Skip to content

Instantly share code, notes, and snippets.

ffmpeg -i in.mov -s 600x400 -pix_fmt rgb24 -r 10 -f gif - > out.gif
@ttezel
ttezel / download_popular_insta_photos.js
Last active October 17, 2016 09:02
Download instagram photos with >= N likes (run from an instagram user's profile page)
  • Login to instagram developers site and add http://localhost as a redirect API in your API client's settings
  • Navigate to https://www.instagram.com/oauth/authorize/?client_id=<CLIENT_ID>&redirect_uri=http://localhost&response_type=token
  • Get token from URL after redirect occurs back to http://localhost
/**
* @author Eugene Zatepyakin / http://inspirit.ru/
*
* this code is a rewrite from https://github.com/mtschirs/js-objectdetect implementation
* @author Martin Tschirsich / http://www.tu-darmstadt.de/~m_t
*/
(function(global) {
"use strict";
//
import json
import time
import ujson
NUM_OBJ_KEYS = 1000
NUM_RUNS = 1000000
obj = {}
for i in range(NUM_OBJ_KEYS):
obj[i] = 'foo'
@ttezel
ttezel / gist:6143316
Last active April 9, 2016 18:39
Elasticsearch fuzzy search scores the same for exact match and non-exact match
curl -XPOST 'http://localhost:9200/fuzzytest/' -d '
{
settings: {
index: {
analysis: {
analyzer: {
default: {
type: "custom",
tokenizer: "uax_url_email",
filter: [ "lowercase" ]
@ttezel
ttezel / extended_euclid.m
Created January 25, 2013 17:50
Extended Euclid Algo for finding the GCD of two integers. Works using Euclid's law: if `d` is the GCD of `a` and `b`, then there exists an `x` and `y` such that ```ax + by = d```
%{
Problem 7 (ii) - Extended Euclid
Input: positive integers a,b with a >= b >= 0
Output: integer array [ x,y,d ] such that
d = gcd(a,b) and ax + by = d
%}
function result = extended_Euclid (a, b)
if (b == 0)
@ttezel
ttezel / gcd-euclid.m
Last active December 11, 2015 17:38
gcd algorithm (extended-euclid)
%{
Problem 7 (ii) - extended-euclid function
Given two integers a and b, it finds the largest integer that
divides both of them - known as their greatest common divisor (gcd).
Input: integers a and b where a >= b >= 0
Output : gcd(a, b)
%}
function result = euclid (a, b)
@ttezel
ttezel / modexp.m
Last active May 10, 2022 20:29
Modular Exponentiation in Matlab (x ^ y mod n)
%{
Problem 7 (i): modexp function
Returns x ^ y mod n for x, y, and n > 1.
%}
function result = modexp (x, y, n)
%anything raised to 0th power = 1 so return 1
if (y == 0)
result = 1;
return;
end