Created
October 29, 2010 10:59
-
-
Save tvwerkhoven/653333 to your computer and use it in GitHub Desktop.
Render of Newton's Principia in XeLaTeX
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
%!TEX TS-program = xelatex | |
%!TEX encoding = UTF-8 Unicode | |
% Tim van Werkhoven (2010) | |
% newton.tex: Render of Newton's Principia in XeLaTeX | |
% Some rights reserved: CC-BY-SA | |
\documentclass[11pt,a4paper]{article} | |
\usepackage[dvipdfm, colorlinks, breaklinks]{hyperref} | |
\usepackage{xunicode} | |
%\usepackage[utf]{inputenc} | |
\usepackage{xltxtra} | |
\defaultfontfeatures{Mapping=tex-text} | |
\begin{document} | |
\thispagestyle{empty} | |
\fontspec[Alternate=0,Ligatures={Common, Rare}, Swashes={LineInitial, LineFinal}]{Hoefler Text} | |
\fontsize{15pt}{19pt} | |
\selectfont | |
\begin{center} | |
[ 14 ]\\ | |
\end{center} | |
illa \emph{BD}. Eodem argumento in fine temporis ejuſdem reperietur alicubi in linea \emph{CD}, \& idcirco in utriuſq; lineæ concurſu \emph{D} reperiri neceſſe eſt. | |
\begin{center} | |
Corol.\ II.\\ | |
\end{center} | |
\parskip=0ex% | |
\parindent=0em% | |
\hspace*{1em}\parbox{\textwidth-1em}{\emph{\hspace*{-1em}Et hinc patet compoſitio vis directæ AD ex viribus quibuſvis obliquis AB \& BD, \& viciſſim reſolutio vis cujuſvis directæ AD in obliquas quaſcunq; AB \& BD. Quæ quidem Compoſitio \& reſolutio abunde conſirmatur ex Mechanica.}} | |
%\addtolength{\oddsidemargin}{-1em} | |
\parskip=1em% | |
\parindent=1em% | |
Ut ſi de rotæ alicujus centro O exeuntes radij inæquales \emph{OM}, | |
\emph{ON} filis \emph{MA}, \emph{NP} ſuſtineant pondera \emph{A} \& \emph{P}, | |
\& quærantur vires ponderum ad movendam rotam: per centrum O agatur | |
recta \emph{KOL} filis perpendiculariter occurens in \emph{K} \& \emph{L}, | |
centroq; O \& intervallorum \emph{OK}, \emph{OL} majore \emph{OL} | |
deſcribatur circulus occurens filo \emph{MA} in \emph{D}: \& actæ rectæ | |
\emph{OD} parallela ſit \emph{AC} \& perpendicularis \emph{DC}. Quoniam nihil | |
refert utrum filorum puncta \emph{K}, \emph{L}, \emph{D} affixa ſint vel non | |
affixa ad planum rotæ, pondera idem valebunt ac ſi ſuſpenderentur a punctis | |
\emph{K} \& \emph{L} vel \emph{D} \& \emph{L}. Ponderis autem \emph{A} | |
exponatur vis tota per lineam \emph{AD}, \& hæc reſolvetur in vires \emph{AC}, | |
\emph{CD}, quarum \emph{AC} trahendo radium \emph{OD} directe a centro nihil | |
valet ad movendam rotam; vis autem altera \emph{DC}, trahendo radium \emph{DO} | |
perpendiculariter, idem valet ac ſi perpendiculariter traheret radium | |
\emph{OL} ipſi \emph{OD} æqualem; hoc eſt idem atq; pondus \emph{P}, quod fit | |
ad pondus \emph{A} ut vis \emph{DC} ad vim \emph{DA}, id eſt (ob ſimilia triangula \emph{ADC}, \emph{DOK},) ut \emph{DO} (ſeu \emph{OL}) ad \emph{OK}. Pondera igitur \emph{A} \& \emph{P}, quæ ſunt reciproce ut radii in directum poſiti \emph{OK} \& \emph{OL}, idem pollebunt \& ſic conſiſtent in æquilibrio: (quæ eſt proprietas notiſſima Libræ, | |
\end{document} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment