Created
December 12, 2012 17:06
-
-
Save tux21b/4269610 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
def dreitermrek(s, n): | |
if n == 0: | |
return 1 | |
r1 = dreitermrek(s, n-1) | |
a = s(x*r1, r1) / s(r1, r1) | |
if n == 1: | |
return x - a | |
r2 = dreitermrek(s, n-2) | |
b = s(r1, r1) / s(r2, r2) | |
return ((x - a) * r1 - b * r2).expand() | |
def gauss(n, w, f, a, b): | |
s = lambda u, v: integrate(w(x) * u * v, x, a, b) | |
p = dreitermrek(s, n+1) | |
print 'p:', p | |
xi = [i[0] for i in RR[x](p).roots()] | |
wi = [integrate(w(x) * prod([(x - xi[j]) / (xi[i] - xi[j]) \ | |
for j in range(n+1) if i != j]), x, a, b).n() \ | |
for i in range(n+1)] | |
for i in range(n+1): | |
print 'x[%d] = %s, w[%d] = %s' % (i, xi[i], i, wi[i]) | |
result = sum([wi[i] * f(xi[i]) for i in range(n+1)]) | |
print 'gauss(%s) = %s' % (f(x)*w(x), result) | |
return result | |
exact = -0.239811742000565 | |
f(x) = ln(x) * sin(x) | |
w(x) = 1 | |
g = gauss(3, w, f, 0, 1) | |
print 'error:', abs(g - exact).n() | |
f(x) = sin(x) | |
w(x) = ln(x) | |
g = gauss(3, w, f, 0, 1) | |
print 'error:', abs(g - exact).n() | |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment