Created
March 11, 2022 08:04
-
-
Save tuna2134/257b4b8f9a3098c122c62ef48d24120b to your computer and use it in GitHub Desktop.
dogorcat.ipynb
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
{ | |
"nbformat": 4, | |
"nbformat_minor": 0, | |
"metadata": { | |
"colab": { | |
"name": "dogorcat.ipynb", | |
"provenance": [], | |
"authorship_tag": "ABX9TyODZvkuTBRFLT7Na92l73SA", | |
"include_colab_link": true | |
}, | |
"kernelspec": { | |
"name": "python3", | |
"display_name": "Python 3" | |
}, | |
"language_info": { | |
"name": "python" | |
} | |
}, | |
"cells": [ | |
{ | |
"cell_type": "markdown", | |
"metadata": { | |
"id": "view-in-github", | |
"colab_type": "text" | |
}, | |
"source": [ | |
"<a href=\"https://colab.research.google.com/gist/tuna2134/257b4b8f9a3098c122c62ef48d24120b/dogorcat.ipynb\" target=\"_parent\"><img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\"/></a>" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"source": [ | |
"!pip install bing-image-downloader" | |
], | |
"metadata": { | |
"id": "QdMF9Ik72Zaf" | |
}, | |
"execution_count": null, | |
"outputs": [] | |
}, | |
{ | |
"cell_type": "code", | |
"source": [ | |
"from bing_image_downloader import downloader\n", | |
"\n", | |
"for i in [\"cat\", \"dog\"]:\n", | |
" downloader.download(i, limit=100, output_dir='images/', adult_filter_off=True, force_replace=False, timeout=60, verbose=True)" | |
], | |
"metadata": { | |
"id": "vSeHMqTP2itB" | |
}, | |
"execution_count": null, | |
"outputs": [] | |
}, | |
{ | |
"cell_type": "code", | |
"source": [ | |
"!pip install tensorflow-hub" | |
], | |
"metadata": { | |
"id": "fSiupoyd3f2p" | |
}, | |
"execution_count": null, | |
"outputs": [] | |
}, | |
{ | |
"cell_type": "code", | |
"source": [ | |
"from glob import glob\n", | |
"from PIL import Image\n", | |
"\n", | |
"for i in glob(\"images/*\"):\n", | |
" for p in glob(f\"{i}/*\"):\n", | |
" image = Image.open(p)\n", | |
" image.resize((192, 192)).save(p)" | |
], | |
"metadata": { | |
"id": "XQpUzdeS399Z" | |
}, | |
"execution_count": 37, | |
"outputs": [] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 62, | |
"metadata": { | |
"id": "d8ECPZXOxR4s" | |
}, | |
"outputs": [], | |
"source": [ | |
"from tensorflow import keras\n", | |
"import tensorflow as tf\n", | |
"import tensorflow_hub as hub\n", | |
"import numpy as np" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"source": [ | |
"model = keras.models.Sequential([\n", | |
" hub.KerasLayer(\"https://tfhub.dev/google/imagenet/mobilenet_v1_100_192/classification/5\")\n", | |
"])\n", | |
"model.build([None, 192, 192, 3])\n", | |
"x_label = []\n", | |
"y_label = []\n", | |
"for i in glob(\"images/*\"):\n", | |
" for p in glob(f\"{i}/*\"):\n", | |
" if i.startswith(\"images/dogs\"):\n", | |
" y_label.append(1)\n", | |
" else:\n", | |
" y_label.append(2)\n", | |
" img_raw = tf.io.read_file(p)\n", | |
" img_tensor = tf.image.decode_image(img_raw)\n", | |
" x_label.append(img_tensor)\n", | |
"\n", | |
"model.compile(optimizer='adam', \n", | |
" loss='sparse_categorical_crossentropy',\n", | |
" metrics=['accuracy'])\n", | |
"model.fit(np.array(x_label), np.array(y_label))" | |
], | |
"metadata": { | |
"colab": { | |
"base_uri": "https://localhost:8080/", | |
"height": 388 | |
}, | |
"id": "gjekMt7mxgjA", | |
"outputId": "58dc1f0e-fe55-4c49-b931-71fb11afbe4c" | |
}, | |
"execution_count": 71, | |
"outputs": [ | |
{ | |
"output_type": "stream", | |
"name": "stderr", | |
"text": [ | |
"/usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py:20: VisibleDeprecationWarning: Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray.\n" | |
] | |
}, | |
{ | |
"output_type": "error", | |
"ename": "ValueError", | |
"evalue": "ignored", | |
"traceback": [ | |
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", | |
"\u001b[0;31mValueError\u001b[0m Traceback (most recent call last)", | |
"\u001b[0;32m<ipython-input-71-fe0264731137>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m()\u001b[0m\n\u001b[1;32m 18\u001b[0m \u001b[0mloss\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m'sparse_categorical_crossentropy'\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 19\u001b[0m metrics=['accuracy'])\n\u001b[0;32m---> 20\u001b[0;31m \u001b[0mmodel\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mfit\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mnp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0marray\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mx_label\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mnp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0marray\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0my_label\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", | |
"\u001b[0;32m/usr/local/lib/python3.7/dist-packages/keras/utils/traceback_utils.py\u001b[0m in \u001b[0;36merror_handler\u001b[0;34m(*args, **kwargs)\u001b[0m\n\u001b[1;32m 65\u001b[0m \u001b[0;32mexcept\u001b[0m \u001b[0mException\u001b[0m \u001b[0;32mas\u001b[0m \u001b[0me\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0;31m# pylint: disable=broad-except\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 66\u001b[0m \u001b[0mfiltered_tb\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0m_process_traceback_frames\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0me\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m__traceback__\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 67\u001b[0;31m \u001b[0;32mraise\u001b[0m \u001b[0me\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mwith_traceback\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mfiltered_tb\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;32mfrom\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 68\u001b[0m \u001b[0;32mfinally\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 69\u001b[0m \u001b[0;32mdel\u001b[0m \u001b[0mfiltered_tb\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", | |
"\u001b[0;32m/usr/local/lib/python3.7/dist-packages/tensorflow/python/framework/constant_op.py\u001b[0m in \u001b[0;36mconvert_to_eager_tensor\u001b[0;34m(value, ctx, dtype)\u001b[0m\n\u001b[1;32m 100\u001b[0m \u001b[0mdtype\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mdtypes\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mas_dtype\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mdtype\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mas_datatype_enum\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 101\u001b[0m \u001b[0mctx\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mensure_initialized\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 102\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mops\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mEagerTensor\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mvalue\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mctx\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdevice_name\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mdtype\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 103\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 104\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n", | |
"\u001b[0;31mValueError\u001b[0m: Failed to convert a NumPy array to a Tensor (Unsupported object type tensorflow.python.framework.ops.EagerTensor)." | |
] | |
} | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"source": [ | |
"" | |
], | |
"metadata": { | |
"id": "30nCRnPC-l06" | |
}, | |
"execution_count": null, | |
"outputs": [] | |
} | |
] | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment