4b13_branch2c"
type: "Convolution"
convolution_param {
num_output: 1024
kernel_size: 1
pad: 0
stride: 1
bias_term: false
}
}
layer {
bottom: "res4b13_branch2c"
top: "res4b13_branch2c"
name: "bn4b13_branch2c"
type: "BatchNorm"
batch_norm_param {
use_global_stats: true
}
}
layer {
bottom: "res4b13_branch2c"
top: "res4b13_branch2c"
name: "scale4b13_branch2c"
type: "Scale"
scale_param {
bias_term: true
}
}
layer {
bottom: "res4b12"
bottom: "res4b13_branch2c"
top: "res4b13"
name: "res4b13"
type: "Eltwise"
}
layer {
bottom: "res4b13"
top: "res4b13"
name: "res4b13_relu"
type: "ReLU"
}
layer {
bottom: "res4b13"
top: "res4b14_branch2a"
name: "res4b14_branch2a"
type: "Convolution"
convolution_param {
num_output: 256
kernel_size: 1
pad: 0
stride: 1
bias_term: false
}
}
layer {
bottom: "res4b14_branch2a"
top: "res4b14_branch2a"
name: "bn4b14_branch2a"
type: "BatchNorm"
batch_norm_param {
use_global_stats: true
}
}
layer {
bottom: "res4b14_branch2a"
top: "res4b14_branch2a"
name: "scale4b14_branch2a"
type: "Scale"
scale_param {
bias_term: true
}
}
layer {
top: "res4b14_branch2a"
bottom: "res4b14_branch2a"
name: "res4b14_branch2a_relu"
type: "ReLU"
}
layer {
bottom: "res4b14_branch2a"
top: "res4b14_branch2b"
name: "res4b14_branch2b"
type: "Convolution"
convolution_param {
num_output: 256
kernel_size: 3
pad: 1
stride: 1
bias_term: false
}
}
layer {
bottom: "res4b14_branch2b"
top: "res4b14_branch2b"
name: "bn4b14_branch2b"
type: "BatchNorm"
batch_norm_param {
use_global_stats: true
}
}
layer {
bottom: "res4b14_branch2b"
top: "res4b14_branch2b"
name: "scale4b14_branch2b"
type: "Scale"
scale_param {
bias_term: true
}
}
layer {
top: "res4b14_branch2b"
bottom: "res4b14_branch2b"
name: "res4b14_branch2b_relu"
type: "ReLU"
}
layer {
bottom: "res4b14_branch2b"
top: "res4b14_branch2c"
name: "res4b14_branch2c"
type: "Convolution"
convolution_param {
num_output: 1024
kernel_size: 1
pad: 0
stride: 1
bias_term: false
}
}
layer {
bottom: "res4b14_branch2c"
top: "res4b14_branch2c"
name: "bn4b14_branch2c"
type: "BatchNorm"
batch_norm_param {
use_global_stats: true
}
}
layer {
bottom: "res4b14_branch2c"
top: "res4b14_branch2c"
name: "scale4b14_branch2c"
type: "Scale"
scale_param {
bias_term: true
}
}
layer {
bottom: "res4b13"
bottom: "res4b14_branch2c"
top: "res4b14"
name: "res4b14"
type: "Eltwise"
}
layer {
bottom: "res4b14"
top: "res4b14"
name: "res4b14_relu"
type: "ReLU"
}
layer {
bottom: "res4b14"
top: "res4b15_branch2a"
name: "res4b15_branch2a"
type: "Convolution"
convolution_param {
num_output: 256
kernel_size: 1
pad: 0
stride: 1
bias_term: false
}
}
layer {
bottom: "res4b15_branch2a"
top: "res4b15_branch2a"
name: "bn4b15_branch2a"
type: "BatchNorm"
batch_norm_param {
use_global_stats: true
}
}
layer {
bottom: "res4b15_branch2a"
top: "res4b15_branch2a"
name: "scale4b15_branch2a"
type: "Scale"
scale_param {
bias_term: true
}
}
layer {
top: "res4b15_branch2a"
bottom: "res4b15_branch2a"
name: "res4b15_branch2a_relu"
type: "ReLU"
}
layer {
bottom: "res4b15_branch2a"
top: "res4b15_branch2b"
name: "res4b15_branch2b"
type: "Convolution"
convolution_param {
num_output: 256
kernel_size: 3
pad: 1
stride: 1
bias_term: false
}
}
layer {
bottom: "res4b15_branch2b"
top: "res4b15_branch2b"
name: "bn4b15_branch2b"
type: "BatchNorm"
batch_norm_param {
use_global_stats: true
}
}
layer {
bottom: "res4b15_branch2b"
top: "res4b15_branch2b"
name: "scale4b15_branch2b"
type: "Scale"
scale_param {
bias_term: true
}
}
layer {
top: "res4b15_branch2b"
bottom: "res4b15_branch2b"
name: "res4b15_branch2b_relu"
type: "ReLU"
}
layer {
bottom: "res4b15_branch2b"
top: "res4b15_branch2c"
name: "res4b15_branch2c"
type: "Convolution"
convolution_param {
num_output: 1024
kernel_size: 1
pad: 0
stride: 1
bias_term: false
}
}
layer {
bottom: "res4b15_branch2c"
top: "res4b15_branch2c"
name: "bn4b15_branch2c"
type: "BatchNorm"
batch_norm_param {
use_global_stats: true
}
}
layer {
bottom: "res4b15_branch2c"
top: "res4b15_branch2c"
name: "scale4b15_branch2c"
type: "Scale"
scale_param {
bias_term: true
}
}
layer {
bottom: "res4b14"
bottom: "res4b15_branch2c"
top: "res4b15"
name: "res4b15"
type: "Eltwise"
}
layer {
bottom: "res4b15"
top: "res4b15"
name: "res4b15_relu"
type: "ReLU"
}
layer {
bottom: "res4b15"
top: "res4b16_branch2a"
name: "res4b16_branch2a"
type: "Convolution"
convolution_param {
num_output: 256
kernel_size: 1
pad: 0
stride: 1
bias_term: false
}
}
layer {
bottom: "res4b16_branch2a"
top: "res4b16_branch2a"
name: "bn4b16_branch2a"
type: "BatchNorm"
batch_norm_param {
use_global_stats: true
}
}
layer {
bottom: "res4b16_branch2a"
top: "res4b16_branch2a"
name: "scale4b16_branch2a"
type: "Scale"
scale_param {
bias_term: true
}
}
layer {
top: "res4b16_branch2a"
bottom: "res4b16_branch2a"
name: "res4b16_branch2a_relu"
type: "ReLU"
}
layer {
bottom: "res4b16_branch2a"
top: "res4b16_branch2b"
name: "res4b16_branch2b"
type: "Convolution"
convolution_param {
num_output: 256
kernel_size: 3
pad: 1
stride: 1
bias_term: false
}
}
layer {
bottom: "res4b16_branch2b"
top: "res4b16_branch2b"
name: "bn4b16_branch2b"
type: "BatchNorm"
batch_norm_param {
use_global_stats: true
}
}
layer {
bottom: "res4b16_branch2b"
top: "res4b16_branch2b"
name: "scale4b16_branch2b"
type: "Scale"
scale_param {
bias_term: true
}
}
layer {
top: "res4b16_branch2b"
bottom: "res4b16_branch2b"
name: "res4b16_branch2b_relu"
type: "ReLU"
}
layer {
bottom: "res4b16_branch2b"
top: "res4b16_branch2c"
name: "res4b16_branch2c"
type: "Convolution"
convolution_param {
num_output: 1024
kernel_size: 1
pad: 0
stride: 1
bias_term: false
}
}
layer {
bottom: "res4b16_branch2c"
top: "res4b16_branch2c"
name: "bn4b16_branch2c"
type: "BatchNorm"
batch_norm_param {
use_global_stats: true
}
}
layer {
bottom: "res4b16_branch2c"
top: "res4b16_branch2c"
name: "scale4b16_branch2c"
type: "Scale"
scale_param {
bias_term: true
}
}
layer {
bottom: "res4b15"
bottom: "res4b16_branch2c"
top: "res4b16"
name: "res4b16"
type: "Eltwise"
}
layer {
bottom: "res4b16"
top: "res4b16"
name: "res4b16_relu"
type: "ReLU"
}
layer {
bottom: "res4b16"
top: "res4b17_branch2a"
name: "res4b17_branch2a"
type: "Convolution"
convolution_param {
num_output: 256
kernel_size: 1
pad: 0
stride: 1
bias_term: false
}
}
layer {
bottom: "res4b17_branch2a"
top: "res4b17_branch2a"
name: "bn4b17_branch2a"
type: "BatchNorm"
batch_norm_param {
use_global_stats: true
}
}
layer {
bottom: "res4b17_branch2a"
top: "res4b17_branch2a"
name: "scale4b17_branch2a"
type: "Scale"
scale_param {
bias_term: true
}
}
layer {
top: "res4b17_branch2a"
bottom: "res4b17_branch2a"
name: "res4b17_branch2a_relu"
type: "ReLU"
}
layer {
bottom: "res4b17_branch2a"
top: "res4b17_branch2b"
name: "res4b17_branch2b"
type: "Convolution"
convolution_param {
num_output: 256
kernel_size: 3
pad: 1
stride: 1
bias_term: false
}
}
layer {
bottom: "res4b17_branch2b"
top: "res4b17_branch2b"
name: "bn4b17_branch2b"
type: "BatchNorm"
batch_norm_param {
use_global_stats: true
}
}
layer {
bottom: "res4b17_branch2b"
top: "res4b17_branch2b"
name: "scale4b17_branch2b"
type: "Scale"
scale_param {
bias_term: true
}
}
layer {
top: "res4b17_branch2b"
bottom: "res4b17_branch2b"
name: "res4b17_branch2b_relu"
type: "ReLU"
}
layer {
bottom: "res4b17_branch2b"
top: "res4b17_branch2c"
name: "res4b17_branch2c"
type: "Convolution"
convolution_param {
num_output: 1024
kernel_size: 1
pad: 0
stride: 1
bias_term: false
}
}
layer {
bottom: "res4b17_branch2c"
top: "res4b17_branch2c"
name: "bn4b17_branch2c"
type: "BatchNorm"
batch_norm_param {
use_global_stats: true
}
}
layer {
bottom: "res4b17_branch2c"
top: "res4b17_branch2c"
name: "scale4b17_branch2c"
type: "Scale"
scale_param {
bias_term: true
}
}
layer {
bottom: "res4b16"
bottom: "res4b17_branch2c"
top: "res4b17"
name: "res4b17"
type: "Eltwise"
}
layer {
bottom: "res4b17"
top: "res4b17"
name: "res4b17_relu"
type: "ReLU"
}
layer {
bottom: "res4b17"
top: "res4b18_branch2a"
name: "res4b18_branch2a"
type: "Convolution"
convolution_param {
num_output: 256
kernel_size: 1
pad: 0
stride: 1
bias_term: false
}
}
layer {
bottom: "res4b18_branch2a"
top: "res4b18_branch2a"
name: "bn4b18_branch2a"
type: "BatchNorm"
batch_norm_param {
use_global_stats: true
}
}
layer {
bottom: "res4b18_branch2a"
top: "res4b18_branch2a"
name: "scale4b18_branch2a"
type: "Scale"
scale_param {
bias_term: true
}
}
layer {
top: "res4b18_branch2a"
bottom: "res4b18_branch2a"
name: "res4b18_branch2a_relu"
type: "ReLU"
}
layer {
bottom: "res4b18_branch2a"
top: "res4b18_branch2b"
name: "res4b18_branch2b"
type: "Convolution"
convolution_param {
num_output: 256
kernel_size: 3
pad: 1
stride: 1
bias_term: false
}
}
layer {
bottom: "res4b18_branch2b"
top: "res4b18_branch2b"
name: "bn4b18_branch2b"
type: "BatchNorm"
batch_norm_param {
use_global_stats: true
}
}
layer {
bottom: "res4b18_branch2b"
top: "res4b18_branch2b"
name: "scale4b18_branch2b"
type: "Scale"
scale_param {
bias_term: true
}
}
layer {
top: "res4b18_branch2b"
bottom: "res4b18_branch2b"
name: "res4b18_branch2b_relu"
type: "ReLU"
}
layer {
bottom: "res4b18_branch2b"
top: "res4b18_branch2c"
name: "res4b18_branch2c"
type: "Convolution"
convolution_param {
num_output: 1024
kernel_size: 1
pad: 0
stride: 1
bias_term: false
}
}
layer {
bottom: "res4b18_branch2c"
top: "res4b18_branch2c"
name: "bn4b18_branch2c"
type: "BatchNorm"
batch_norm_param {
use_global_stats: true
}
}
layer {
bottom: "res4b18_branch2c"
top: "res4b18_branch2c"
name: "scale4b18_branch2c"
type: "Scale"
scale_param {
bias_term: true
}
}
layer {
bottom: "res4b17"
bottom: "res4b18_branch2c"
top: "res4b18"
name: "res4b18"
type: "Eltwise"
}
layer {
bottom: "res4b18"
top: "res4b18"
name: "res4b18_relu"
type: "ReLU"
}
layer {
bottom: "res4b18"
top: "res4b19_branch2a"
name: "res4b19_branch2a"
type: "Convolution"
convolution_param {
num_output: 256
kernel_size: 1
pad: 0
stride: 1
bias_term: false
}
}
layer {
bottom: "res4b19_branch2a"
top: "res4b19_branch2a"
name: "bn4b19_branch2a"
type: "BatchNorm"
batch_norm_param {
use_global_stats: true
}
}
layer {
bottom: "res4b19_branch2a"
top: "res4b19_branch2a"
name: "scale4b19_branch2a"
type: "Scale"
scale_param {
bias_term: true
}
}
layer {
top: "res4b19_branch2a"
bottom: "res4b19_branch2a"
name: "res4b19_branch2a_relu"
type: "ReLU"
}
layer {
bottom: "res4b19_branch2a"
top: "res4b19_branch2b"
name: "res4b19_branch2b"
type: "Convolution"
convolution_param {
num_output: 256
kernel_size: 3
pad: 1
stride: 1
bias_term: false
}
}
layer {
bottom: "res4b19_branch2b"
top: "res4b19_branch2b"
name: "bn4b19_branch2b"
type: "BatchNorm"
batch_norm_param {
use_global_stats: true
}
}
layer {
bottom: "res4b19_branch2b"
top: "res4b19_branch2b"
name: "scale4b19_branch2b"
type: "Scale"
scale_param {
bias_term: true
}
}
layer {
top: "res4b19_branch2b"
bottom: "res4b19_branch2b"
name: "res4b19_branch2b_relu"
type: "ReLU"
}
layer {
bottom: "res4b19_branch2b"
top: "res4b19_branch2c"
name: "res4b19_branch2c"
type: "Convolution"
convolution_param {
num_output: 1024
kernel_size: 1
pad: 0
stride: 1
bias_term: false
}
}
layer {
bottom: "res4b19_branch2c"
top: "res4b19_branch2c"
name: "bn4b19_branch2c"
type: "BatchNorm"
batch_norm_param {
use_global_stats: true
}
}
layer {
bottom: "res4b19_branch2c"
top: "res4b19_branch2c"
name: "scale4b19_branch2c"
type: "Scale"
scale_param {
bias_term: true
}
}
layer {
bottom: "res4b18"
bottom: "res4b19_branch2c"
top: "res4b19"
name: "res4b19"
type: "Eltwise"
}
layer {
bottom: "res4b19"
top: "res4b19"
name: "res4b19_relu"
type: "ReLU"
}
layer {
bottom: "res4b19"
top: "res4b20_branch2a"
name: "res4b20_branch2a"
type: "Convolution"
convolution_param {
num_output: 256
kernel_size: 1
pad: 0
stride: 1
bias_term: false
}
}
layer {
bottom: "res4b20_branch2a"
top: "res4b20_branch2a"
name: "bn4b20_branch2a"
type: "BatchNorm"
batch_norm_param {
use_global_stats: true
}
}
layer {
bottom: "res4b20_branch2a"
top: "res4b20_branch2a"
name: "scale4b20_branch2a"
type: "Scale"
scale_param {
bias_term: true
}
}
layer {
top: "res4b20_branch2a"
bottom: "res4b20_branch2a"
name: "res4b20_branch2a_relu"
type: "ReLU"
}
layer {
bottom: "res4b20_branch2a"
top: "res4b20_branch2b"
name: "res4b20_branch2b"
type: "Convolution"
convolution_param {
num_output: 256
kernel_size: 3
pad: 1
stride: 1
bias_term: false
}
}
layer {
bottom: "res4b20_branch2b"
top: "res4b20_branch2b"
name: "bn4b20_branch2b"
type: "BatchNorm"
batch_norm_param {
use_global_stats: true
}
}
layer {
bottom: "res4b20_branch2b"
top: "res4b20_branch2b"
name: "scale4b20_branch2b"
type: "Scale"
scale_param {
bias_term: true
}
}
layer {
top: "res4b20_branch2b"
bottom: "res4b20_branch2b"
name: "res4b20_branch2b_relu"
type: "ReLU"
}
layer {
bottom: "res4b20_branch2b"
top: "res4b20_branch2c"
name: "res4b20_branch2c"
type: "Convolution"
convolution_param {
num_output: 1024
kernel_size: 1
pad: 0
stride: 1
bias_term: false
}
}
layer {
bottom: "res4b20_branch2c"
top: "res4b20_branch2c"
name: "bn4b20_branch2c"
type: "BatchNorm"
batch_norm_param {
use_global_stats: true
}
}
layer {
bottom: "res4b20_branch2c"
top: "res4b20_branch2c"
name: "scale4b20_branch2c"
type: "Scale"
scale_param {
bias_term: true
}
}
layer {
bottom: "res4b19"
bottom: "res4b20_branch2c"
top: "res4b20"
name: "res4b20"
type: "Eltwise"
}
layer {
bottom: "res4b20"
top: "res4b20"
name: "res4b20_relu"
type: "ReLU"
}
layer {
bottom: "res4b20"
top: "res4b21_branch2a"
name: "res4b21_branch2a"
type: "Convolution"
convolution_param {
num_output: 256
kernel_size: 1
pad: 0
stride: 1
bias_term: false
}
}
layer {
bottom: "res4b21_branch2a"
top: "res4b21_branch2a"
name: "bn4b21_branch2a"
type: "BatchNorm"
batch_norm_param {
use_global_stats: true
}
}
layer {
bottom: "res4b21_branch2a"
top: "res4b21_branch2a"
name: "scale4b21_branch2a"
type: "Scale"
scale_param {
bias_term: true
}
}
layer {
top: "res4b21_branch2a"
bottom: "res4b21_branch2a"
name: "res4b21_branch2a_relu"
type: "ReLU"
}
layer {
bottom: "res4b21_branch2a"
top: "res4b21_branch2b"
name: "res4b21_branch2b"
type: "Convolution"
convolution_param {
num_output: 256
kernel_size: 3
pad: 1
stride: 1
bias_term: false
}
}
layer {
bottom: "res4b21_branch2b"
top: "res4b21_branch2b"
name: "bn4b21_branch2b"
type: "BatchNorm"
batch_norm_param {
use_global_stats: true
}
}
layer {
bottom: "res4b21_branch2b"
top: "res4b21_branch2b"
name: "scale4b21_branch2b"
type: "Scale"
scale_param {
bias_term: true
}
}
layer {
top: "res4b21_branch2b"
bottom: "res4b21_branch2b"
name: "res4b21_branch2b_relu"
type: "ReLU"
}
layer {
bottom: "res4b21_branch2b"
top: "res4b21_branch2c"
name: "res4b21_branch2c"
type: "Convolution"
convolution_param {
num_output: 1024
kernel_size: 1
pad: 0
stride: 1
bias_term: false
}
}
layer {
bottom: "res4b21_branch2c"
top: "res4b21_branch2c"
name: "bn4b21_branch2c"
type: "BatchNorm"
batch_norm_param {
use_global_stats: true
}
}
layer {
bottom: "res4b21_branch2c"
top: "res4b21_branch2c"
name: "scale4b21_branch2c"
type: "Scale"
scale_param {
bias_term: true
}
}
layer {
bottom: "res4b20"
bottom: "res4b21_branch2c"
top: "res4b21"
name: "res4b21"
type: "Eltwise"
}
layer {
bottom: "res4b21"
top: "res4b21"
name: "res4b21_relu"
type: "ReLU"
}
layer {
bottom: "res4b21"
top: "res4b22_branch2a"
name: "res4b22_branch2a"
type: "Convolution"
convolution_param {
num_output: 256
kernel_size: 1
pad: 0
stride: 1
bias_term: false
}
}
layer {
bottom: "res4b22_branch2a"
top: "res4b22_branch2a"
name: "bn4b22_branch2a"
type: "BatchNorm"
batch_norm_param {
use_global_stats: true
}
}
layer {
bottom: "res4b22_branch2a"
top: "res4b22_branch2a"
name: "scale4b22_branch2a"
type: "Scale"
scale_param {
bias_term: true
}
}
layer {
top: "res4b22_branch2a"
bottom: "res4b22_branch2a"
name: "res4b22_branch2a_relu"
type: "ReLU"
}
layer {
bottom: "res4b22_branch2a"
top: "res4b22_branch2b"
name: "res4b22_branch2b"
type: "Convolution"
convolution_param {
num_output: 256
kernel_size: 3
pad: 1
stride: 1
bias_term: false
}
}
layer {
bottom: "res4b22_branch2b"
top: "res4b22_branch2b"
name: "bn4b22_branch2b"
type: "BatchNorm"
batch_norm_param {
use_global_stats: true
}
}
layer {
bottom: "res4b22_branch2b"
top: "res4b22_branch2b"
name: "scale4b22_branch2b"
type: "Scale"
scale_param {
bias_term: true
}
}
layer {
top: "res4b22_branch2b"
bottom: "res4b22_branch2b"
name: "res4b22_branch2b_relu"
type: "ReLU"
}
layer {
bottom: "res4b22_branch2b"
top: "res4b22_branch2c"
name: "res4b22_branch2c"
type: "Convolution"
convolution_param {
num_output: 1024
kernel_size: 1
pad: 0
stride: 1
bias_term: false
}
}
layer {
bottom: "res4b22_branch2c"
top: "res4b22_branch2c"
name: "bn4b22_branch2c"
type: "BatchNorm"
batch_norm_param {
use_global_stats: true
}
}
layer {
bottom: "res4b22_branch2c"
top: "res4b22_branch2c"
name: "scale4b22_branch2c"
type: "Scale"
scale_param {
bias_term: true
}
}
layer {
bottom: "res4b21"
bottom: "res4b22_branch2c"
top: "res4b22"
name: "res4b22"
type: "Eltwise"
}
layer {
bottom: "res4b22"
top: "res4b22"
name: "res4b22_relu"
type: "ReLU"
}
layer {
bottom: "res4b22"
top: "res5a_branch1"
name: "res5a_branch1"
type: "Convolution"
convolution_param {
num_output: 2048
kernel_size: 1
pad: 0
stride: 2
bias_term: false
}
}
layer {
bottom: "res5a_branch1"
top: "res5a_branch1"
name: "bn5a_branch1"
type: "BatchNorm"
batch_norm_param {
use_global_stats: true
}
}
layer {
bottom: "res5a_branch1"
top: "res5a_branch1"
name: "scale5a_branch1"
type: "Scale"
scale_param {
bias_term: true
}
}
layer {
bottom: "res4b22"
top: "res5a_branch2a"
name: "res5a_branch2a"
type: "Convolution"
convolution_param {
num_output: 512
kernel_size: 1
pad: 0
stride: 2
bias_term: false
}
}
layer {
bottom: "res5a_branch2a"
top: "res5a_branch2a"
name: "bn5a_branch2a"
type: "BatchNorm"
batch_norm_param {
use_global_stats: true
}
}
layer {
bottom: "res5a_branch2a"
top: "res5a_branch2a"
name: "scale5a_branch2a"
type: "Scale"
scale_param {
bias_term: true
}
}
layer {
top: "res5a_branch2a"
bottom: "res5a_branch2a"
name: "res5a_branch2a_relu"
type: "ReLU"
}
layer {
bottom: "res5a_branch2a"
top: "res5a_branch2b"
name: "res5a_branch2b"
type: "Convolution"
convolution_param {
num_output: 512
kernel_size: 3
pad: 1
stride: 1
bias_term: false
}
}
layer {
bottom: "res5a_branch2b"
top: "res5a_branch2b"
name: "bn5a_branch2b"
type: "BatchNorm"
batch_norm_param {
use_global_stats: true
}
}
layer {
bottom: "res5a_branch2b"
top: "res5a_branch2b"
name: "scale5a_branch2b"
type: "Scale"
scale_param {
bias_term: true
}
}
layer {
top: "res5a_branch2b"
bottom: "res5a_branch2b"
name: "res5a_branch2b_relu"
type: "ReLU"
}
layer {
bottom: "res5a_branch2b"
top: "res5a_branch2c"
name: "res5a_branch2c"
type: "Convolution"
convolution_param {
num_output: 2048
kernel_size: 1
pad: 0
stride: 1
bias_term: false
}
}
layer {
bottom: "res5a_branch2c"
top: "res5a_branch2c"
name: "bn5a_branch2c"
type: "BatchNorm"
batch_norm_param {
use_global_stats: true
}
}
layer {
bottom: "res5a_branch2c"
top: "res5a_branch2c"
name: "scale5a_branch2c"
type: "Scale"
scale_param {
bias_term: true
}
}
layer {
bottom: "res5a_branch1"
bottom: "res5a_branch2c"
top: "res5a"
name: "res5a"
type: "Eltwise"
}
layer {
bottom: "res5a"
top: "res5a"
name: "res5a_relu"
type: "ReLU"
}
layer {
bottom: "res5a"
top: "res5b_branch2a"
name: "res5b_branch2a"
type: "Convolution"
convolution_param {
num_output: 512
kernel_size: 1
pad: 0
stride: 1
bias_term: false
}
}
layer {
bottom: "res5b_branch2a"
top: "res5b_branch2a"
name: "bn5b_branch2a"
type: "BatchNorm"
batch_norm_param {
use_global_stats: true
}
}
layer {
bottom: "res5b_branch2a"
top: "res5b_branch2a"
name: "scale5b_branch2a"
type: "Scale"
scale_param {
bias_term: true
}
}
layer {
top: "res5b_branch2a"
bottom: "res5b_branch2a"
name: "res5b_branch2a_relu"
type: "ReLU"
}
layer {
bottom: "res5b_branch2a"
top: "res5b_branch2b"
name: "res5b_branch2b"
type: "Convolution"
convolution_param {
num_output: 512
kernel_size: 3
pad: 1
stride: 1
bias_term: false
}
}
layer {
bottom: "res5b_branch2b"
top: "res5b_branch2b"
name: "bn5b_branch2b"
type: "BatchNorm"
batch_norm_param {
use_global_stats: true
}
}
layer {
bottom: "res5b_branch2b"
top: "res5b_branch2b"
name: "scale5b_branch2b"
type: "Scale"
scale_param {
bias_term: true
}
}
layer {
top: "res5b_branch2b"
bottom: "res5b_branch2b"
name: "res5b_branch2b_relu"
type: "ReLU"
}
layer {
bottom: "res5b_branch2b"
top: "res5b_branch2c"
name: "res5b_branch2c"
type: "Convolution"
convolution_param {
num_output: 2048
kernel_size: 1
pad: 0
stride: 1
bias_term: false
}
}
layer {
bottom: "res5b_branch2c"
top: "res5b_branch2c"
name: "bn5b_branch2c"
type: "BatchNorm"
batch_norm_param {
use_global_stats: true
}
}
layer {
bottom: "res5b_branch2c"
top: "res5b_branch2c"
name: "scale5b_branch2c"
type: "Scale"
scale_param {
bias_term: true
}
}
layer {
bottom: "res5a"
bottom: "res5b_branch2c"
top: "res5b"
name: "res5b"
type: "Eltwise"
}
layer {
bottom: "res5b"
top: "res5b"
name: "res5b_relu"
type: "ReLU"
}
layer {
bottom: "res5b"
top: "res5c_branch2a"
name: "res5c_branch2a"
type: "Convolution"
convolution_param {
num_output: 512
kernel_size: 1
pad: 0
stride: 1
bias_term: false
}
}
layer {
bottom: "res5c_branch2a"
top: "res5c_branch2a"
name: "bn5c_branch2a"
type: "BatchNorm"
batch_norm_param {
use_global_stats: true
}
}
layer {
bottom: "res5c_branch2a"
top: "res5c_branch2a"
name: "scale5c_branch2a"
type: "Scale"
scale_param {
bias_term: true
}
}
layer {
top: "res5c_branch2a"
bottom: "res5c_branch2a"
name: "res5c_branch2a_relu"
type: "ReLU"
}
layer {
bottom: "res5c_branch2a"
top: "res5c_branch2b"
name: "res5c_branch2b"
type: "Convolution"
convolution_param {
num_output: 512
kernel_size: 3
pad: 1
stride: 1
bias_term: false
}
}
layer {
bottom: "res5c_branch2b"
top: "res5c_branch2b"
name: "bn5c_branch2b"
type: "BatchNorm"
batch_norm_param {
use_global_stats: true
}
}
layer {
bottom: "res5c_branch2b"
top: "res5c_branch2b"
name: "scale5c_branch2b"
type: "Scale"
scale_param {
bias_term: true
}
}
layer {
top: "res5c_branch2b"
bottom: "res5c_branch2b"
name: "res5c_branch2b_relu"
type: "ReLU"
}
layer {
bottom: "res5c_branch2b"
top: "res5c_branch2c"
name: "res5c_branch2c"
type: "Convolution"
convolution_param {
num_output: 2048
kernel_size: 1
pad: 0
stride: 1
bias_term: false
}
}
layer {
bottom: "res5c_branch2c"
top: "res5c_branch2c"
name: "bn5c_branch2c"
type: "BatchNorm"
batch_norm_param {
use_global_stats: true
}
}
layer {
bottom: "res5c_branch2c"
top: "res5c_branch2c"
name: "scale5c_branch2c"
type: "Scale"
scale_param {
bias_term: true
}
}
layer {
bottom: "res5b"
bottom: "res5c_branch2c"
top: "res5c"
name: "res5c"
type: "Eltwise"
}
layer {
bottom: "res5c"
top: "res5c"
name: "res5c_relu"
type: "ReLU"
}
## Get rmac regions with a RoiPooling layer. If batch size was 1, we end up with N_regions x D x pooled_h x pooled_w
layer {
name: "pooled_rois"
type: "ROIPooling"
bottom: "res5c"
bottom: "rois"
top: "pooled_rois"
roi_pooling_param {
pooled_w: 1
pooled_h: 1
spatial_scale: 0.03125 # 1/32
}
}
layer {
name: "pooled_rois/normalized"
type: "Normalize"
bottom: "pooled_rois"
top: "pooled_rois/normalized"
}
layer {
name: "pooled_rois/normalized_flat"
type: "Reshape"
reshape_param{
shape{
dim: 0
dim: 2048 # feat x spx (1) x spy (1)
dim: 1
dim: 1
}
}
bottom: "pooled_rois/normalized"
top: "pooled_rois/normalized_flat"
}
# Mean center done with a scaling (at 1) + shifting. The shifting needs to be copied into the model weights.
layer {
name: "pooled_rois/centered"
bottom: "pooled_rois/normalized_flat"
top: "pooled_rois/centered"
type: "Scale"
scale_param {
bias_term: true
filler {
type: "constant"
value: 1
}
bias_filler {
type: "constant"
value: 0
}
}
}
# And then the PCA, which is another FC layer
layer {
name: "pooled_rois/pca"
type: "InnerProduct"
inner_product_param {
num_output: 2048 # output PCA dimensionality
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0
}
}
bottom: "pooled_rois/centered"
top: "pooled_rois/pca"
}
# After the FC layers the size is now n_batches x d. We reshape to n_batches x d x 1 x 1 to L2 normalize again
layer {
name: "pooled_rois/pca/reshaped"
type: "Reshape"
reshape_param{
shape{
dim: 0
dim: 0
dim: 1
dim: 1
}
}
bottom: "pooled_rois/pca"
top: "pooled_rois/pca/reshaped"
}
layer {
name: "pooled_rois/pca/normalized"
type: "Normalize"
bottom: "pooled_rois/pca/reshaped"
top: "pooled_rois/pca/normalized"
}
layer {
name: "rmac"
type: "Python"
bottom: "pooled_rois/pca/normalized"
top: "rmac"
python_param {
module: 'custom_layers'
layer: 'AggregateLayer'
param_str: "{}"
}
}
## L2, one last time
layer {
name: "rmac/normalized"
type: "Normalize"
bottom: "rmac"
top: "rmac/normalized"
}
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment