Last active
April 17, 2017 21:03
-
-
Save tschm/497fed20ef19959cbc9bff229db123ee to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# construct a random SO(3) matrix | |
import numpy as np | |
# We construct a random element in SO(3) | |
def rand_so3(): | |
A = np.random.randn(3,3) | |
# normalize the first column | |
A[:,0]=A[:,0]/np.linalg.norm(A[:,0], 2) | |
# make the 2nd column orthogonal to first column | |
A[:,1]=A[:,1] - np.dot(A[:,0], A[:,1])*A[:,0] | |
# normalize the second column | |
A[:,1]=A[:,1]/np.linalg.norm(A[:,1], 2) | |
# The third column is just the cross product of the first two columns => det = 1 | |
A[:,2]=np.cross(A[:,0],A[:,1]) | |
return A | |
def fromSO3_fast(A): | |
q_r = 0.5*np.sqrt(1 + np.trace(A)) | |
q_i = (A[2,1]- A[1,2])/(4*q_r) | |
q_j = (A[0,2]- A[2,0])/(4*q_r) | |
q_k = (A[1,0]- A[0,1])/(4*q_r) | |
return Quaternion(np.array([q_r, q_i, q_j, q_k])) | |
class Quaternion(object): | |
def __init__(self, q): | |
assert len(q) == 4 | |
self.__q = q | |
@property | |
def conjugate(self): | |
return Quaternion(np.array([self.__q[0], -self.__q[1], -self.__q[2], -self.__q[3]])) | |
@property | |
def versor(self): | |
return Quaternion(self.__q/self.norm) | |
@property | |
def tuple(self): | |
return tuple(self.__q) | |
@property | |
def norm(self): | |
return np.linalg.norm(self.__q, 2) | |
def __repr__(self): | |
return "Q{0}".format(self.__q) | |
def __mul__(self, other): | |
w1, x1, y1, z1 = self.tuple | |
w2, x2, y2, z2 = other.tuple | |
w = w1 * w2 - x1 * x2 - y1 * y2 - z1 * z2 | |
x = w1 * x2 + x1 * w2 + y1 * z2 - z1 * y2 | |
y = w1 * y2 + y1 * w2 + z1 * x2 - x1 * z2 | |
z = w1 * z2 + z1 * w2 + x1 * y2 - y1 * x2 | |
return Quaternion(np.array([w, x, y, z])) | |
def rotate(self, x): | |
# construct the pure quaternion | |
z = Quaternion(np.array([0, x[0], x[1], x[2]])) | |
return (self.versor*z*self.conjugate.versor).vector | |
@property | |
def so3(self): | |
return np.apply_along_axis(self.rotate, 0, np.eye(3)) | |
@property | |
def vector(self): | |
return self.__q[1:] | |
@property | |
def real(self): | |
return self.__q[0] |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment