Skip to content

Instantly share code, notes, and snippets.

Show Gist options
  • Save turingDH/54fa4d3a712760ccba15ccb7ebaea8d1 to your computer and use it in GitHub Desktop.
Save turingDH/54fa4d3a712760ccba15ccb7ebaea8d1 to your computer and use it in GitHub Desktop.
R to Python: Data wrangling with dplyr and pandas
R to python useful data wrangling snippets
The dplyr package in R makes data wrangling significantly easier.
The beauty of dplyr is that, by design, the options available are limited.
Specifically, a set of key verbs form the core of the package.
Using these verbs you can solve a wide range of data problems effectively in a shorter timeframe.
Whilse transitioning to Python I have greatly missed the ease with which I can think through and solve problems using dplyr in R.
The purpose of this document is to demonstrate how to execute the key dplyr verbs when manipulating data using Python (with the pandas package).
dplyr is organised around six key verbs
filter: subset a dataframe according to condition(s) in a variable(s)
select: choose a specific variable or set of variables
arrange: order dataframe by index or variable
group_by: create a grouped dataframe
summarise: reduce variable to summary variable (e.g. mean)
mutate: transform dataframe by adding new variables
The excellent pandas package in Python easily allows you to implement all of these actions (and much, much more!). Below are some snippets to highlight some of the more basic conversions.
I'll update this on a regular basis with more complex snippets.
Thanks!
Conor @Conormacd
-------Filter-------------------
R
filter(df, var > 20000 & var < 30000)
filter(df, var == 'string') # df %>% filter(var != 'string')
df %>% filter(var != 'string')
df %>% group_by(group) %>% filter(sum(var) > 2000000)
Python
df[df['var'] > 20000]
df[df['var'] == 'string']
df[df['var'] != 'string']
df.groupby('group').filter(lambda x: sum(x['var']) > 2000000)
-------Select-------------------
R
select(df, var1, var2)
select(df, -var3)
Python
df[['var1', 'var2']]
df.drop('var3', 1)
-------Arrange-------------------
R
arrange(df, var1)
arrange(df, desc(var1))
Python
df.sort_values('var1')
df.sort_values('var1', ascending=False)
-------Grouping------------------
R
df %>% group_by(group)
df %>% group_by(group1, group2)
df %>% ungroup()
Python
df.groupby('group1')
df.groupby(['group1', 'group2'])
df.reset_index() / or when grouping: df.groupby('group1', as_index=False)
------Summarise / Aggregate df by group-----------------------------
R
df %>% group_by(group) %>% summarise(mean_var1 = mean(var1))
df %>% group_by(group1, group2) %>% summarise(mean_var1 = mean(var1),
sum_var1 = sum(var1),
count_var1 = n())
Python
df.groupby('group1')['var1'].agg({'mean_col' : np.mean()}) # pass dict to specifiy column name
df.groupy(['group1', 'group2'])['var1]'].agg(['mean', 'sum', 'count']) # for count also consider 'size'. size will return n for NaN values also, whereas 'count' will not.
-------Mutate / transform df by group---------------------------------
R
df %>% group_by(group) %>% mutate(mean_var1 = mean(var1))
Python
df.groupby('group')['var1'].transform(np.mean)
-------Distinct---------------------------------------------------------
# remove duplicate obs from data frame
R
df %>% distinct()
df %>% distinct(col1) # returns dataframe with unique values of col1
Python
df.drop_duplicates()
df.drop_duplicates(subset='col1') # returns dataframe with unique values of col1
------Sample----------------------------------------------------------
# generate random samples of the data by n or by %
R
sample_n(df, 100)
sample_frac(df, 0.5)
Python
df.sample(100)
df.sample(frac=0.5)
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment