Created
December 14, 2022 17:39
-
-
Save tschnz/8070f1773b93ceb74eb3a12b2e549dbe to your computer and use it in GitHub Desktop.
Create centered & normalized 1D gaussian kernel aka normal distribution function aka probability density function
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
template <typename T> | |
T norm_pdf(T x, T mu, T sigma) | |
{ | |
static const T inv_sqrt_2pi = static_cast<T>(0.3989422804014327); // Precomputed 1/sqrt(2*PI) to avoid sqrt() | |
T a = (x - mu) / sigma; | |
return inv_sqrt_2pi / sigma * std::exp(-T(0.5) * a * a); | |
} | |
template <typename T> | |
void generateCenteredNormPdf(std::vector<T>& density) | |
{ | |
size_t n = density.size(); // Number of steps | |
T mu = static_cast<T>(0.0); // Mu is always 0 centered | |
T half_size = static_cast<T>(floor(n / 2.0)); // Half the size of our array | |
T sigma = static_cast<T>(half_size / 3.0); // Adjust our sigma dependent on the vector size to always stay within +/- 3 sigma | |
T sum = 0.0; // For normalization | |
T step_size = static_cast<T>(1.0); // How fast we run away from the center | |
for (size_t i = 0; i < n; i++) | |
{ | |
density[i] = norm_pdf(static_cast<T>(step_size * (i - half_size)), mu, sigma); | |
sum += density[i]; | |
} | |
// Make up for any energy loss during calculation (sum should already be very close to 1.0) | |
for (size_t j = 0; j < n; j++) | |
{ | |
density[j] /= sum; | |
} | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment