Created
December 22, 2021 18:48
-
-
Save tvogels/9e2720e74da10abc0e9aa134fdc90e15 to your computer and use it in GitHub Desktop.
PyTorch timer / profiler
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import time | |
import contextlib | |
import queue | |
import threading | |
from collections import defaultdict | |
from typing import List, NamedTuple | |
import pandas as pd | |
import torch | |
@contextlib.contextmanager | |
def profiler(): | |
prof = Profiler() | |
try: | |
yield prof | |
finally: | |
prof.stop() | |
class Profiler: | |
def __init__(self): | |
self.is_stopped = False | |
self.queue = queue.SimpleQueue() | |
self.thread = threading.Thread( | |
target=_profiling_worker, args=(self.queue, ), daemon=True | |
) | |
self.thread.start() | |
self.measurements = defaultdict(list) | |
def _measure_cuda(self, name: str = None, append_to: List = None): | |
if self.is_stopped: | |
raise RuntimeError("Profiler was stopped already.") | |
start = torch.cuda.Event(enable_timing=True) | |
end = torch.cuda.Event(enable_timing=True) | |
elapsed_time = torch.futures.Future() | |
start.record() | |
yield elapsed_time | |
end.record() | |
if append_to is not None: | |
append_to.append(elapsed_time) | |
if name is not None: | |
self.measurements[name].append(elapsed_time) | |
self.queue.put(ProfilingQueueEntry(start, end, elapsed_time)) | |
def _measure_cpu(self, name: str = None, append_to: List = None): | |
if self.is_stopped: | |
raise RuntimeError("Profiler was stopped already.") | |
start = torch.cuda.Event(enable_timing=True) | |
end = torch.cuda.Event(enable_timing=True) | |
elapsed_time = torch.futures.Future() | |
start_time = time.time_ns() | |
yield elapsed_time | |
end_time = time.time_ns() | |
if append_to is not None: | |
append_to.append(elapsed_time) | |
if name is not None: | |
self.measurements[name].append(elapsed_time) | |
elapsed_time.set_result((end_time - start_time) / 1_000_000) | |
@contextlib.contextmanager | |
def measure(self, name: str = None, append_to: List = None): | |
if torch.cuda.is_available(): | |
return self._measure_cuda(name, append_to=append_to) | |
else: | |
return self._measure_cpu(name, append_to=append_to) | |
def stop(self): | |
self.is_stopped = True | |
self.queue.put(None) | |
self.thread.join() | |
def results(self): | |
results = [] | |
for name in self.measurements: | |
for i, duration in enumerate(torch.futures.wait_all(self.measurements[name])): | |
results.append({"event": name, "occurrence": i, "duration": duration}) | |
return pd.DataFrame(results) | |
class ProfilingQueueEntry(NamedTuple): | |
start: torch.cuda.Event | |
end: torch.cuda.Event | |
future: torch.futures.Future | |
class Measurement(NamedTuple): | |
name: str | |
duration: float | |
def _profiling_worker(task_queue): | |
while True: | |
task = task_queue.get() | |
if task == None: | |
return | |
start, end, future = task | |
end.synchronize() | |
future.set_result(start.elapsed_time(end)) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment