Skip to content

Instantly share code, notes, and snippets.

@tuokri
Created June 7, 2016 20:39
Show Gist options
  • Save tuokri/e14953d2c1e6e2ea8179e2a4a3d0d23d to your computer and use it in GitHub Desktop.
Save tuokri/e14953d2c1e6e2ea8179e2a4a3d0d23d to your computer and use it in GitHub Desktop.
fizzbuzz
import numpy as np
import tensorflow as tf
def binary_encode(i, num_digits):
return np.array([i >> d & 1 for d in range(num_digits)])
def fizz_buzz_encode(i):
if i % 15 == 0: return np.array([0, 0, 0, 1])
elif i % 5 == 0: return np.array([0, 0, 1, 0])
elif i % 3 == 0: return np.array([0, 1, 0, 0])
else: return np.array([1, 0, 0, 0])
NUM_DIGITS = 10
trX = np.array([binary_encode(i, NUM_DIGITS) for i in range(101, 2 ** NUM_DIGITS)])
trY = np.array([fizz_buzz_encode(i) for i in range(101, 2 ** NUM_DIGITS)])
NUM_HIDDEN = 100
X = tf.placeholder("float", [None, NUM_DIGITS])
Y = tf.placeholder("float", [None, 4])
def init_weights(shape):
return tf.Variable(tf.random_normal(shape, stddev=0.01))
w_h = init_weights([NUM_DIGITS, NUM_HIDDEN])
w_o = init_weights([NUM_HIDDEN, 4])
def model(X, w_h, w_o):
h = tf.nn.relu(tf.matmul(X, w_h))
return tf.matmul(h, w_o)
py_x = model(X, w_h, w_o)
cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(py_x, Y))
train_op = tf.train.GradientDescentOptimizer(0.05).minimize(cost)
predict_op = tf.argmax(py_x, 1)
def fizz_buzz(i, prediction):
return [str(i), "fizz", "buzz", "fizzbuzz"][prediction]
with tf.Session() as sess:
tf.initialize_all_variables().run()
for epoch in range(10000):
p = np.random.permutation(range(len(trX)))
trX, trY = trX[p], trY[p]
BATCH_SIZE = 128
for start in range(0, len(trX), BATCH_SIZE):
end = start + BATCH_SIZE
sess.run(train_op, feed_dict={X: trX[start:end], Y: trY[start:end]})
print(epoch, np.mean(np.argmax(trY, axis=1) ==
sess.run(predict_op, feed_dict={X: trX, Y: trY})))
numbers = np.arange(1, 101)
teX = np.transpose(binary_encode(numbers, NUM_DIGITS))
teY = sess.run(predict_op, feed_dict={X: teX})
output = np.vectorize(fizz_buzz)(numbers, teY)
print(output)
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment