Created
September 3, 2022 19:27
-
-
Save tschm/02c4f8629408c3088af8f00fe0c39590 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import time | |
import numpy as np | |
import cvxpy as cp | |
from mosek.fusion import Model, Domain, Expr, ObjectiveSense | |
def cvx_explicit(cov_factor, residual_var, F, mu, gamma, Lmax): | |
n, m = F.shape | |
w = cp.Variable(n) | |
f = cp.Variable(m) | |
ret = mu.T @ w | |
risk = cp.sum_squares( | |
np.transpose(np.linalg.cholesky(cov_factor)) @ f | |
) + cp.sum_squares(np.sqrt(residual_var) @ w) | |
problem = cp.Problem( | |
cp.Maximize(ret - gamma * risk), | |
[cp.sum(w) == 0, f == F.T @ w, cp.norm(w, 1) <= Lmax], | |
) | |
problem.solve() | |
return w.value | |
def cvx_implicit(cov_factor, residual_var, F, mu, gamma, Lmax): | |
n, m = F.shape | |
w = cp.Variable(n) | |
ret = mu.T @ w | |
risk = cp.sum_squares( | |
np.transpose(np.linalg.cholesky(cov_factor)) @ (F.T @ w) | |
) + cp.sum_squares(np.sqrt(residual_var) @ w) | |
problem = cp.Problem( | |
cp.Maximize(ret - gamma * risk), | |
[cp.sum(w) == 0, cp.norm(w, 1) <= Lmax], | |
) | |
problem.solve() | |
return w.value | |
# a case for monkey-patching? | |
def sum_squares(model, vector): | |
x = model.variable() | |
model.constraint(Expr.vstack(x, 0.5, vector), Domain.inRotatedQCone()) | |
return x | |
# a case for monkey-patching | |
def one_norm(model, vector): | |
p = model.variable(n, Domain.unbounded()) | |
model.constraint(Expr.hstack(p, vector), Domain.inQCone()) | |
return Expr.sum(p) | |
def mosek_implicit(cov_factor, residual_var, F, mu, gamma, Lmax): | |
n, m = F.shape | |
with Model("cash-neutral-factor") as M: | |
w = M.variable("w", n, Domain.unbounded()) | |
# position in factor space | |
f = Expr.mul(F.T, w) | |
expected_return = Expr.dot(mu, w) | |
# cash-neutral | |
M.constraint("cash-neutral", Expr.sum(w), Domain.equalsTo(0.0)) | |
# Leverage | |
M.constraint("leverage", one_norm(M, w), Domain.lessThan(Lmax)) | |
# Residual variances | |
res_var = sum_squares(M, Expr.dot(np.sqrt(residual_var), w)) | |
# Variance in factor space | |
factor_var = sum_squares( | |
M, Expr.mul(np.transpose(np.linalg.cholesky(cov_factor)), f) | |
) | |
risk = Expr.add(factor_var, res_var) | |
M.objective( | |
"obj", | |
ObjectiveSense.Maximize, | |
Expr.sub(expected_return, Expr.mul(gamma, risk)), | |
) | |
M.solve() | |
return w.level() | |
if __name__ == "__main__": | |
n = 2000 | |
m = 200 | |
mu = np.random.randn(n) | |
# construct a factor covariance matrix | |
Sigma_tilde = np.random.randn(m, m) | |
Sigma_tilde = Sigma_tilde.T.dot(Sigma_tilde) | |
# construct idiosyncratic variances | |
D = np.random.uniform(0, 0.9, size=n) | |
# construct the factor loadings | |
F = np.random.randn(n, m) | |
Lmax = 2 | |
gamma = 0.1 | |
# solve the problem with the explicit construction of the f variable | |
t = time.time() | |
for i in range(5): | |
w = cvx_explicit( | |
cov_factor=Sigma_tilde, residual_var=D, F=F, mu=mu, Lmax=Lmax, gamma=gamma | |
) | |
print(mu.T @ w) | |
print(time.time() - t) | |
# solve the problem but without the explicit construction of the f variable | |
t = time.time() | |
for i in range(5): | |
w = cvx_implicit( | |
cov_factor=Sigma_tilde, residual_var=D, F=F, mu=mu, Lmax=Lmax, gamma=gamma | |
) | |
print(mu.T @ w) | |
print(time.time() - t) | |
# solve the same problem with Mosek fusion | |
t = time.time() | |
for i in range(5): | |
w = mosek_implicit( | |
cov_factor=Sigma_tilde, residual_var=D, F=F, mu=mu, Lmax=Lmax, gamma=gamma | |
) | |
print(mu.T @ w) | |
print(time.time() - t) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Careful please. This is work in progress. We are solving a standard Markowitz problem with realistic dimensions, e.g. 2000 assets and 200 factors. The core idea is to project the weights (in asset space) down into the lower dimensional factor space.