Created
June 26, 2016 03:46
-
-
Save tsouza/6fe443dc017dc4b961862ee43b86fb91 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import json | |
import moment | |
from elasticsearch import helpers | |
from elasticsearch import Elasticsearch | |
import Geohash | |
es = Elasticsearch("demo:9200") | |
def prettyPrint(doc): | |
print json.dumps(doc, indent=4, sort_keys=True) | |
writeBatchSize = 5000 | |
fromIndex = "bike-dc" | |
toIndex = "bike-dc_predict" | |
type="logs" | |
es.indices.delete(index=toIndex, ignore=[400, 404]) | |
day = 24 | |
predictionQuery = { | |
# "query": { | |
# "range": { | |
# "startDate": { | |
# "gte" : "2015-01-01", | |
# "lt" : "2015-02-01" | |
# } | |
# } | |
# }, | |
"aggs": { | |
"predict": { | |
"date_histogram": { | |
"field": "startDate", | |
"interval": "hour" | |
}, | |
"aggs": { | |
"count": { | |
"value_count": { | |
"field": "memberType" | |
} | |
}, | |
"prediction1": { | |
"moving_avg": { | |
"buckets_path": "count", | |
"window": day * 7 * 4, | |
"model": "holt_winters", | |
"minimize": True, | |
"settings": { | |
"type": "mult", | |
"period": day * 7, | |
"pad": True | |
} | |
} | |
}, | |
"prediction2": { | |
"moving_avg": { | |
"buckets_path": "count", | |
"window": day * 7 * 4, | |
"model": "holt_winters", | |
"minimize": True, | |
"settings": { | |
"type": "mult", | |
"period": day * 7, | |
"pad": True, | |
"alpha": 0.8, | |
"beta": 0.1, | |
"gamma": 0.8 | |
} | |
} | |
}, | |
"prediction3": { | |
"moving_avg": { | |
"buckets_path": "count", | |
"window": day * 7 * 4, | |
"model": "holt_winters", | |
"minimize": True, | |
"settings": { | |
"type": "mult", | |
"period": day * 7, | |
"pad": True, | |
"alpha": 0.8, | |
"beta": 0.8, | |
"gamma": 0.1 | |
} | |
} | |
} | |
} | |
} | |
} | |
} | |
res = es.search(index=fromIndex, search_type="count", body=predictionQuery) | |
buckets = res["aggregations"]["predict"]["buckets"] | |
bulkActions = [] | |
for bucket in buckets: | |
m = moment.unix(bucket["key"]).date | |
doc = { | |
"@timestamp": bucket["key_as_string"] | |
} | |
if ("count" in bucket): | |
doc["count"] = bucket["count"]["value"] | |
if ("prediction1" in bucket): | |
doc["prediction1"] = bucket["prediction1"]["value"] | |
doc['surprise1'] = max(0, 10.0 * (doc["count"] - doc["prediction1"]) / doc["prediction1"]) | |
if ("prediction2" in bucket): | |
doc["prediction2"] = bucket["prediction2"]["value"] | |
doc['surprise2'] = max(0, 10.0 * (doc["count"] - doc["prediction2"]) / doc["prediction2"]) | |
if ("prediction3" in bucket): | |
doc["prediction3"] = bucket["prediction3"]["value"] | |
doc['surprise3'] = max(0, 10.0 * (doc["count"] - doc["prediction3"]) / doc["prediction3"]) | |
action = { | |
"_index": toIndex, | |
"_type": "logs", | |
"_source": doc | |
} | |
bulkActions.append(action) | |
if (len(bulkActions) >= writeBatchSize): | |
helpers.bulk(es, bulkActions) | |
bulkActions = [] | |
if (len(bulkActions) > 0): | |
helpers.bulk(es, bulkActions) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment