Created
August 9, 2024 09:49
-
-
Save tuanlda78202/95d326430c4cb8645faacb8e42719049 to your computer and use it in GitHub Desktop.
Whisper v3
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import os | |
import csv | |
import torch | |
from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, pipeline | |
from tqdm import tqdm | |
def transcribe_audio_files(input_dir, output_csv): | |
device = "cuda:0" if torch.cuda.is_available() else "cpu" | |
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32 | |
model_id = "openai/whisper-large-v3" | |
model = AutoModelForSpeechSeq2Seq.from_pretrained( | |
model_id, torch_dtype=torch_dtype, low_cpu_mem_usage=True, use_safetensors=True | |
) | |
model.to(device) | |
processor = AutoProcessor.from_pretrained(model_id) | |
pipe = pipeline( | |
"automatic-speech-recognition", | |
model=model, | |
tokenizer=processor.tokenizer, | |
feature_extractor=processor.feature_extractor, | |
torch_dtype=torch_dtype, | |
device=device, | |
generate_kwargs={"language": "<|vi|>", "task": "transcribe"}, | |
) | |
audio_files = [ | |
f | |
for f in os.listdir(input_dir) | |
if f.endswith((".mp3", ".wav", ".flac", ".ogg")) | |
] | |
with open(output_csv, "w", newline="", encoding="utf-8") as csvfile: | |
csvwriter = csv.writer(csvfile) | |
csvwriter.writerow(["File", "Transcription"]) | |
for audio_file in tqdm(audio_files, desc="Transcribing files"): | |
file_path = os.path.join(input_dir, audio_file) | |
try: | |
result = pipe(file_path) | |
transcription = result["text"] | |
csvwriter.writerow([file_path, transcription]) | |
except Exception as e: | |
print(f"Error processing {file_path}: {str(e)}") | |
csvwriter.writerow([file_path, f"Error: {str(e)}"]) | |
print(f"Transcription complete. Results saved to {output_csv}") | |
if __name__ == "__main__": | |
input_directory = "tv360/" | |
output_csv_file = "whisper-l-v3.csv" | |
transcribe_audio_files(input_directory, output_csv_file) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment