Skip to content

Instantly share code, notes, and snippets.

@tucan9389
Created May 1, 2023 05:07
Show Gist options
  • Save tucan9389/e945b96653999460b107d4ad89bdc4df to your computer and use it in GitHub Desktop.
Save tucan9389/e945b96653999460b107d4ad89bdc4df to your computer and use it in GitHub Desktop.
{
"functions": [
{
"name": "@__inference_predict_3320",
"inputs": [
"%arg0",
"%arg1",
"%arg2",
"%arg3",
"%arg4",
"%arg5",
"%arg6",
"%arg7",
"%arg8",
"%arg9"
],
"inputTypes": [
"tensor<32x28x28x1xf32>",
"tensor<32x1xf32>",
"tensor<!tf.resource<tensor<5x5x1x32xf32>>>",
"tensor<!tf.resource<tensor<5x5x32x32xf32>>>",
"tensor<!tf.resource<tensor<1568x1024xf32>>>",
"tensor<!tf.resource<tensor<1024xf32>>>",
"tensor<!tf.resource<tensor<1024x10xf32>>>",
"tensor<!tf.resource<tensor<10xf32>>>",
"tensor<!tf.resource<tensor<f32>>>",
"tensor<!tf.resource<tensor<i64>>>"
],
"outputTypes": {
"0": {
"type": "tensor<f32>",
"attributes": {
"tf_saved_model.index_path": "[ ]"
}
}
},
"operations": [
{
"name": "mhlo.constant",
"attributes": {},
"outputs": [
"%0"
],
"outputTypes": [],
"isConstant": true
},
{
"name": "mhlo.constant",
"attributes": {},
"outputs": [
"%1"
],
"outputTypes": [],
"isConstant": true
},
{
"name": "mhlo.constant",
"attributes": {},
"outputs": [
"%2"
],
"outputTypes": [],
"isConstant": true
},
{
"name": "mhlo.constant",
"attributes": {},
"outputs": [
"%3"
],
"outputTypes": [],
"isConstant": true
},
{
"name": "mhlo.constant",
"attributes": {},
"outputs": [
"%4"
],
"outputTypes": [],
"isConstant": true
},
{
"name": "mhlo.constant",
"attributes": {},
"outputs": [
"%5"
],
"outputTypes": [],
"isConstant": true
},
{
"name": "mhlo.constant",
"attributes": {},
"outputs": [
"%6"
],
"outputTypes": [],
"isConstant": true
},
{
"name": "mhlo.constant",
"attributes": {},
"outputs": [
"%7"
],
"outputTypes": [],
"isConstant": true
},
{
"name": "mhlo.constant",
"attributes": {},
"outputs": [
"%8"
],
"outputTypes": [],
"isConstant": true
},
{
"name": "mhlo.constant",
"attributes": {},
"outputs": [
"%9"
],
"outputTypes": [],
"isConstant": true
},
{
"name": "mhlo.constant",
"attributes": {},
"outputs": [
"%10"
],
"outputTypes": [],
"isConstant": true
},
{
"name": "mhlo.constant",
"attributes": {},
"outputs": [
"%11"
],
"outputTypes": [],
"isConstant": true
},
{
"name": "mhlo.constant",
"attributes": {},
"outputs": [
"%12"
],
"outputTypes": [],
"isConstant": true
},
{
"name": "mhlo.constant",
"attributes": {},
"outputs": [
"%13"
],
"outputTypes": [],
"isConstant": true
},
{
"name": "tf.Cast",
"attributes": {
"Truncate": "false"
},
"inputs": [
"%arg2"
],
"inputTypes": [
"tensor<!tf.resource<tensor<5x5x1x32xf32>>>"
],
"outputs": [
"%14"
],
"outputTypes": [
"tensor<!tf.resource>"
],
"body": null
},
{
"name": "tf.Cast",
"attributes": {
"Truncate": "false"
},
"inputs": [
"%arg3"
],
"inputTypes": [
"tensor<!tf.resource<tensor<5x5x32x32xf32>>>"
],
"outputs": [
"%15"
],
"outputTypes": [
"tensor<!tf.resource>"
],
"body": null
},
{
"name": "tf.Cast",
"attributes": {
"Truncate": "false"
},
"inputs": [
"%arg4"
],
"inputTypes": [
"tensor<!tf.resource<tensor<1568x1024xf32>>>"
],
"outputs": [
"%16"
],
"outputTypes": [
"tensor<!tf.resource>"
],
"body": null
},
{
"name": "tf.Cast",
"attributes": {
"Truncate": "false"
},
"inputs": [
"%arg5"
],
"inputTypes": [
"tensor<!tf.resource<tensor<1024xf32>>>"
],
"outputs": [
"%17"
],
"outputTypes": [
"tensor<!tf.resource>"
],
"body": null
},
{
"name": "tf.Cast",
"attributes": {
"Truncate": "false"
},
"inputs": [
"%arg6"
],
"inputTypes": [
"tensor<!tf.resource<tensor<1024x10xf32>>>"
],
"outputs": [
"%18"
],
"outputTypes": [
"tensor<!tf.resource>"
],
"body": null
},
{
"name": "tf.Cast",
"attributes": {
"Truncate": "false"
},
"inputs": [
"%arg7"
],
"inputTypes": [
"tensor<!tf.resource<tensor<10xf32>>>"
],
"outputs": [
"%19"
],
"outputTypes": [
"tensor<!tf.resource>"
],
"body": null
},
{
"name": "tf.Cast",
"attributes": {
"Truncate": "false"
},
"inputs": [
"%arg9"
],
"inputTypes": [
"tensor<!tf.resource<tensor<i64>>>"
],
"outputs": [
"%20"
],
"outputTypes": [
"tensor<!tf.resource>"
],
"body": null
},
{
"name": "tf.ReadVariableOp",
"attributes": {
"device": ""
},
"inputs": [
"%15"
],
"inputTypes": [
"tensor<!tf.resource>"
],
"outputs": [
"%21"
],
"outputTypes": [
"tensor<5x5x32x32xf32>"
],
"body": null
},
{
"name": "tf.ReadVariableOp",
"attributes": {
"device": ""
},
"inputs": [
"%14"
],
"inputTypes": [
"tensor<!tf.resource>"
],
"outputs": [
"%22"
],
"outputTypes": [
"tensor<5x5x1x32xf32>"
],
"body": null
},
{
"name": "tf.ReadVariableOp",
"attributes": {
"device": ""
},
"inputs": [
"%19"
],
"inputTypes": [
"tensor<!tf.resource>"
],
"outputs": [
"%23"
],
"outputTypes": [
"tensor<10xf32>"
],
"body": null
},
{
"name": "tf.ReadVariableOp",
"attributes": {
"device": ""
},
"inputs": [
"%18"
],
"inputTypes": [
"tensor<!tf.resource>"
],
"outputs": [
"%24"
],
"outputTypes": [
"tensor<1024x10xf32>"
],
"body": null
},
{
"name": "tf.ReadVariableOp",
"attributes": {
"device": ""
},
"inputs": [
"%17"
],
"inputTypes": [
"tensor<!tf.resource>"
],
"outputs": [
"%25"
],
"outputTypes": [
"tensor<1024xf32>"
],
"body": null
},
{
"name": "tf.ReadVariableOp",
"attributes": {
"device": ""
},
"inputs": [
"%16"
],
"inputTypes": [
"tensor<!tf.resource>"
],
"outputs": [
"%26"
],
"outputTypes": [
"tensor<1568x1024xf32>"
],
"body": null
},
{
"name": "mhlo.convolution",
"attributes": {
"batch_group_count": "1 : i64",
"dimension_numbers": "{ input_batch_dimension = 0 : i64 , input_feature_dimension = 3 : i64 , input_spatial_dimensions = dense<[1, 2]> : tensor<2xi64> , kernel_input_feature_dimension = 2 : i64 , kernel_output_feature_dimension = 3 : i64 , kernel_spatial_dimensions = dense<[0, 1]> : tensor<2xi64> , output_batch_dimension = 0 : i64 , output_feature_dimension = 3 : i64 , output_spatial_dimensions = dense<[1, 2]> : tensor<2xi64> }",
"feature_group_count": "1 : i64",
"padding": "dense<2> : tensor<2x2xi64>",
"rhs_dilation": "dense<1> : tensor<2xi64>",
"window_strides": "dense<1> : tensor<2xi64>"
},
"inputs": [
"%arg0",
"%22"
],
"inputTypes": [
"tensor<32x28x28x1xf32>",
"tensor<5x5x1x32xf32>"
],
"outputs": [
"%27"
],
"outputTypes": [
"tensor<32x28x28x32xf32>"
],
"body": null
},
{
"name": "mhlo.maximum",
"attributes": {},
"inputs": [
"%27",
"%11"
],
"inputTypes": [
"tensor<32x28x28x32xf32>"
],
"outputs": [
"%28"
],
"outputTypes": [],
"body": null
},
{
"name": "mhlo.reduce_window",
"attributes": {
"padding": "dense<0> : tensor<4x2xi64>",
"window_dimensions": "dense<[1, 2, 2, 1]> : tensor<4xi64>",
"window_strides": "dense<[1, 2, 2, 1]> : tensor<4xi64>"
},
"inputs": [
"%28",
"%8"
],
"inputTypes": [
"tensor<32x28x28x32xf32>",
"tensor<f32>"
],
"outputs": [
"%29"
],
"outputTypes": [
"tensor<32x14x14x32xf32>"
],
"body": null
},
{
"name": "mhlo.convolution",
"attributes": {
"batch_group_count": "1 : i64",
"dimension_numbers": "{ input_batch_dimension = 0 : i64 , input_feature_dimension = 3 : i64 , input_spatial_dimensions = dense<[1, 2]> : tensor<2xi64> , kernel_input_feature_dimension = 2 : i64 , kernel_output_feature_dimension = 3 : i64 , kernel_spatial_dimensions = dense<[0, 1]> : tensor<2xi64> , output_batch_dimension = 0 : i64 , output_feature_dimension = 3 : i64 , output_spatial_dimensions = dense<[1, 2]> : tensor<2xi64> }",
"feature_group_count": "1 : i64",
"padding": "dense<2> : tensor<2x2xi64>",
"rhs_dilation": "dense<1> : tensor<2xi64>",
"window_strides": "dense<1> : tensor<2xi64>"
},
"inputs": [
"%29",
"%21"
],
"inputTypes": [
"tensor<32x14x14x32xf32>",
"tensor<5x5x32x32xf32>"
],
"outputs": [
"%30"
],
"outputTypes": [
"tensor<32x14x14x32xf32>"
],
"body": null
},
{
"name": "mhlo.maximum",
"attributes": {},
"inputs": [
"%30",
"%10"
],
"inputTypes": [
"tensor<32x14x14x32xf32>"
],
"outputs": [
"%31"
],
"outputTypes": [],
"body": null
},
{
"name": "mhlo.reduce_window",
"attributes": {
"padding": "dense<0> : tensor<4x2xi64>",
"window_dimensions": "dense<[1, 2, 2, 1]> : tensor<4xi64>",
"window_strides": "dense<[1, 2, 2, 1]> : tensor<4xi64>"
},
"inputs": [
"%31",
"%8"
],
"inputTypes": [
"tensor<32x14x14x32xf32>",
"tensor<f32>"
],
"outputs": [
"%32"
],
"outputTypes": [
"tensor<32x7x7x32xf32>"
],
"body": null
},
{
"name": "mhlo.reshape",
"attributes": {},
"inputs": [
"%32"
],
"inputTypes": [
"tensor<32x7x7x32xf32>"
],
"outputs": [
"%33"
],
"outputTypes": [
"tensor<32x1568xf32>"
],
"body": null
},
{
"name": "mhlo.dot",
"attributes": {},
"inputs": [
"%33",
"%26"
],
"inputTypes": [
"tensor<32x1568xf32>",
"tensor<1568x1024xf32>"
],
"outputs": [
"%34"
],
"outputTypes": [
"tensor<32x1024xf32>"
],
"body": null
},
{
"name": "mhlo.broadcast_in_dim",
"attributes": {
"broadcast_dimensions": "dense<1> : tensor<1xi64>"
},
"inputs": [
"%25"
],
"inputTypes": [
"tensor<1024xf32>"
],
"outputs": [
"%35"
],
"outputTypes": [
"tensor<32x1024xf32>"
],
"body": null
},
{
"name": "mhlo.add",
"attributes": {},
"inputs": [
"%34",
"%35"
],
"inputTypes": [
"tensor<32x1024xf32>"
],
"outputs": [
"%36"
],
"outputTypes": [],
"body": null
},
{
"name": "mhlo.maximum",
"attributes": {},
"inputs": [
"%36",
"%9"
],
"inputTypes": [
"tensor<32x1024xf32>"
],
"outputs": [
"%37"
],
"outputTypes": [],
"body": null
},
{
"name": "mhlo.dot",
"attributes": {},
"inputs": [
"%37",
"%24"
],
"inputTypes": [
"tensor<32x1024xf32>",
"tensor<1024x10xf32>"
],
"outputs": [
"%38"
],
"outputTypes": [
"tensor<32x10xf32>"
],
"body": null
},
{
"name": "mhlo.broadcast_in_dim",
"attributes": {
"broadcast_dimensions": "dense<1> : tensor<1xi64>"
},
"inputs": [
"%23"
],
"inputTypes": [
"tensor<10xf32>"
],
"outputs": [
"%39"
],
"outputTypes": [
"tensor<32x10xf32>"
],
"body": null
},
{
"name": "mhlo.add",
"attributes": {},
"inputs": [
"%38",
"%39"
],
"inputTypes": [
"tensor<32x10xf32>"
],
"outputs": [
"%40"
],
"outputTypes": [],
"body": null
},
{
"name": "tf.ReadVariableOp",
"attributes": {},
"inputs": [
"%arg8"
],
"inputTypes": [
"tensor<!tf.resource<tensor<f32>>>"
],
"outputs": [
"%41"
],
"outputTypes": [
"tensor<f32>"
],
"body": null
},
{
"name": "mhlo.convert",
"attributes": {},
"inputs": [
"%arg1"
],
"inputTypes": [
"tensor<32x1xf32>"
],
"outputs": [
"%42"
],
"outputTypes": [
"tensor<32x1xi64>"
],
"body": null
},
{
"name": "mhlo.reshape",
"attributes": {},
"inputs": [
"%42"
],
"inputTypes": [
"tensor<32x1xi64>"
],
"outputs": [
"%43"
],
"outputTypes": [
"tensor<32xi64>"
],
"body": null
},
{
"name": "mhlo.iota",
"attributes": {
"iota_dimension": "0 : i64"
},
"inputs": [],
"inputTypes": [],
"outputs": [
"%44"
],
"outputTypes": [
"tensor<10xi64>"
],
"body": null
},
{
"name": "mhlo.broadcast_in_dim",
"attributes": {
"broadcast_dimensions": "dense<1> : tensor<1xi64>"
},
"inputs": [
"%44"
],
"inputTypes": [
"tensor<10xi64>"
],
"outputs": [
"%45"
],
"outputTypes": [
"tensor<32x10xi64>"
],
"body": null
},
{
"name": "mhlo.broadcast_in_dim",
"attributes": {
"broadcast_dimensions": "dense<0> : tensor<1xi64>"
},
"inputs": [
"%43"
],
"inputTypes": [
"tensor<32xi64>"
],
"outputs": [
"%46"
],
"outputTypes": [
"tensor<32x10xi64>"
],
"body": null
},
{
"name": "mhlo.compare",
"attributes": {
"comparison_direction": "EQ"
},
"inputs": [
"%46",
"%45"
],
"inputTypes": [
"tensor<32x10xi64>",
"tensor<32x10xi64>"
],
"outputs": [
"%47"
],
"outputTypes": [
"tensor<32x10xi1>"
],
"body": null
},
{
"name": "mhlo.broadcast",
"attributes": {
"broadcast_sizes": "dense<[32, 10]> : tensor<2xi64>"
},
"inputs": [
"%3"
],
"inputTypes": [
"tensor<f32>"
],
"outputs": [
"%48"
],
"outputTypes": [
"tensor<32x10xf32>"
],
"body": null
},
{
"name": "mhlo.broadcast",
"attributes": {
"broadcast_sizes": "dense<[32, 10]> : tensor<2xi64>"
},
"inputs": [
"%12"
],
"inputTypes": [
"tensor<f32>"
],
"outputs": [
"%49"
],
"outputTypes": [
"tensor<32x10xf32>"
],
"body": null
},
{
"name": "mhlo.select",
"attributes": {},
"inputs": [
"%47",
"%48",
"%49"
],
"inputTypes": [
"tensor<32x10xi1>",
"tensor<32x10xf32>",
"tensor<32x10xf32>"
],
"outputs": [
"%50"
],
"outputTypes": [
"tensor<32x10xf32>"
],
"body": null
},
{
"name": "mhlo.compare",
"attributes": {
"comparison_direction": "LE"
},
"inputs": [
"%4",
"%43"
],
"inputTypes": [
"tensor<32xi64>",
"tensor<32xi64>"
],
"outputs": [
"%51"
],
"outputTypes": [
"tensor<32xi1>"
],
"body": null
},
{
"name": "mhlo.compare",
"attributes": {
"comparison_direction": "LT"
},
"inputs": [
"%43",
"%5"
],
"inputTypes": [
"tensor<32xi64>",
"tensor<32xi64>"
],
"outputs": [
"%52"
],
"outputTypes": [
"tensor<32xi1>"
],
"body": null
},
{
"name": "mhlo.and",
"attributes": {},
"inputs": [
"%51",
"%52"
],
"inputTypes": [
"tensor<32xi1>"
],
"outputs": [
"%53"
],
"outputTypes": [],
"body": null
},
{
"name": "mhlo.select",
"attributes": {},
"inputs": [
"%53",
"%6",
"%7"
],
"inputTypes": [
"tensor<32xi1>",
"tensor<32xf32>",
"tensor<32xf32>"
],
"outputs": [
"%54"
],
"outputTypes": [
"tensor<32xf32>"
],
"body": null
},
{
"name": "mhlo.reshape",
"attributes": {},
"inputs": [
"%54"
],
"inputTypes": [
"tensor<32xf32>"
],
"outputs": [
"%55"
],
"outputTypes": [
"tensor<32x1xf32>"
],
"body": null
},
{
"name": "mhlo.broadcast_in_dim",
"attributes": {
"broadcast_dimensions": "dense<[0, 1]> : tensor<2xi64>"
},
"inputs": [
"%55"
],
"inputTypes": [
"tensor<32x1xf32>"
],
"outputs": [
"%56"
],
"outputTypes": [
"tensor<32x10xf32>"
],
"body": null
},
{
"name": "mhlo.add",
"attributes": {},
"inputs": [
"%50",
"%56"
],
"inputTypes": [
"tensor<32x10xf32>"
],
"outputs": [
"%57"
],
"outputTypes": [],
"body": null
},
{
"name": "mhlo.negate",
"attributes": {},
"inputs": [
"%57"
],
"inputTypes": [
"tensor<32x10xf32>"
],
"outputs": [
"%58"
],
"outputTypes": [
"tensor<32x10xf32>"
],
"body": null
},
{
"name": "mhlo.reduce",
"attributes": {
"dimensions": "dense<1> : tensor<1xi64>"
},
"inputs": [
"%40",
"%8"
],
"inputTypes": [
"tensor<32x10xf32>",
"tensor<f32>"
],
"outputs": [
"%59"
],
"outputTypes": [
"tensor<32xf32>"
],
"body": null
},
{
"name": "mhlo.broadcast_in_dim",
"attributes": {
"broadcast_dimensions": "dense<0> : tensor<1xi64>"
},
"inputs": [
"%59"
],
"inputTypes": [
"tensor<32xf32>"
],
"outputs": [
"%60"
],
"outputTypes": [
"tensor<32x10xf32>"
],
"body": null
},
{
"name": "mhlo.subtract",
"attributes": {},
"inputs": [
"%40",
"%60"
],
"inputTypes": [
"tensor<32x10xf32>"
],
"outputs": [
"%61"
],
"outputTypes": [],
"body": null
},
{
"name": "mhlo.exponential",
"attributes": {},
"inputs": [
"%61"
],
"inputTypes": [
"tensor<32x10xf32>"
],
"outputs": [
"%62"
],
"outputTypes": [
"tensor<32x10xf32>"
],
"body": null
},
{
"name": "mhlo.reduce",
"attributes": {
"dimensions": "dense<1> : tensor<1xi64>"
},
"inputs": [
"%62",
"%12"
],
"inputTypes": [
"tensor<32x10xf32>",
"tensor<f32>"
],
"outputs": [
"%63"
],
"outputTypes": [
"tensor<32xf32>"
],
"body": null
},
{
"name": "mhlo.log",
"attributes": {},
"inputs": [
"%63"
],
"inputTypes": [
"tensor<32xf32>"
],
"outputs": [
"%64"
],
"outputTypes": [
"tensor<32xf32>"
],
"body": null
},
{
"name": "mhlo.broadcast_in_dim",
"attributes": {
"broadcast_dimensions": "dense<0> : tensor<1xi64>"
},
"inputs": [
"%64"
],
"inputTypes": [
"tensor<32xf32>"
],
"outputs": [
"%65"
],
"outputTypes": [
"tensor<32x10xf32>"
],
"body": null
},
{
"name": "mhlo.subtract",
"attributes": {},
"inputs": [
"%61",
"%65"
],
"inputTypes": [
"tensor<32x10xf32>"
],
"outputs": [
"%66"
],
"outputTypes": [],
"body": null
},
{
"name": "mhlo.multiply",
"attributes": {},
"inputs": [
"%58",
"%66"
],
"inputTypes": [
"tensor<32x10xf32>"
],
"outputs": [
"%67"
],
"outputTypes": [],
"body": null
},
{
"name": "mhlo.reduce",
"attributes": {
"dimensions": "dense<1> : tensor<1xi64>"
},
"inputs": [
"%67",
"%12"
],
"inputTypes": [
"tensor<32x10xf32>",
"tensor<f32>"
],
"outputs": [
"%68"
],
"outputTypes": [
"tensor<32xf32>"
],
"body": null
},
{
"name": "mhlo.reduce",
"attributes": {
"dimensions": "dense<1> : tensor<1xi64>"
},
"inputs": [
"%40",
"%8"
],
"inputTypes": [
"tensor<32x10xf32>",
"tensor<f32>"
],
"outputs": [
"%69"
],
"outputTypes": [
"tensor<32xf32>"
],
"body": null
},
{
"name": "mhlo.broadcast_in_dim",
"attributes": {
"broadcast_dimensions": "dense<0> : tensor<1xi64>"
},
"inputs": [
"%69"
],
"inputTypes": [
"tensor<32xf32>"
],
"outputs": [
"%70"
],
"outputTypes": [
"tensor<32x10xf32>"
],
"body": null
},
{
"name": "mhlo.subtract",
"attributes": {},
"inputs": [
"%40",
"%70"
],
"inputTypes": [
"tensor<32x10xf32>"
],
"outputs": [
"%71"
],
"outputTypes": [],
"body": null
},
{
"name": "mhlo.exponential",
"attributes": {},
"inputs": [
"%71"
],
"inputTypes": [
"tensor<32x10xf32>"
],
"outputs": [
"%72"
],
"outputTypes": [
"tensor<32x10xf32>"
],
"body": null
},
{
"name": "mhlo.reduce",
"attributes": {
"dimensions": "dense<1> : tensor<1xi64>"
},
"inputs": [
"%72",
"%12"
],
"inputTypes": [
"tensor<32x10xf32>",
"tensor<f32>"
],
"outputs": [
"%73"
],
"outputTypes": [
"tensor<32xf32>"
],
"body": null
},
{
"name": "mhlo.broadcast_in_dim",
"attributes": {
"broadcast_dimensions": "dense<0> : tensor<1xi64>"
},
"inputs": [
"%73"
],
"inputTypes": [
"tensor<32xf32>"
],
"outputs": [
"%74"
],
"outputTypes": [
"tensor<32x10xf32>"
],
"body": null
},
{
"name": "mhlo.divide",
"attributes": {},
"inputs": [
"%72",
"%74"
],
"inputTypes": [
"tensor<32x10xf32>"
],
"outputs": [
"%75"
],
"outputTypes": [],
"body": null
},
{
"name": "mhlo.subtract",
"attributes": {},
"inputs": [
"%75",
"%57"
],
"inputTypes": [
"tensor<32x10xf32>"
],
"outputs": [
"%76"
],
"outputTypes": [],
"body": null
},
{
"name": "mhlo.multiply",
"attributes": {},
"inputs": [
"%76",
"%0"
],
"inputTypes": [
"tensor<32x10xf32>"
],
"outputs": [
"%77"
],
"outputTypes": [],
"body": null
},
{
"name": "mhlo.reduce",
"attributes": {
"dimensions": "dense<0> : tensor<1xi64>"
},
"inputs": [
"%77",
"%12"
],
"inputTypes": [
"tensor<32x10xf32>",
"tensor<f32>"
],
"outputs": [
"%78"
],
"outputTypes": [
"tensor<10xf32>"
],
"body": null
},
{
"name": "mhlo.broadcast_in_dim",
"attributes": {
"broadcast_dimensions": "dense<> : tensor<0xi64>"
},
"inputs": [
"%41"
],
"inputTypes": [
"tensor<f32>"
],
"outputs": [
"%79"
],
"outputTypes": [
"tensor<10xf32>"
],
"body": null
},
{
"name": "mhlo.multiply",
"attributes": {},
"inputs": [
"%79",
"%78"
],
"inputTypes": [
"tensor<10xf32>"
],
"outputs": [
"%80"
],
"outputTypes": [],
"body": null
},
{
"name": "tf.ReadVariableOp",
"attributes": {},
"inputs": [
"%19"
],
"inputTypes": [
"tensor<!tf.resource>"
],
"outputs": [
"%81"
],
"outputTypes": [
"tensor<*xf32>"
],
"body": null
},
{
"name": "tf.Sub",
"attributes": {},
"inputs": [
"%81",
"%80"
],
"inputTypes": [
"tensor<*xf32>",
"tensor<10xf32>"
],
"outputs": [
"%82"
],
"outputTypes": [
"tensor<*xf32>"
],
"body": null
},
{
"name": "tf.AssignVariableOp",
"attributes": {},
"inputs": [
"%19",
"%82"
],
"inputTypes": [
"tensor<!tf.resource>",
"tensor<*xf32>"
],
"outputs": [],
"outputTypes": [],
"body": null
},
{
"name": "mhlo.transpose",
"attributes": {
"permutation": "dense<[1, 0]> : tensor<2xi64>"
},
"inputs": [
"%24"
],
"inputTypes": [
"tensor<1024x10xf32>"
],
"outputs": [
"%83"
],
"outputTypes": [
"tensor<10x1024xf32>"
],
"body": null
},
{
"name": "mhlo.dot",
"attributes": {},
"inputs": [
"%77",
"%83"
],
"inputTypes": [
"tensor<32x10xf32>",
"tensor<10x1024xf32>"
],
"outputs": [
"%84"
],
"outputTypes": [
"tensor<32x1024xf32>"
],
"body": null
},
{
"name": "mhlo.compare",
"attributes": {
"comparison_direction": "GT"
},
"inputs": [
"%37",
"%9"
],
"inputTypes": [
"tensor<32x1024xf32>",
"tensor<32x1024xf32>"
],
"outputs": [
"%85"
],
"outputTypes": [
"tensor<32x1024xi1>"
],
"body": null
},
{
"name": "mhlo.select",
"attributes": {},
"inputs": [
"%85",
"%84",
"%9"
],
"inputTypes": [
"tensor<32x1024xi1>",
"tensor<32x1024xf32>",
"tensor<32x1024xf32>"
],
"outputs": [
"%86"
],
"outputTypes": [
"tensor<32x1024xf32>"
],
"body": null
},
{
"name": "mhlo.reduce",
"attributes": {
"dimensions": "dense<0> : tensor<1xi64>"
},
"inputs": [
"%86",
"%12"
],
"inputTypes": [
"tensor<32x1024xf32>",
"tensor<f32>"
],
"outputs": [
"%87"
],
"outputTypes": [
"tensor<1024xf32>"
],
"body": null
},
{
"name": "mhlo.broadcast_in_dim",
"attributes": {
"broadcast_dimensions": "dense<> : tensor<0xi64>"
},
"inputs": [
"%41"
],
"inputTypes": [
"tensor<f32>"
],
"outputs": [
"%88"
],
"outputTypes": [
"tensor<1024xf32>"
],
"body": null
},
{
"name": "mhlo.multiply",
"attributes": {},
"inputs": [
"%88",
"%87"
],
"inputTypes": [
"tensor<1024xf32>"
],
"outputs": [
"%89"
],
"outputTypes": [],
"body": null
},
{
"name": "tf.ReadVariableOp",
"attributes": {},
"inputs": [
"%17"
],
"inputTypes": [
"tensor<!tf.resource>"
],
"outputs": [
"%90"
],
"outputTypes": [
"tensor<*xf32>"
],
"body": null
},
{
"name": "tf.Sub",
"attributes": {},
"inputs": [
"%90",
"%89"
],
"inputTypes": [
"tensor<*xf32>",
"tensor<1024xf32>"
],
"outputs": [
"%91"
],
"outputTypes": [
"tensor<*xf32>"
],
"body": null
},
{
"name": "tf.AssignVariableOp",
"attributes": {},
"inputs": [
"%17",
"%91"
],
"inputTypes": [
"tensor<!tf.resource>",
"tensor<*xf32>"
],
"outputs": [],
"outputTypes": [],
"body": null
},
{
"name": "mhlo.transpose",
"attributes": {
"permutation": "dense<[1, 0]> : tensor<2xi64>"
},
"inputs": [
"%26"
],
"inputTypes": [
"tensor<1568x1024xf32>"
],
"outputs": [
"%92"
],
"outputTypes": [
"tensor<1024x1568xf32>"
],
"body": null
},
{
"name": "mhlo.dot",
"attributes": {},
"inputs": [
"%86",
"%92"
],
"inputTypes": [
"tensor<32x1024xf32>",
"tensor<1024x1568xf32>"
],
"outputs": [
"%93"
],
"outputTypes": [
"tensor<32x1568xf32>"
],
"body": null
},
{
"name": "mhlo.reshape",
"attributes": {},
"inputs": [
"%93"
],
"inputTypes": [
"tensor<32x1568xf32>"
],
"outputs": [
"%94"
],
"outputTypes": [
"tensor<32x7x7x32xf32>"
],
"body": null
},
{
"name": "mhlo.select_and_scatter",
"attributes": {
"padding": "dense<0> : tensor<4x2xi64>",
"window_dimensions": "dense<[1, 2, 2, 1]> : tensor<4xi64>",
"window_strides": "dense<[1, 2, 2, 1]> : tensor<4xi64>"
},
"inputs": [
"%31",
"%94",
"%12"
],
"inputTypes": [
"tensor<32x14x14x32xf32>",
"tensor<32x7x7x32xf32>",
"tensor<f32>"
],
"outputs": [
"%95"
],
"outputTypes": [
"tensor<32x14x14x32xf32>"
],
"body": null
},
{
"name": "mhlo.compare",
"attributes": {
"comparison_direction": "GT"
},
"inputs": [
"%31",
"%10"
],
"inputTypes": [
"tensor<32x14x14x32xf32>",
"tensor<32x14x14x32xf32>"
],
"outputs": [
"%96"
],
"outputTypes": [
"tensor<32x14x14x32xi1>"
],
"body": null
},
{
"name": "mhlo.select",
"attributes": {},
"inputs": [
"%96",
"%95",
"%10"
],
"inputTypes": [
"tensor<32x14x14x32xi1>",
"tensor<32x14x14x32xf32>",
"tensor<32x14x14x32xf32>"
],
"outputs": [
"%97"
],
"outputTypes": [
"tensor<32x14x14x32xf32>"
],
"body": null
},
{
"name": "mhlo.convolution",
"attributes": {
"batch_group_count": "1 : i64",
"dimension_numbers": "{ input_batch_dimension = 3 : i64 , input_feature_dimension = 0 : i64 , input_spatial_dimensions = dense<[1, 2]> : tensor<2xi64> , kernel_input_feature_dimension = 0 : i64 , kernel_output_feature_dimension = 3 : i64 , kernel_spatial_dimensions = dense<[1, 2]> : tensor<2xi64> , output_batch_dimension = 2 : i64 , output_feature_dimension = 3 : i64 , output_spatial_dimensions = dense<[0, 1]> : tensor<2xi64> }",
"feature_group_count": "1 : i64",
"lhs_dilation": "dense<1> : tensor<2xi64>",
"padding": "dense<2> : tensor<2x2xi64>",
"rhs_dilation": "dense<1> : tensor<2xi64>",
"window_strides": "dense<1> : tensor<2xi64>"
},
"inputs": [
"%29",
"%97"
],
"inputTypes": [
"tensor<32x14x14x32xf32>",
"tensor<32x14x14x32xf32>"
],
"outputs": [
"%98"
],
"outputTypes": [
"tensor<5x5x32x32xf32>"
],
"body": null
},
{
"name": "mhlo.broadcast_in_dim",
"attributes": {
"broadcast_dimensions": "dense<> : tensor<0xi64>"
},
"inputs": [
"%41"
],
"inputTypes": [
"tensor<f32>"
],
"outputs": [
"%99"
],
"outputTypes": [
"tensor<5x5x32x32xf32>"
],
"body": null
},
{
"name": "mhlo.multiply",
"attributes": {},
"inputs": [
"%99",
"%98"
],
"inputTypes": [
"tensor<5x5x32x32xf32>"
],
"outputs": [
"%100"
],
"outputTypes": [],
"body": null
},
{
"name": "tf.ReadVariableOp",
"attributes": {},
"inputs": [
"%15"
],
"inputTypes": [
"tensor<!tf.resource>"
],
"outputs": [
"%101"
],
"outputTypes": [
"tensor<*xf32>"
],
"body": null
},
{
"name": "tf.Sub",
"attributes": {},
"inputs": [
"%101",
"%100"
],
"inputTypes": [
"tensor<*xf32>",
"tensor<5x5x32x32xf32>"
],
"outputs": [
"%102"
],
"outputTypes": [
"tensor<*xf32>"
],
"body": null
},
{
"name": "tf.AssignVariableOp",
"attributes": {},
"inputs": [
"%15",
"%102"
],
"inputTypes": [
"tensor<!tf.resource>",
"tensor<*xf32>"
],
"outputs": [],
"outputTypes": [],
"body": null
},
{
"name": "mhlo.reverse",
"attributes": {
"dimensions": "dense<[0, 1]> : tensor<2xi64>"
},
"inputs": [
"%21"
],
"inputTypes": [
"tensor<5x5x32x32xf32>"
],
"outputs": [
"%103"
],
"outputTypes": [
"tensor<5x5x32x32xf32>"
],
"body": null
},
{
"name": "mhlo.convolution",
"attributes": {
"batch_group_count": "1 : i64",
"dimension_numbers": "{ input_batch_dimension = 0 : i64 , input_feature_dimension = 3 : i64 , input_spatial_dimensions = dense<[1, 2]> : tensor<2xi64> , kernel_input_feature_dimension = 3 : i64 , kernel_output_feature_dimension = 2 : i64 , kernel_spatial_dimensions = dense<[0, 1]> : tensor<2xi64> , output_batch_dimension = 0 : i64 , output_feature_dimension = 3 : i64 , output_spatial_dimensions = dense<[1, 2]> : tensor<2xi64> }",
"feature_group_count": "1 : i64",
"lhs_dilation": "dense<1> : tensor<2xi64>",
"padding": "dense<2> : tensor<2x2xi64>",
"rhs_dilation": "dense<1> : tensor<2xi64>",
"window_strides": "dense<1> : tensor<2xi64>"
},
"inputs": [
"%97",
"%103"
],
"inputTypes": [
"tensor<32x14x14x32xf32>",
"tensor<5x5x32x32xf32>"
],
"outputs": [
"%104"
],
"outputTypes": [
"tensor<32x14x14x32xf32>"
],
"body": null
},
{
"name": "mhlo.select_and_scatter",
"attributes": {
"padding": "dense<0> : tensor<4x2xi64>",
"window_dimensions": "dense<[1, 2, 2, 1]> : tensor<4xi64>",
"window_strides": "dense<[1, 2, 2, 1]> : tensor<4xi64>"
},
"inputs": [
"%28",
"%104",
"%12"
],
"inputTypes": [
"tensor<32x28x28x32xf32>",
"tensor<32x14x14x32xf32>",
"tensor<f32>"
],
"outputs": [
"%105"
],
"outputTypes": [
"tensor<32x28x28x32xf32>"
],
"body": null
},
{
"name": "mhlo.compare",
"attributes": {
"comparison_direction": "GT"
},
"inputs": [
"%28",
"%11"
],
"inputTypes": [
"tensor<32x28x28x32xf32>",
"tensor<32x28x28x32xf32>"
],
"outputs": [
"%106"
],
"outputTypes": [
"tensor<32x28x28x32xi1>"
],
"body": null
},
{
"name": "mhlo.select",
"attributes": {},
"inputs": [
"%106",
"%105",
"%11"
],
"inputTypes": [
"tensor<32x28x28x32xi1>",
"tensor<32x28x28x32xf32>",
"tensor<32x28x28x32xf32>"
],
"outputs": [
"%107"
],
"outputTypes": [
"tensor<32x28x28x32xf32>"
],
"body": null
},
{
"name": "mhlo.convolution",
"attributes": {
"batch_group_count": "1 : i64",
"dimension_numbers": "{ input_batch_dimension = 3 : i64 , input_feature_dimension = 0 : i64 , input_spatial_dimensions = dense<[1, 2]> : tensor<2xi64> , kernel_input_feature_dimension = 0 : i64 , kernel_output_feature_dimension = 3 : i64 , kernel_spatial_dimensions = dense<[1, 2]> : tensor<2xi64> , output_batch_dimension = 2 : i64 , output_feature_dimension = 3 : i64 , output_spatial_dimensions = dense<[0, 1]> : tensor<2xi64> }",
"feature_group_count": "1 : i64",
"lhs_dilation": "dense<1> : tensor<2xi64>",
"padding": "dense<2> : tensor<2x2xi64>",
"rhs_dilation": "dense<1> : tensor<2xi64>",
"window_strides": "dense<1> : tensor<2xi64>"
},
"inputs": [
"%arg0",
"%107"
],
"inputTypes": [
"tensor<32x28x28x1xf32>",
"tensor<32x28x28x32xf32>"
],
"outputs": [
"%108"
],
"outputTypes": [
"tensor<5x5x1x32xf32>"
],
"body": null
},
{
"name": "mhlo.broadcast_in_dim",
"attributes": {
"broadcast_dimensions": "dense<> : tensor<0xi64>"
},
"inputs": [
"%41"
],
"inputTypes": [
"tensor<f32>"
],
"outputs": [
"%109"
],
"outputTypes": [
"tensor<5x5x1x32xf32>"
],
"body": null
},
{
"name": "mhlo.multiply",
"attributes": {},
"inputs": [
"%109",
"%108"
],
"inputTypes": [
"tensor<5x5x1x32xf32>"
],
"outputs": [
"%110"
],
"outputTypes": [],
"body": null
},
{
"name": "tf.ReadVariableOp",
"attributes": {},
"inputs": [
"%14"
],
"inputTypes": [
"tensor<!tf.resource>"
],
"outputs": [
"%111"
],
"outputTypes": [
"tensor<*xf32>"
],
"body": null
},
{
"name": "tf.Sub",
"attributes": {},
"inputs": [
"%111",
"%110"
],
"inputTypes": [
"tensor<*xf32>",
"tensor<5x5x1x32xf32>"
],
"outputs": [
"%112"
],
"outputTypes": [
"tensor<*xf32>"
],
"body": null
},
{
"name": "tf.AssignVariableOp",
"attributes": {},
"inputs": [
"%14",
"%112"
],
"inputTypes": [
"tensor<!tf.resource>",
"tensor<*xf32>"
],
"outputs": [],
"outputTypes": [],
"body": null
},
{
"name": "mhlo.transpose",
"attributes": {
"permutation": "dense<[1, 0]> : tensor<2xi64>"
},
"inputs": [
"%33"
],
"inputTypes": [
"tensor<32x1568xf32>"
],
"outputs": [
"%113"
],
"outputTypes": [
"tensor<1568x32xf32>"
],
"body": null
},
{
"name": "mhlo.dot",
"attributes": {},
"inputs": [
"%113",
"%86"
],
"inputTypes": [
"tensor<1568x32xf32>",
"tensor<32x1024xf32>"
],
"outputs": [
"%114"
],
"outputTypes": [
"tensor<1568x1024xf32>"
],
"body": null
},
{
"name": "mhlo.broadcast_in_dim",
"attributes": {
"broadcast_dimensions": "dense<> : tensor<0xi64>"
},
"inputs": [
"%41"
],
"inputTypes": [
"tensor<f32>"
],
"outputs": [
"%115"
],
"outputTypes": [
"tensor<1568x1024xf32>"
],
"body": null
},
{
"name": "mhlo.multiply",
"attributes": {},
"inputs": [
"%115",
"%114"
],
"inputTypes": [
"tensor<1568x1024xf32>"
],
"outputs": [
"%116"
],
"outputTypes": [],
"body": null
},
{
"name": "tf.ReadVariableOp",
"attributes": {},
"inputs": [
"%16"
],
"inputTypes": [
"tensor<!tf.resource>"
],
"outputs": [
"%117"
],
"outputTypes": [
"tensor<*xf32>"
],
"body": null
},
{
"name": "tf.Sub",
"attributes": {},
"inputs": [
"%117",
"%116"
],
"inputTypes": [
"tensor<*xf32>",
"tensor<1568x1024xf32>"
],
"outputs": [
"%118"
],
"outputTypes": [
"tensor<*xf32>"
],
"body": null
},
{
"name": "tf.AssignVariableOp",
"attributes": {},
"inputs": [
"%16",
"%118"
],
"inputTypes": [
"tensor<!tf.resource>",
"tensor<*xf32>"
],
"outputs": [],
"outputTypes": [],
"body": null
},
{
"name": "mhlo.transpose",
"attributes": {
"permutation": "dense<[1, 0]> : tensor<2xi64>"
},
"inputs": [
"%37"
],
"inputTypes": [
"tensor<32x1024xf32>"
],
"outputs": [
"%119"
],
"outputTypes": [
"tensor<1024x32xf32>"
],
"body": null
},
{
"name": "mhlo.dot",
"attributes": {},
"inputs": [
"%119",
"%77"
],
"inputTypes": [
"tensor<1024x32xf32>",
"tensor<32x10xf32>"
],
"outputs": [
"%120"
],
"outputTypes": [
"tensor<1024x10xf32>"
],
"body": null
},
{
"name": "mhlo.broadcast_in_dim",
"attributes": {
"broadcast_dimensions": "dense<> : tensor<0xi64>"
},
"inputs": [
"%41"
],
"inputTypes": [
"tensor<f32>"
],
"outputs": [
"%121"
],
"outputTypes": [
"tensor<1024x10xf32>"
],
"body": null
},
{
"name": "mhlo.multiply",
"attributes": {},
"inputs": [
"%121",
"%120"
],
"inputTypes": [
"tensor<1024x10xf32>"
],
"outputs": [
"%122"
],
"outputTypes": [],
"body": null
},
{
"name": "tf.ReadVariableOp",
"attributes": {},
"inputs": [
"%18"
],
"inputTypes": [
"tensor<!tf.resource>"
],
"outputs": [
"%123"
],
"outputTypes": [
"tensor<*xf32>"
],
"body": null
},
{
"name": "tf.Sub",
"attributes": {},
"inputs": [
"%123",
"%122"
],
"inputTypes": [
"tensor<*xf32>",
"tensor<1024x10xf32>"
],
"outputs": [
"%124"
],
"outputTypes": [
"tensor<*xf32>"
],
"body": null
},
{
"name": "tf.AssignVariableOp",
"attributes": {},
"inputs": [
"%18",
"%124"
],
"inputTypes": [
"tensor<!tf.resource>",
"tensor<*xf32>"
],
"outputs": [],
"outputTypes": [],
"body": null
},
{
"name": "tf.ReadVariableOp",
"attributes": {},
"inputs": [
"%20"
],
"inputTypes": [
"tensor<!tf.resource>"
],
"outputs": [
"%125"
],
"outputTypes": [
"tensor<*xi64>"
],
"body": null
},
{
"name": "tf.AddV2",
"attributes": {},
"inputs": [
"%125",
"%2"
],
"inputTypes": [
"tensor<*xi64>",
"tensor<i64>"
],
"outputs": [
"%126"
],
"outputTypes": [
"tensor<*xi64>"
],
"body": null
},
{
"name": "tf.AssignVariableOp",
"attributes": {},
"inputs": [
"%20",
"%126"
],
"inputTypes": [
"tensor<!tf.resource>",
"tensor<*xi64>"
],
"outputs": [],
"outputTypes": [],
"body": null
},
{
"name": "mhlo.reduce",
"attributes": {
"dimensions": "dense<0> : tensor<1xi64>"
},
"inputs": [
"%68",
"%12"
],
"inputTypes": [
"tensor<32xf32>",
"tensor<f32>"
],
"outputs": [
"%127"
],
"outputTypes": [
"tensor<f32>"
],
"body": null
},
{
"name": "mhlo.divide",
"attributes": {},
"inputs": [
"%127",
"%1"
],
"inputTypes": [
"tensor<f32>"
],
"outputs": [
"%128"
],
"outputTypes": [],
"body": null
},
{
"name": "mhlo.select",
"attributes": {},
"inputs": [
"%13",
"%12",
"%128"
],
"inputTypes": [
"tensor<i1>",
"tensor<f32>",
"tensor<f32>"
],
"outputs": [
"%129"
],
"outputTypes": [
"tensor<f32>"
],
"body": null
},
{
"name": "return",
"attributes": {},
"inputs": [
"%129"
],
"inputTypes": [
"tensor<f32>"
],
"outputs": [],
"outputTypes": [],
"body": null
}
]
}
],
"operations": [
{
"name": "tf_saved_model.global_tensor",
"attributes": {
"is_mutable": "is_mutable",
"sym_name": "__sm_node4__optimizer.iter",
"tf_saved_model.exported_names": "[ ]",
"type": "tensor<i64>",
"value": "dense<0> : tensor<i64>"
},
"inputs": [],
"inputTypes": [],
"outputs": [],
"outputTypes": [],
"body": null
},
{
"name": "tf_saved_model.global_tensor",
"attributes": {
"sym_name": "__sm_node6__optimizer.learning_rate",
"tf_saved_model.exported_names": "[ ]",
"type": "tensor<f32>",
"value": "dense<0.00999999977> : tensor<f32>"
},
"inputs": [],
"inputTypes": [],
"outputs": [],
"outputTypes": [],
"body": null
},
{
"name": "tf_saved_model.global_tensor",
"attributes": {
"is_mutable": "is_mutable",
"sym_name": "__sm_node17__model.conv1.kernel",
"tf_saved_model.exported_names": "[ ]",
"type": "tensor<5x5x1x32xf32>",
"value": "dense<\"\"> : tensor<5x5x1x32xf32>"
},
"inputs": [],
"inputTypes": [],
"outputs": [],
"outputTypes": [],
"body": null
},
{
"name": "tf_saved_model.global_tensor",
"attributes": {
"is_mutable": "is_mutable",
"sym_name": "__sm_node26__model.conv2.kernel",
"tf_saved_model.exported_names": "[ ]",
"type": "tensor<5x5x32x32xf32>",
"value": "dense<\"\"> : tensor<5x5x32x32xf32>"
},
"inputs": [],
"inputTypes": [],
"outputs": [],
"outputTypes": [],
"body": null
},
{
"name": "tf_saved_model.global_tensor",
"attributes": {
"is_mutable": "is_mutable",
"sym_name": "__sm_node39__model.dense1.kernel",
"tf_saved_model.exported_names": "[ ]",
"type": "tensor<1568x1024xf32>",
"value": "dense<\"\"> : tensor<1568x1024xf32>"
},
"inputs": [],
"inputTypes": [],
"outputs": [],
"outputTypes": [],
"body": null
},
{
"name": "tf_saved_model.global_tensor",
"attributes": {
"is_mutable": "is_mutable",
"sym_name": "__sm_node40__model.dense1.bias",
"tf_saved_model.exported_names": "[ ]",
"type": "tensor<1024xf32>",
"value": "dense<0.000000e+00> : tensor<1024xf32>"
},
"inputs": [],
"inputTypes": [],
"outputs": [],
"outputTypes": [],
"body": null
},
{
"name": "tf_saved_model.global_tensor",
"attributes": {
"is_mutable": "is_mutable",
"sym_name": "__sm_node49__model.dense2.kernel",
"tf_saved_model.exported_names": "[ ]",
"type": "tensor<1024x10xf32>",
"value": "dense<\"\"> : tensor<1024x10xf32>"
},
"inputs": [],
"inputTypes": [],
"outputs": [],
"outputTypes": [],
"body": null
},
{
"name": "tf_saved_model.global_tensor",
"attributes": {
"is_mutable": "is_mutable",
"sym_name": "__sm_node50__model.dense2.bias",
"tf_saved_model.exported_names": "[ ]",
"type": "tensor<10xf32>",
"value": "dense<0.000000e+00> : tensor<10xf32>"
},
"inputs": [],
"inputTypes": [],
"outputs": [],
"outputTypes": [],
"body": null
}
],
"attributes": {
"tf.versions": "{ bad_consumers = [ ] , min_consumer = 12 : i32 , producer = 440 : i32 }",
"tf_saved_model.semantics": "tf_saved_model.semantics"
}
}
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment