Last active
July 23, 2017 09:00
-
-
Save tsu-nera/a885074ce7244bb3b35273234516f363 to your computer and use it in GitHub Desktop.
P, PD, PID制御
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import random | |
import numpy as np | |
import matplotlib.pyplot as plt | |
# ------------------------------------------------ | |
# | |
# this is the Robot class | |
# | |
class Robot(object): | |
def __init__(self, length=20.0): | |
""" | |
Creates robot and initializes location/orientation to 0, 0, 0. | |
""" | |
self.x = 0.0 | |
self.y = 0.0 | |
self.orientation = 0.0 | |
self.length = length | |
self.steering_noise = 0.0 | |
self.distance_noise = 0.0 | |
self.steering_drift = 0.0 | |
def set(self, x, y, orientation): | |
""" | |
Sets a robot coordinate. | |
""" | |
self.x = x | |
self.y = y | |
self.orientation = orientation % (2.0 * np.pi) | |
def set_noise(self, steering_noise, distance_noise): | |
""" | |
Sets the noise parameters. | |
""" | |
# makes it possible to change the noise parameters | |
# this is often useful in particle filters | |
self.steering_noise = steering_noise | |
self.distance_noise = distance_noise | |
def set_steering_drift(self, drift): | |
""" | |
Sets the systematical steering drift parameter | |
""" | |
self.steering_drift = drift | |
def move(self, steering, distance, tolerance=0.001, max_steering_angle=np.pi / 4.0): | |
""" | |
steering = front wheel steering angle, limited by max_steering_angle | |
distance = total distance driven, most be non-negative | |
""" | |
if steering > max_steering_angle: | |
steering = max_steering_angle | |
if steering < -max_steering_angle: | |
steering = -max_steering_angle | |
if distance < 0.0: | |
distance = 0.0 | |
# make a new copy | |
# res = Robot() | |
# res.length = self.length | |
# res.steering_noise = self.steering_noise | |
# res.distance_noise = self.distance_noise | |
# res.steering_drift = self.steering_drift | |
# apply noise | |
steering2 = random.gauss(steering, self.steering_noise) | |
distance2 = random.gauss(distance, self.distance_noise) | |
# apply steering drift | |
steering2 += self.steering_drift | |
# Execute motion | |
turn = np.tan(steering2) * distance2 / self.length | |
if abs(turn) < tolerance: | |
# approximate by straight line motion | |
self.x += distance2 * np.cos(self.orientation) | |
self.y += distance2 * np.sin(self.orientation) | |
self.orientation = (self.orientation + turn) % (2.0 * np.pi) | |
else: | |
# approximate bicycle model for motion | |
radius = distance2 / turn | |
cx = self.x - (np.sin(self.orientation) * radius) | |
cy = self.y + (np.cos(self.orientation) * radius) | |
self.orientation = (self.orientation + turn) % (2.0 * np.pi) | |
self.x = cx + (np.sin(self.orientation) * radius) | |
self.y = cy - (np.cos(self.orientation) * radius) | |
def __repr__(self): | |
return '[x=%.5f y=%.5f orient=%.5f]' % (self.x, self.y, self.orientation) | |
############## ADD / MODIFY CODE BELOW #################### | |
# ------------------------------------------------------------------------ | |
# | |
# run - does a single control run | |
# previous P controller | |
def run_p(robot, tau, n=100, speed=1.0): | |
x_trajectory = [] | |
y_trajectory = [] | |
for i in range(n): | |
cte = robot.y | |
steer = -tau * cte | |
robot.move(steer, speed) | |
x_trajectory.append(robot.x) | |
y_trajectory.append(robot.y) | |
return x_trajectory, y_trajectory | |
def run_pd(robot, tau_p, tau_d, n=100, speed=1.0): | |
x_trajectory = [] | |
y_trajectory = [] | |
cte = robot.y | |
for i in range(n): | |
cte_diff = robot.y - cte | |
cte = robot.y | |
steer = -tau_p*cte - tau_d*cte_diff | |
robot.move(steer, speed) | |
x_trajectory.append(robot.x) | |
y_trajectory.append(robot.y) | |
return x_trajectory, y_trajectory | |
def run_pid(robot, tau_p, tau_d, tau_i, n=100, speed=1.0): | |
x_trajectory = [] | |
y_trajectory = [] | |
cte = robot.y | |
cte_total = 0 | |
# TODO: your code here | |
for i in range(n): | |
cte_diff = robot.y - cte | |
cte = robot.y | |
cte_total += cte | |
steer = -tau_p*cte - tau_d*cte_diff - tau_i*cte_total | |
robot.move(steer, speed) | |
x_trajectory.append(robot.x) | |
y_trajectory.append(robot.y) | |
return x_trajectory, y_trajectory | |
robot = Robot() | |
robot.set(0, 1, 0) | |
x_trajectory, y_trajectory = run_p(robot, 0.20) | |
n = len(x_trajectory) | |
plt.plot(x_trajectory, y_trajectory, 'g', label='P controller') | |
plt.plot(x_trajectory, np.zeros(n), 'r', label='reference') | |
plt.legend() | |
plt.show() | |
robot = Robot() | |
robot.set(0, 1, 0) | |
x_trajectory, y_trajectory = run_pd(robot, 0.2, 3.0) | |
n = len(x_trajectory) | |
plt.plot(x_trajectory, y_trajectory, 'g', label='PD controller') | |
plt.plot(x_trajectory, np.zeros(n), 'r', label='reference') | |
plt.legend() | |
plt.show() | |
robot = Robot() | |
robot.set(0, 1, 0) | |
x_trajectory, y_trajectory = run_pid(robot, 0.2, 3.0, 0.004) | |
n = len(x_trajectory) | |
plt.plot(x_trajectory, y_trajectory, 'g', label='PID controller') | |
plt.plot(x_trajectory, np.zeros(n), 'r', label='reference') | |
plt.legend() | |
plt.show() |
Author
tsu-nera
commented
Jul 23, 2017
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment