-
-
Save tvwerkhoven/4fdc9baad760240741a09292901d3abd to your computer and use it in GitHub Desktop.
KMeans Clustering Implemented in python with numpy
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
'''Implementation and of K Means Clustering | |
Requires : python 2.7.x, Numpy 1.7.1+''' | |
import numpy as np | |
def kMeans(X, K, maxIters = 10, plot_progress = None): | |
centroids = X[np.random.choice(np.arange(len(X)), K)] | |
for i in range(maxIters): | |
# Cluster Assignment step | |
C = np.array([np.argmin([np.dot(x_i-y_k, x_i-y_k) for y_k in centroids]) for x_i in X]) | |
# Ensure we have K clusters, otherwise reset centroids and start over | |
# If there are fewer than K clusters, outcome will be nan. | |
if (len(np.unique(C)) < K): | |
centroids = X[np.random.choice(np.arange(len(X)), K)] | |
else: | |
# Move centroids step | |
centroids = [X[C == k].mean(axis = 0) for k in range(K)] | |
if plot_progress != None: plot_progress(X, C, np.array(centroids)) | |
return np.array(centroids) , C |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
'''dEMONSTRATION of K Means Clustering | |
Requires : python 2.7.x, Numpy 1.7.1+, Matplotlib, 1.2.1+''' | |
import sys | |
import pylab as plt | |
import numpy as np | |
plt.ion() | |
def show(X, C, centroids, keep = False): | |
import time | |
time.sleep(0.5) | |
plt.cla() | |
plt.plot(X[C == 0, 0], X[C == 0, 1], '*b', | |
X[C == 1, 0], X[C == 1, 1], '*r', | |
X[C == 2, 0], X[C == 2, 1], '*g') | |
plt.plot(centroids[:,0],centroids[:,1],'*m',markersize=20) | |
plt.draw() | |
if keep : | |
plt.ioff() | |
plt.show() | |
# generate 3 cluster data | |
# data = np.genfromtxt('data1.csv', delimiter=',') | |
m1, cov1 = [9, 8], [[1.5, 2], [1, 2]] | |
m2, cov2 = [5, 13], [[2.5, -1.5], [-1.5, 1.5]] | |
m3, cov3 = [3, 7], [[0.25, 0.5], [-0.1, 0.5]] | |
data1 = np.random.multivariate_normal(m1, cov1, 250) | |
data2 = np.random.multivariate_normal(m2, cov2, 180) | |
data3 = np.random.multivariate_normal(m3, cov3, 100) | |
X = np.vstack((data1,np.vstack((data2,data3)))) | |
np.random.shuffle(X) | |
from kMeans import kMeans | |
centroids, C = kMeans(X, K = 3, plot_progress = show) | |
show(X, C, centroids, True) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment