Created
June 7, 2016 20:39
-
-
Save tuokri/e14953d2c1e6e2ea8179e2a4a3d0d23d to your computer and use it in GitHub Desktop.
fizzbuzz
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import numpy as np | |
import tensorflow as tf | |
def binary_encode(i, num_digits): | |
return np.array([i >> d & 1 for d in range(num_digits)]) | |
def fizz_buzz_encode(i): | |
if i % 15 == 0: return np.array([0, 0, 0, 1]) | |
elif i % 5 == 0: return np.array([0, 0, 1, 0]) | |
elif i % 3 == 0: return np.array([0, 1, 0, 0]) | |
else: return np.array([1, 0, 0, 0]) | |
NUM_DIGITS = 10 | |
trX = np.array([binary_encode(i, NUM_DIGITS) for i in range(101, 2 ** NUM_DIGITS)]) | |
trY = np.array([fizz_buzz_encode(i) for i in range(101, 2 ** NUM_DIGITS)]) | |
NUM_HIDDEN = 100 | |
X = tf.placeholder("float", [None, NUM_DIGITS]) | |
Y = tf.placeholder("float", [None, 4]) | |
def init_weights(shape): | |
return tf.Variable(tf.random_normal(shape, stddev=0.01)) | |
w_h = init_weights([NUM_DIGITS, NUM_HIDDEN]) | |
w_o = init_weights([NUM_HIDDEN, 4]) | |
def model(X, w_h, w_o): | |
h = tf.nn.relu(tf.matmul(X, w_h)) | |
return tf.matmul(h, w_o) | |
py_x = model(X, w_h, w_o) | |
cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(py_x, Y)) | |
train_op = tf.train.GradientDescentOptimizer(0.05).minimize(cost) | |
predict_op = tf.argmax(py_x, 1) | |
def fizz_buzz(i, prediction): | |
return [str(i), "fizz", "buzz", "fizzbuzz"][prediction] | |
with tf.Session() as sess: | |
tf.initialize_all_variables().run() | |
for epoch in range(10000): | |
p = np.random.permutation(range(len(trX))) | |
trX, trY = trX[p], trY[p] | |
BATCH_SIZE = 128 | |
for start in range(0, len(trX), BATCH_SIZE): | |
end = start + BATCH_SIZE | |
sess.run(train_op, feed_dict={X: trX[start:end], Y: trY[start:end]}) | |
print(epoch, np.mean(np.argmax(trY, axis=1) == | |
sess.run(predict_op, feed_dict={X: trX, Y: trY}))) | |
numbers = np.arange(1, 101) | |
teX = np.transpose(binary_encode(numbers, NUM_DIGITS)) | |
teY = sess.run(predict_op, feed_dict={X: teX}) | |
output = np.vectorize(fizz_buzz)(numbers, teY) | |
print(output) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment