Created
April 22, 2013 20:19
-
-
Save twiecki/5438155 to your computer and use it in GitHub Desktop.
Clustering analysis of "Individual differences, aging, and IQ in two-choice tasks"
This file has been truncated, but you can view the full file.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| { | |
| "metadata": { | |
| "name": "analyze_ratcliff" | |
| }, | |
| "nbformat": 3, | |
| "nbformat_minor": 0, | |
| "worksheets": [ | |
| { | |
| "cells": [ | |
| { | |
| "cell_type": "code", | |
| "collapsed": false, | |
| "input": [ | |
| "# Bunch of imports\n", | |
| "%load_ext autoreload\n", | |
| "%autoreload 2\n", | |
| "%pylab inline\n", | |
| "import hddm\n", | |
| "print hddm.__version__\n", | |
| "import kabuki\n", | |
| "print kabuki.__version__\n", | |
| "import pandas as pd\n", | |
| "import matplotlib.pyplot as plt\n", | |
| "from scipy import stats\n", | |
| "import numpy as np\n", | |
| "from sklearn.cluster import KMeans, spectral_clustering\n", | |
| "import sklearn\n", | |
| "from pandas.tools.plotting import scatter_matrix" | |
| ], | |
| "language": "python", | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| "Welcome to pylab, a matplotlib-based Python environment [backend: module://IPython.zmq.pylab.backend_inline].\n", | |
| "For more information, type 'help(pylab)'.\n" | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "0.5\n", | |
| "0.5\n" | |
| ] | |
| } | |
| ], | |
| "prompt_number": 59 | |
| }, | |
| { | |
| "cell_type": "code", | |
| "collapsed": false, | |
| "input": [ | |
| "# Functions to load data set\n", | |
| "def stream_lines(fname):\n", | |
| " prefix = fname[:-3]\n", | |
| " subj_index = fname[-3:]\n", | |
| " with open(fname, 'r') as fd:\n", | |
| " fd.next()\n", | |
| " fd.next()\n", | |
| " fd.next()\n", | |
| " for line in fd:\n", | |
| " if line.startswith('END') or line.startswith('Start') or line.startswith('End'):\n", | |
| " raise StopIteration\n", | |
| " yield ','.join([prefix, subj_index, line])\n", | |
| "\n", | |
| "def extract_keytime(gen):\n", | |
| " for keytime in gen:\n", | |
| " s = keytime.split(',')\n", | |
| " key = s[-1][0]\n", | |
| " time = str(float(s[-1][1:])/1000.)\n", | |
| " yield \",\".join(s[:-1] + [key, time])\n", | |
| "\n", | |
| "def concat(gen):\n", | |
| " while True:\n", | |
| " yield ','.join([extract_keytime(gen).next(), gen.next()])\n", | |
| " \n", | |
| "def drop_last(gen):\n", | |
| " for i in gen:\n", | |
| " yield i[:-1]\n", | |
| " \n", | |
| "def split_last(gen):\n", | |
| " for i in gen:\n", | |
| " last = i[-1]\n", | |
| " if last == '000':\n", | |
| " continue # drop 000\n", | |
| " first = last[0]\n", | |
| " second = last[1]\n", | |
| " yield i[:-1] + [first] + [second]\n", | |
| " \n", | |
| " \n", | |
| "def split(gen):\n", | |
| " for i in gen:\n", | |
| " yield i.split(',')\n", | |
| " \n", | |
| "def create_df_dt16(data):\n", | |
| " dt16 = pd.DataFrame(data, columns=['task', 'subj_idx', 'resp_key', 'rt', 'del', 'del2', 'intensity', 'stim', 'del3'], dtype='S10')\n", | |
| " dt16 = dt16.drop(['del', 'del2', 'del3'], axis=1)\n", | |
| " dt16['response_side'] = 1\n", | |
| " dt16['response_side'][dt16.resp_key == 'z'] = 0\n", | |
| " dt16['stim'] = np.int32(dt16['stim'])\n", | |
| " dt16['intensity'] = np.int32(dt16['intensity'])\n", | |
| " dt16['subj_idx'] = np.int32(dt16['subj_idx'])\n", | |
| " dt16['rt'] = np.float64(dt16.rt)\n", | |
| " dt16['stim'] = dt16.stim - 1\n", | |
| " dt16['response'] = dt16.stim == dt16.response_side\n", | |
| " \n", | |
| " dt16 = dt16[dt16.intensity != 0]\n", | |
| " # filter rts\n", | |
| " dt16 = dt16[np.logical_and((dt16.rt < 4.), (dt16.rt > .3))]\n", | |
| " \n", | |
| " # quantile intensities\n", | |
| " dt16['intensity_grouped'] = 0\n", | |
| " s = 31\n", | |
| " for i in range(9):\n", | |
| " dt16['intensity_grouped'].ix[dt16.intensity.isin(np.arange(s, s+5))] = s + 2\n", | |
| " s+=5\n", | |
| " \n", | |
| " return dt16\n", | |
| "\n", | |
| "def create_df_sy30(data):\n", | |
| " data = pd.DataFrame(data, columns=['task', 'subj_idx', 'resp_key', 'rt', 'del', 'del2', 'word_freq_raw', 'reps'], dtype='S10')\n", | |
| " data = data.drop(['del', 'del2'], axis=1)\n", | |
| " data = data.drop(data.word_freq_raw == '3')\n", | |
| " data['response_side'] = 1\n", | |
| " data['response_side'][data.resp_key == 'z'] = 0\n", | |
| " data['word_freq'] = 'high'\n", | |
| " data['word_freq'][data.word_freq_raw == '1'] = 'low'\n", | |
| " \n", | |
| " data['reps'] = np.int32(data['reps'])\n", | |
| " # \"digit 2 = repetitions (1=2 presentations, 2=1 presentation\"...\n", | |
| " data['reps'][data.reps == 2] = 666\n", | |
| " data['reps'][data.reps == 1] = 2\n", | |
| " data['reps'][data.reps == 666] = 1\n", | |
| " data['subj_idx'] = np.int32(data['subj_idx'])\n", | |
| " data['rt'] = np.float64(data.rt)\n", | |
| " \n", | |
| " data['old_word'] = True\n", | |
| " data['old_word'][data.reps == 3] = False\n", | |
| " data['response'] = data.old_word == data.response_side\n", | |
| " # filter rts\n", | |
| " data = data[np.logical_and((data.rt < 4.), (data.rt > .280))]\n", | |
| " \n", | |
| " return data" | |
| ], | |
| "language": "python", | |
| "metadata": {}, | |
| "outputs": [], | |
| "prompt_number": 2 | |
| }, | |
| { | |
| "cell_type": "markdown", | |
| "metadata": {}, | |
| "source": [ | |
| "Load data sets and plot histograms as sanity check." | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "collapsed": false, | |
| "input": [ | |
| "fnames_sy30 = !ls sy30*\n", | |
| "sy30_raw = [i for fname in fnames_sy30 for i in split_last(split(concat(drop_last(stream_lines(fname))))) if len(i) == 8]\n", | |
| "sy30 = create_df_sy30(sy30_raw)" | |
| ], | |
| "language": "python", | |
| "metadata": {}, | |
| "outputs": [], | |
| "prompt_number": 3 | |
| }, | |
| { | |
| "cell_type": "code", | |
| "collapsed": false, | |
| "input": [ | |
| "fnames_dt16 = !ls dt16*\n", | |
| "dt16_raw = [i for fname in fnames_dt16 for i in split(concat(drop_last(stream_lines(fname)))) if len(i) == 9]\n", | |
| "dt16 = create_df_dt16(dt16_raw)" | |
| ], | |
| "language": "python", | |
| "metadata": {}, | |
| "outputs": [], | |
| "prompt_number": 5 | |
| }, | |
| { | |
| "cell_type": "code", | |
| "collapsed": false, | |
| "input": [ | |
| "fig = plt.figure()\n", | |
| "ax = fig.add_subplot(111)\n", | |
| "for idx, subj_data in dt16.groupby('subj_idx'):\n", | |
| " flipped = hddm.utils.flip_errors(subj_data)\n", | |
| " ax.hist(flipped.rt, bins=20, histtype='step')" | |
| ], | |
| "language": "python", | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "output_type": "display_data", | |
| "png": "iVBORw0KGgoAAAANSUhEUgAAAXUAAAD9CAYAAABDaefJAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xl8VNX9//HXvTOTmewLJBNIgAAJhACyCnSTKASXasSq\nseASq1a/om1dWqDUVugisbYq1tL+qtSmdQEqCFSRIpbgbtgEMUDCFrIO2ZeZTGa55/fHYFgNawiJ\nn2cfeTi5954756SZdw7n3nuOppRSCCGE6Bb0zq6AEEKI80dCXQghuhEJdSGE6EYk1IUQohuRUBdC\niG5EQl0IIbqRU4b6ggULGD58OMOGDWPBggUA1NbWkpGRwaBBg5gyZQr19fVtx8+fP5+UlBRSU1NZ\nu3Ztx9VcCCHECdoN9R07dvDiiy+yceNGtm3bxptvvsnevXvJyckhIyODwsJCJk2aRE5ODgAFBQUs\nWbKEgoIC1qxZw4wZMzAM44I0RAghxClCfdeuXYwfPx6bzYbJZGLixIksW7aMVatWkZ2dDUB2djYr\nVqwAYOXKlUybNg2LxUJSUhLJycnk5+d3fCuEEEIAYG5v57Bhw/jFL35BbW0tNpuN1atXM3bsWBwO\nB3a7HQC73Y7D4QCgvLycCRMmtJVPTEykrKzsmHNqmna+2yCEEF8LpzMBQLs99dTUVGbNmsWUKVO4\n+uqrGTlyJCaT6ZhjNE1rN6hPtk8pddF/Pf74451eB6mn1LOr1lHqef6/TtcpL5TeddddbNq0iQ0b\nNhAdHc2gQYOw2+1UVlYCUFFRQVxcHAAJCQmUlJS0lS0tLSUhIeG0KyOEEOLcnDLUDx06BMDBgwdZ\nvnw506dPJzMzk9zcXAByc3OZOnUqAJmZmSxevBiPx8P+/fspKipi3LhxHVh9IYQQR2t3TB3gpptu\noqamBovFwsKFC4mMjGT27NlkZWWxaNEikpKSWLp0KQBpaWlkZWWRlpaG2Wxm4cKFXXYMPT09vbOr\ncFqknudXV6hnV6gjSD07i6bOZLDmfLyhpp3R+JAQQojTz055olQIIboRCXUhhOhGJNSFEKIbkVAX\nQohuREJdCCG6EQl1IYToRiTUhRCiG5FQF0KIbkRCXQghuhEJdSGE6EYk1IUQohs55YReQohz07yt\nmdbS1jMrpEP05dHoNul3iTMjE3oJ0cE2DtuIOcaMKdx06oMPa8pvYsi/hhBzVUwH1kx0JaebndJT\nF6KDKUMx6K+DCE0LPe0y26/ZjjKk8yPOnIS6EOfB++/Dj3508n2z98EvvwcO21eXHzwYlizpmLqJ\nr5dThvr8+fN5+eWX0XWd4cOH89JLL+F0OrnlllsoLi5uWyQjKiqq7fi///3vmEwmnnvuOaZMmdLh\njRCis+3ZA337wq9/feK+xu/BE0+AacDJyx46BHfe2aHVE18j7Yb6gQMHeOGFF9i5cydWq5VbbrmF\nxYsX88UXX5CRkcHMmTN58sknycnJIScnh4KCApYsWUJBQQFlZWVMnjyZwsJCdF0u9ojur0cPGDny\nxO35NkhNhdC0k5crL+/Yeomvl3bTNiIiAovFgsvlwufz4XK56N27N6tWrSI7OxuA7OxsVqxYAcDK\nlSuZNm0aFouFpKQkkpOTyc/P7/hWCCGEAE7RU4+JieHRRx+lb9++BAcHc+WVV5KRkYHD4cButwNg\nt9txOBwAlJeXM2HChLbyiYmJlJWVnXDeuXPntr1OT0/vdmsECiHEucrLyyMvL++My7Ub6nv37uXZ\nZ5/lwIEDREZGcvPNN/Pyyy8fc4ymae0uLn2yfUeHuhBCiBMd3+GdN2/eaZVrd/hl06ZNfPOb36RH\njx6YzWa+973v8fHHHxMfH09lZSUAFRUVxMXFAZCQkEBJSUlb+dLSUhISEs60LUIIIc5Su6GemprK\nJ598QktLC0op1q1bR1paGtdddx25ubkA5ObmMnXqVAAyMzNZvHgxHo+H/fv3U1RUxLhx4zq+FUII\nIYBTDL+MGDGCO+64g7Fjx6LrOqNHj+bee++lqamJrKwsFi1a1HZLI0BaWhpZWVmkpaVhNptZuHBh\nu0MzQnRHTr8fh8fT9r1HKUrdbiwtJ+9DOTzgi4N9LRAfFESI6fSfPBXieDJNgBDnwUsvwXvvBf57\n565drK6pIexwOP92Wit/fsJCRf+Th7rfD2WlEJXo55bYWP48aBDbr9lOwoMJ9Limx4VshriIyTQB\nQnSSVsNgQXIy0w7fIZYfnM/aEUO/cpqA8nIYezP8enMFnzQ2Xsiqim5IngoSQohuREJdCCG6EQl1\nIYToRiTUhRCiG5FQF0KIbkRCXQghuhEJdSGE6EYk1IUQohuRUBdCiG5EQl0IIboRmSZAiPPM5XSy\nu7qaD4qKAPC5fGzZsgWt9uST21VXB+HxjKCoqAiHUnxQVYXZJR9NcXbkN0eI8+zT/Hy25Oezbu9e\nAH586Me89vRrVIVUnfR4j6cHjY2LWLZsGc19+vDgyy9z3/77SCHlQlZbdBMS6kKcZ0opsrOz+e0V\nVwCQn5bPyy+/3P6EXmNh9uzZfNLYyAOTJvHxxI8vZJVFNyKhLsQ5OOh2U9TSQoENyuPh3TrwhIay\nH3i3rg4A3fDzSUMj1HmOKTs8NJS4oKBOqLXoziTUhTgHj+7dyy6XC3+UhfpL4IlicMbG8pGmUVlc\nDMD/eby8XlFOdfCRxS8OtrYytWdPnho4sLOqLrqpdkN99+7dfP/732/7ft++ffzmN7/htttu45Zb\nbqG4uLht5aOoqCgA5s+fz9///ndMJhPPPfccU6ZM6dgWCNGJDKWYm5RE447YwCIZ0yDmn3vo7RjG\n+H5JAAQ35nPJmlScPY8Mv2iNjWzw+5gTDc3N0NLSSQ0Q3U67tzQOHjyYrVu3snXrVjZv3kxISAg3\n3HADOTk5ZGRkUFhYyKRJk8jJyQGgoKCAJUuWUFBQwJo1a5gxYwaGYVyQhghxsXBvSeHQvjDCwiAs\nDHQdQkJo+z4sDIJCDYJCFGFh0NgYCHYhzofTHn5Zt24dycnJ9OnTh1WrVrFhwwYAsrOzSU9PJycn\nh5UrVzJt2jQsFgtJSUkkJyeTn5/PhAkTOqwBQlyMBoypZc6cngDkvwwT74XQtCP7ny5porS1lTnJ\nPVizBl55pZMqKrqd0w71xYsXM23aNAAcDgf2w0t12e12HA4HAOXl5ccEeGJiImVlZSeca+7cuW2v\n09PTSU9PP5u6CyFEt5WXl0deXt4ZlzutUPd4PPznP//hySefPGGfpmlo2skfqvhy//GODnUhhBAn\nOr7DO2/evNMqd1qh/vbbbzNmzBhiY2OBQO+8srKS+Ph4KioqiIuLAyAhIYGSkpK2cqWlpSQkJJxu\nG4ToMjyeKg4ezOE7zYcIMUIwxwRz6aWwZw/ce1U1CT1M7NkTHTj2pkoONvXAssfSVr53cysVITM6\nq/qiGzutUH/ttdfahl4AMjMzyc3NZdasWeTm5jJ16tS27dOnT+eRRx6hrKyMoqIixo0b1zE1F6IT\nuVxfUFOzkkbTjRhB4fh8YTQ3g80GjvogQm0WbLZYPJ5DlDrj+ajRh66528o3u4podeXyvLsne1w9\nCb36mxSV/BuTz8fbhp+6q5PJrf83QdvrGRcewbj+8gdAnJ5ThrrT6WTdunW88MILbdtmz55NVlYW\nixYtarulESAtLY2srCzS0tIwm80sXLiw3aEZIboyqzWRbebbGdrDTmNjLDt3QmIi/Pv95dh6bmdl\n0Iv4fHX0Dvl/bGypB9eR60tDwhIorDbjr9Lwu320fKuOP5XbMJTCDCSPi8IeZeVgUyIfNrzPa/07\nr52iazllqIeGhlJdXX3MtpiYGNatW3fS4+fMmcOcOXPOT+2E6IKU0URS1CgW33QTVVXL+cPrZh6O\nTCFryMi2Yw7suoo18Y/zf0nf4IP1Nh6cm8CsTR62NTdzbVMVVX8p4p7n7mFR7zK2lnZiY0SXI0+U\nCnG2GpvAWQJFRfBpL9gXB699CkoR0uhj2LufUxFciq4uJW7fIYaVH7kZvbSXRnR4EsPihlEaCZoP\nEmJSKTE30p8wqjj55F9CnIqEuhBnq6gIvMVw8CBs7QtVqbBqFTAF6upg1bsweC8Y18PuXVC8JVDO\n5YK7G8HeqbUX3ZSEuhDnYuhQuPFGSImF94CX0uEbuZDcH168ByoWwQtmuP5mGPOzQJnSUtgytDNr\nLboxCXUhOkCr08ndd9+N07mblv4/Z8Ubb7D5+e2BnS4X13yvhQ/+8BQ/MF6ltLQffv+dvPTwbKo8\nHir0Vi5Tl3VuA0SXJcvZCdEBWhob2bhxI+PHp2A26fRLSuKyyy4LfI0bh8Vkxn7JJVx22WUMHz4a\nTQtj0PjxxF96KZ/v+Lyzqy+6MOmpC3EeNfh8qJBeNIRr2K65BnXVaFhqQSUnYgwOzAVDXR0U51AT\n04sNVXWUtTSgbJUUOp0c8npxJgxg447N2NbayG+K5mCLl0WFi054r9GjRzNq1KgL3EJxsZNQF+I8\n2lBfjwofgNt2iLrevdnotuFHo8TdykcNDYGDWlq4ymRiy19eoUALRrMkoFQIezbV4zYMmtEp9lRg\nK9hIce80anQ/H+386Jj32b9/P6tXr2bZsmWd0EpxMZNQF+J88zZhryom5b//5embv8e9mpUrY3vy\nYGpSYH9pKWvKWog2m3lu9i/Q9Wu47jr43V8q+KSxkTfeWslNlT2456GpLBpSxtbSV1j00wXHvMWy\nZct49dVXL3zbxEVPQl2IDvSXsnK8RgJPHSzht63lAPQ6dIjfaVDh8XDrzp1AP3xqCI/u2YNHKVq9\nPhRw686dHIx2MaJTWyC6Ggl1ITqQw+vBpGvcn9CbO0f2AUAvLWXLDrAHWfhNSgqaNohsTeNXSUls\naWpitdmMBjzRvz9Xe7eBzLQhzoCEuhAdTAPCTCbiv1xk+vB/dTSizWZ0PTB7Y6TZTLDJhH44xKPM\n8vEUZ05+a4Q4Cy1+gy0hSaw7GMSmjXX4d/lwemB9bjMYJg44gqlsaOXyj0Lw+eDjj8H3/uHC9WH0\nG2XD7W73LYQ4KxLqQpyFBr+PxqpogkNMxDpD8JVGotVC7GCDYtWCpdVEsNeMqdGKQtFQDwe+nBev\n2UTCKDP19Z3aBNFNycNHQpyD8fYqfp5Ryk8udTA51sWPL98Jup/gnvvp1XsnY0N/hqa8hIU9Tny8\nHvhKjiQsqJw+5o0s/fe1vPXWpcTFbebAXxL5x+gR1FbVolyd3TLRVUlPXYhzsWs3LN8G65OgeRSb\n/rUM1i2ixjcUi30yQ1Im8u6noRQWZlG2/dq2YsnJP6GmJoaNm64nyDyZhoaBXD5R4/dP1+D/oxli\nVnRem0SXJqEuxLkYkgp33krZ8kO8XD4eZfLCzKVoup9qfHx/u8I3fA26czfmXmtAKfD6uLVA4buz\nioVR0cTqwcz5xS4id8Mv/7yCt35pIqrJj1ZdA1Gd3UDR1Zxy+KW+vp6bbrqJIUOGkJaWxqeffkpt\nbS0ZGRkMGjSIKVOmUH/U4OD8+fNJSUkhNTWVtWvXdmjlhbhYuFQ90d5h3DXqDXiugvtW30vZH3X2\nvAZXff5tfr8ljdq3R1C7IpXaZyy8PUDHsPkI+ucLjPjHQzztf4iU5w1ufeZJnq2azyVNDoIX/rmz\nmyW6oFP21H/yk59wzTXX8Prrr+Pz+XA6nfzud78jIyODmTNn8uSTT5KTk0NOTg4FBQUsWbKEgoIC\nysrKmDx5MoWFhei6DN2L7mFNbS2bmprQm6sIiWul0GLi9aoqykMrcYX42Ga1wU01bOs5hMcm3EPD\nVU6MTSbKMirIn7YVFODzoZlAK4Id2UVURF/KH/+4kP+3cCyKAjIf+Yy/HthK78bXsahJcp+6OCPt\npm1DQwPvv/8+d911FwBms5nIyEhWrVpFdnY2ANnZ2axYERj/W7lyJdOmTcNisZCUlERycjL5+fkd\n3AQhLpynS0oocDrxKgWawq9peA0Dn24E8hrAYuAz67j0IAosI/ESxD9zf0lGhosZGVtJuCqJ5oYo\nFBq//NXrPPDABxQVjcbnt3DNmo04XRqtBihlwhw4oxCnrd2e+v79+4mNjeUHP/gB27ZtY8yYMTz7\n7LM4HA7s9sCyLXa7HYfDAUB5eTkTJkxoK5+YmEhZWdkJ5507d27b6/T0dNLT089DU4S4MO6Mj6ev\nL441/7MxJNTHNLudzU0N7HFaGe9VbPl4G/rQf6A3foFW3I99PR5kzD2FXPpQFdRU869X69njcIOm\nuPlP/8akb2fxYnilxE/amL+xda/GllALVzR2dktFZ8rLyyMvL++My7Ub6j6fjy1btvD8889z6aWX\n8tBDD5GTk3PMMZqmoWlf/e/Dk+07OtSF6HYm/RGHB5Js0RBkxWg1saG+ljW1BwL7r7+eG3gDcLPk\nkANCwiG6JwawzemEydWs2b6Xn66N68RGiM52fId33rx5p1Wu3VBPTEwkMTGRSy+9FICbbrqJ+fPn\nEx8fT2VlJfHx8VRUVBAXF/jlS0hIoKSkpK18aWkpCQkJZ9oWIbq0XqEtZBiJTPXWkBcXzpaGCAbE\nhtKnRwy0tkLxATJ7mVlxAK6NH4jTn0KDM5k7+kFxQyLOvESCIwswDD/eHZ/TOtjDY489dsx77Nq1\niy+++ILHHnuMhIQE7r///s5prLjotBvq8fHx9OnTh8LCQgYNGsS6desYOnQoQ4cOJTc3l1mzZpGb\nm8vUqVMByMzMZPr06TzyyCOUlZVRVFTEuHHjLkhDhLhY/GhYMQO0EmxVLkYENfF5n/0MDTnEdabP\nQHeDtxAPTWga3BTzLnW1/8U7pT86Bt9Xi/GNtxAXXg5LeqOZAh9Rm812zHtYLBZMJhOGYfCLX/xC\nQl20OeXdL3/605+49dZb8Xg8DBw4kJdeegm/309WVhaLFi0iKSmJpUuXApCWlkZWVhZpaWmYzWYW\nLlzY7tCMEN2OFzRN8eH7I7h+yQ7W/H0i3u1j6XvVQL6d1g8Ki2De9ax5TmEY9ezeNo1317rYvPkZ\n1r4TxObUFaz+Qx4Lbvgpum7CPGQIVn3zCT31ZcuW4fF4+OlPf8pf//rXTmqsuBidMtRHjBjBxo0b\nT9i+bt26kx4/Z84c5syZc+41E6KL8db7CHkiBB4Fw21gbvYGbmFUGgeeOEDe2/vRFOj+58FzF1DH\njg92EFQ2GJvhQRkGrhVfENxiAkA5rfQsbEYlhnRqu0TXIk+UCnG+KHDfHZh6UbfpuEK9KA3w63h7\nemm6tIXfD59PvVbOr6yBO8Y+DvsY/dodtBrruH+LH3fVr1ADWwGFVh/B4I0xeGuD4erOa5boWuSp\nICHOUYvXyT9r/4/GnjtYUn0vf9rfxOKojfzoFherd75Dib6Svtf14tr3LueLfl/wp11ebCoMgOuG\nXEfPveMx3v4bDw82MfLGX+PzDgDASHBQOKQo0NsX4jRJqAtxjlo8TdT6Sgip78+V8UP4Xq8QLm/s\nz8z3FAmRvWjWijjkeI2PP+6L33DS+jMHmg1AI94aT1ijHa1iLIPDdWJjhoI3prObJLowGX4R4jww\naWbMvlDstghizSY0oyd9KkIJDQqhFoiPz+Y735mP6f1whi8IY8vPAsM0u6t3U9MSisLAQFFcV3zU\nWVXgf0qxrGDZMe/naHZcuMaJLkVCXYhO9Paet7G60jGUgVIG+xr2te1TGAAYGLy649W27fvr9hNz\nIIZIIi94fcXFT0JdiA6g/H78Ph+owJD4zn07WbJkG16vj0/r3VgOHzfQYickIonNmgmTZuLyuAms\nZgMAOiY0wISJpZcdnrHRbufFrYt4bf9rndEs0QXImLoQHcDvbMbwtga+UYrPCz8gN3cOHl8r9+2t\nB00Bioz1B2D7DvD5wO+HVavazqEZfjAU+H0wciT07w+vvNIp7RFdh4S6EB1BKcxBJjQtMP/Rtd/5\nDi++OJNgqwX8tE2n+5+rk2HMaDBbwGSC79/SdgpDN4Gug9kMlZVw223Q0tI57RFdhgy/CNEhNAxl\nwqx56RO5gyE9X6axMZIfJxvoMyBYc/GzwRAR58DqeoeJE+8GfExoeJyEEVsJs/qpzd7D9Ykr2LHv\n/zq7MaILkVAX4jzw+0EZOl+89x3CTeE07u7FZtdEPAe3E9pjL5s+GErV3218PuAb6Dt0esTq7LDl\nEfHFBKzOftTUjGf0mHVUJY+kqLaYsXElBO0JZ+w3NlNU7Ozs5okuREJdiPOg1Q0mQ6Nkdxo2PRxn\nTQR+6nFVl2OOsvFO3Q8Y4kvk7TV90bdDs9PMu99+j/DV92B19qO6ehzNzkiSFw4ir2QbNyR/TtiH\ndny3VnZ200QXI6EuxDnwKScVFYtQKIJ1L1fe+2figtZw8M0BXPfmNp4dk4y7QXHN2DU8cv1gVv35\nPsy7DB79SRjvbvETP+YXxJR9l9pamc1UnB9yoVSIc+BXTny+RgJXPjWO/kgpdeS1oXzU1//vgtdP\nfP1IqAtxjqxB8YGbWTQdre0fvxrGUZO2+H0NVFUtx1DuYxaSHmAtp6WliMAtMYqGug1t+zT8F6D2\noruR4RchOoh2+IlQAJM5ipCQwWjsPeaYyoYB1NXdiKE0lIK8Ny7DwnoADGVCKTNNzWGM+VV5YLre\nLaHU7FE49e1YG3dy165dOP1+drtcDA6RKXqFhLoQ55GixuMnNujLWVuOcPmssKSaH241MPkM+r7l\n4oESsG2Nwl9XjFc9T3LZNr5Vvw0tZi8DnQaR9ZWYDR8RLRXcmbeYjS0DqLAPpWBzH3pn+uhptXJd\njx68CWxvbpZQF8BpDL8kJSVxySWXMGrUqLal6Wpra8nIyGDQoEFMmTKF+vr6tuPnz59PSkoKqamp\nrF27tuNqLsRFxmdp5tXSwFOkBgqfOhLrnx/cTdJTHzCwystAZRBc6ie1BpI8VaREbCDVsoW+rjL6\nBD/JwLpmIkoVQT4nGn7CLTX8yHiNf1p+wztZecT3biTGqCPRauWG2FgZQxXHOGVPXdM08vLyiIk5\nMh1oTk4OGRkZzJw5kyeffJKcnBxycnIoKChgyZIlFBQUUFZWxuTJkyksLETX5ddOfA1oisTgwKpF\nJnRWZ97EbouiV9B69o76JtXR/+LB372I1qIIDdNofn8qjPojmh6Meq8X5vwIjMe2Yfc7+INlNvff\n/xL/DLqFxqgkuPpqeOutzm2f6BJOK22VOnaW/lWrVpGdnQ1AdnY2K1asAGDlypVMmzYNi8VCUlIS\nycnJ5Ofnn+cqC3Gx0/B7bRyKGkCMvxaLF5LfMGGq1dHevxv9BzN41jEL/Ab8oBz9tv6wIJlxRj6W\nX1hg3TuYXbXMXPY2x1xVFeI0nFZPffLkyZhMJu677z5++MMf4nA4sNvtANjtdhyOwNzO5eXlTJgw\noa1sYmIiZWVlJ5xz7ty5ba/T09NJT08/x2YIcbFRaJobHR+agvCgUsy6E5O/FYsziJ6WwEVUk+cA\nFu9+RrYeoucOD8tDfojxv1ZCx/porixGV4qYmt2w7C04dAief54Xil8nqH4HwX6DsOnTWe5yEbx5\nc6A3L7qNvLw88vLyzrjcKUP9ww8/pFevXlRVVZGRkUFqauox+zVNQ9O+ujdxsn1Hh7oQ3ZGmGaB5\n+HItunGXWui5ViPYZsaMjyCzF1CE925iUL2Lb7oP0YyFvAlD8daFMrl4B6plALo/D2tjPxr7XQmu\nnTDoG7zjGEZo/AqiW/30+dbNmN/ZRNTnn0uodzPHd3jnzZt3WuVOGeq9evUCIDY2lhtuuIH8/Hzs\ndjuVlZXEx8dTUVFBXFwcAAkJCZSUlLSVLS0tJSEh4UzaIUSXcu3qdWS+/iqP3xVOiquY+14fQsOj\nigivC58fvnzIX28MrHSkULgtXlp0FwAe+2ae2H09NZjwO000f/o9NG8IQQcvJ64mFqv7JUau782W\nqlhwj6T50zAGNSViOXADVkOx76UEPOqBTmq9uBi1O6bucrloamoCwOl0snbtWoYPH05mZia5ubkA\n5ObmMnXqVAAyMzNZvHgxHo+H/fv3U1RU1HbHjBDdUXR9IztuHo/STewJ7sszU02ARqMlhFoTeA8f\np3kDDxL5lR+3yYfSAsMvytSK0mCVqYR/JdQx66G5/Gr6Yuqf/hFbJ79Dc5hi8e3V+K9aiGf4L/jx\nvQ8y5xvF/OmaN1h6+VLifxmPhqlzGi8uSu321B0OBzfccAMAPp+PW2+9lSlTpjB27FiysrJYtGgR\nSUlJLF26FIC0tDSysrJIS0vDbDazcOHCdodmhOgODHMgVJWm4TMf+X1XX3G8WemE+MOAFkLKvgVK\nQ/PbAI2I8AF4jMDHMswUuEwaadGZ1H8SFLhJNXvY3KGtEV1du6Hev39/PvvssxO2x8TEsG7dupOW\nmTNnDnPmzDk/tROiC9GVH92tjvr+qH2NbrRWHxjGMWVM/q+KfiHOjjxRKsQZ8vtg/KDLaWyYEtgQ\nXg73jqX5z7tpBn5+9MGjX4TET3hv1Wx+zmyYG9i8/I3Hod+viamTlYzE+SWhLsQZMgxwOU08/exE\nen4YTWRsLVPNHuz3xxLaI527h67jwIrBVMaOonTcDsLqChibnMDjub+nxwwvxu9n09jcEwC/ywd8\nOVSjaGyox0bPTmub6PrkUU8hzoJSoGmw/1A8ef8bhjKgEjtNenhgXVLAbNLaHh1ShoFSCk1XKE2h\nDu+xJAQuoAbbmgHweL0neTchTp+EuhDnYGB8JVdM3oGuQ2/NQWhoI/j9KHcjXo+ithZA8VFxBU0N\nXnwehfIpWr1uUHDwwDrAwO02KCuD1r8VQ43Muy7OnoS6EOebMsBsRTdBeHhg05j+CdhigrHoZjQd\nUFbwQW9jAq14MTSdqBgPodf0RtlS8LQaeH0+WlsV6riLq0K0R8bUhTgLmvIz2thK2jsm6iJ8aFkW\nYlo93PgOcGdgQq9ooNQCJQfcfPDsb/i7UnieBHzw5lsueBuK1Cq+x5v4lUJVgvqbjwal8YNcA+X/\nB2q5n0HfWAaXf6tzGyy6DOmpC3EWNKUo0xLYeMklFI/oj9I0Gi1BrBsT2G/oGs7D4+Y+v2LSsEk0\n60HY5lhCLcMxAAAgAElEQVTRrTo3Xh8Bc2CENou3WEO26S9c2f9lkh8dS68HruSVZSZ+n3UPMx4O\nxuOWO2TE6ZNQF+IsNWuhHAqJotEcjFIaPs1E+eEZqhXgP2qGRaWb0HSFZg7s/XJARdcDF0h9hz+K\n9fFHhlrkDnZxNiTUhTgXOgT1sqJ9ue70UQxdxsLFhSdj6kJ0EF0d6TMpdBQ6KI0grG35b1GBV19+\nH+oMwfflhdGj/ibsrNqJYamn0u/D7Wulzl2LqamBTeWbsKHYX/U5BwqWARAdHM0V/a/o4NaJi5X0\n1IU4Q77GwANDmgKUhr9VOzxUcqSrHmSYiDPsmA5PtuVticLri0Jz62T6rifIp0DBVaoHJjSs/sC5\nnvv9I4yvDiyJp1cH1ixQKD6v2sHn5lrKjXpafW5qXHWUNJTwaemngGJf1We8uuNVXvn8FTL+lXHB\nfhbi4iOhLsQZ8Df52XnbTiAQ6n5nBO5PYtGUQqlw+LLnrXR8+PATeLjIRD26qRpXkId/m/9Nqznw\nhNJ/9Gr8KNymwAm/P/MpPooLDryZ/uWfCo3QAzcTunsq1qoR6K54zIU3Ya2aQPiuBwCdbw+8nWVZ\ny3g96/UTVioTXy8S6kKcAWUogpNDADB00MIaCJ14CDQNTWs83H0HNHXU5VBosTZhKAOTYdDeJVCT\n+eTj8PY4sAc3Em7zYrYYhMQ0EBkJfRIDpzs8Q7YQMqYuxIUQEWEjKMhEkMWEu53jgjTPSbenWp1g\naiBed1OjexlsrifIaGVMcCMHgdayVumhC0B66kJcVJTn5D31lj0uXA3heJpM6C06EaUReCo9NG8P\n3BLZtKkJb7XMGyMk1IW4MPxaYLz9+M60OnbVIlPYyVcxir0hlrj+Bwnr04qvp4/i7xwg/NJwet/X\nGzTQLCc5t/haOq1Q9/v9jBo1iuuuuw6A2tpaMjIyGDRoEFOmTKG+vr7t2Pnz55OSkkJqaipr167t\nmFoLcRFSKqTtQmnAkdf+ejPKo2EcN7riVTLNrji/TivUFyxYQFpaWtvSdDk5OWRkZFBYWMikSZPI\nyckBoKCggCVLllBQUMCaNWuYMWMGhkxGJLqpIKubsGHF+BMrQFOYQ92MCasCwKQbgSdID+e6kdBI\njdmL700P+BQbNztBQYX2T8Dgff82th2Cxpf3U//fbfzpaYOXd6xA+f3UeJp4Y8UKDrnbG40XIuCU\noV5aWsrq1au555572i7ErFq1iuzsbACys7NZsWIFACtXrmTatGlYLBaSkpJITk4mPz+/A6svROeJ\n7HGI8OEHMWKaAIXJ6qVvUGCMW8NAg7ZQ95m9uLwKfSDoJujVC9AgPiYK0EjQetIzGIJSIwjq15MR\nIyE1ZgBoGjaThfr6esqczk5qqehKTnn3y8MPP8xTTz1FY2Nj2zaHw4HdHngwwm6343A4ACgvL2fC\nhAltxyUmJlJWVnbCOefOndv2Oj09nfT09LOtvxCdqnlnIrb6KAgtoLU2jDcikrg3ZBc+w4xhHFmS\n1NIUBoB5ZBDutzQSe4fyKRAfmgTVGgP0BKrCoWJsD8z747jsii8o23EJ+/S1hJpsREdHQ0NDp7VT\nXHh5eXnk5eWdcbl2Q/3NN98kLi6OUaNGfeXJNU1rG5b5qv3HOzrUhRBHROhVuIg7YbvXW4M7rAW3\n2YuuWuhpOkRLSy11tevRUATZGk9yNtGVHd/hnTdv3mmVazfUP/roI1atWsXq1atxu900NjZy++23\nY7fbqaysJD4+noqKCuLiAr+ECQkJlJSUtJUvLS0lISHhLJojRNfjVyb6vnUZ3Ps2sX4PlWhtHzBL\ndS0AZlcrD/kUpf5AF77C6A+AYQRGQq20ENXUQkSxwt18iJZqPyktTsJamgiyeunr8EFzMYPqa2ip\nr0Y/uJlwBbEhm9F2fgEOE6lVKvBPBF1ubvs6ajfUn3jiCZ544gkANmzYwB/+8Af+9a9/MXPmTHJz\nc5k1axa5ublMnToVgMzMTKZPn84jjzxCWVkZRUVFjBs3ruNbIcRFwFA6o8rLCfca1Pu9+JQfs9uH\nBriDIwBIqbfQCFgbA9sn+/+HxmQiVBM1hFBl9GXXax9ifsfAU7ccT6GXG51FxCsDi2Ew918GLc0v\nEbS7CYtSxB9ch5sG9K1OTP93G5pJY1MhcMcmkM/e19IZPVH65VDK7NmzycrKYtGiRSQlJbF06VIA\n0tLSyMrKIi0tDbPZzMKFC9sdmhGiq/IpM7fdWQh+HUIrMe7+Jiavwew9L7GnxoO1pornE3Ti9rRS\ngh+tJfAc/z+WmnnNb8a10Y/pO/Bg1S5KMUjiAJ9rA/CUDsTs3867fzCx8cVZNI/8JavzRjK7rphI\nWnj8B1ZK1j5OdM9Xia6t4f5v3U/CE5V4M15h/4y70EN1xt3yCEMaHMR08s9IdI7TDvWJEycyceJE\nAGJiYli3bt1Jj5szZw5z5sw5P7UT4iL2oxk/YbCxB1tjONM1CNZd/M8+iuL4DzjYKwW/ycqBIRGo\nrSYc4X1QfMYlQR8TRSyYzPiYwwRLHou99czkKUIr62l5rT8Yq/AryFHTeZBfAgqP34PL7KNF6fgN\nP63+VpxeJzWuGhIAn6mFA40H0H0644CN5Zu4kus6+SckOoMMuglxloKDmwkLbiLM6jp8+6LCpPsB\nhRkvVjzopsAsjT2CXIELmjPGc5X5ea684lXQfNze6150FN+ghrH23dw2+nnMmkGY18q04mp0A/BZ\niG3tSUp1P+746FZuPGSnX3hfRthHMG34NECjhyuFP377jzxz5TOd+BMRFwMJdSE6gLJ6waTaHiot\nCapDAT7DC2Hg0wNzpjdbktGACHM9eCxEVetoCnRDJ9rjCzz6rzS81V5amsOwlMdwW1EkQ9cNwVNx\n8sm/xNebhLoQHcGvBVYuOjwfS6w/GA0wayZoBV0FRj57N5lRwP+ww8B9LLrqn3jNPpy2Zl5M6Ylh\nAixerAlWwmLq2fDdN2gxG/itXrw1MoGXOJGEuhDnyDBOnEtLM/Rj5oEJbg0sfKEpE3hBPzyRV4Tb\nCoDPFwaahgoKOul7mCLMBAW3YAn3gwbuCOmli5OTUBfiHNXWhKMUxyT78SHvdAbC2us79m6wFsN8\n0uOFOFuySIYQ56htbYqj8jrw8khUR0W1AGANOnaCu3D92CEUwzj5LcDOZqh2h1HrtKIUeJqDcXlh\n926OeyfxdSc9dSE60dFhrBT4/CfOp66AskrFtsYECh2RKKXRWBlLTQ0sXx44xqfkoywC5DdBiE51\nuGeuKdAUutl30qNMCW6co5oZmlyNrit6Jh+kTx/4+c8D+xXykJ8IkFAX4gJzaWDzu9AUpNTWo6Po\nrw6gG4rmx6sxH7cGgQYMDA4mzOeTYRZxShLqQpxPSkNXeuDLr6H5j2wHMPssvKmbaDRFoTQ40KMX\nBhrl9EVpGqkPD8anH9fr1gCl0FCYtEDga4cfchLieHKhVIjT8Mwzz7BkyRJ2NjnZ5zCh2MgLi9YT\njBu/VgJ9milfqTH30EGYo6CuDJqXUfeZg9rEVvrVxQEay363jFf9/fGsNGMabiKl/io0TREddxA0\nxdXDd6Mdc8VVQY9qnIVFDI3UuGQMmEIbGDHpH/w3vx6UrCwmjiU9dSFOw6effsp3v/tdkh98lBtG\nP4SGzlVXjuDOjN5MSxsCeigxE8J4gAe4/C4/w8aFk3zjeCJvSCTtknC+c0USoLj+8Uz+YX2J5hvf\nwq/5eUN/FL8Ch6M/oPNSac9j+99Kg+qeWJoGU7NnAr/8z2gamiLZk/sQCoO612sJV+HE7IrnwK8P\nsG/WPuz1dkKXhLD/sf34W/wnbY/ovqSnLsRpSklJIbJ3CknvG4BGn8QYBhk1NLmiQTNjs5tJI43m\nZBOmgjBccQmU99pDaJ0Za631nN67pq4Gc1wkFc11KKVorg8sobf+0/WMxkSDpYGly/8f6HCv7keF\nK8r/Xzn22+2EDA45L+0XXYP01IXoYD6laDXcNFpBGQqsbnyaCwCzCvSktcP9c7PZctJzRCVFUZeg\niOprAV3Dk+QFNEY9MAqn5sQ9oIGb/nETGYsyqI6oxnVNC+YY6bN9Hcn/60J0CA3QsAUFs6Wxgc0R\nT/P8w+BWHpixkHcsgUOi+x7AvFfRl2IwFNf+Lx1YfMLZgkNCMGkaYVYrmgZBIRbQIKlfEgV8jEUL\nYszIMdSqWvZe4JaKi0u7PXW328348eMZOXIkaWlp/PzwTbG1tbVkZGQwaNAgpkyZQn19fVuZ+fPn\nk5KSQmpqKmvXru3Y2gvRwZRS1NTU4PF4aGpqwufz4ff7jtnv83/1xcre0X35y7DhzGz5LdtzwKZZ\n4ZlH+O4XfwBgc3B//GiBnrqm8dGYrR3eJtG9tRvqNpuN9evX89lnn7F9+3bWr1/PBx98QE5ODhkZ\nGRQWFjJp0iRycnIAKCgoYMmSJRQUFLBmzRpmzJiBYcjVedF1vfrqq/Tu3Zu33nqLhx9+mO3btrF/\n3/62/S6Ph927aw5PkXtc4aNuYqmvdwDgNw5PxGUKTA9QHlGMaito0Kzt65iGiK+NUw6/hIQELrJ4\nPB78fj/R0dGsWrWKDRs2AJCdnU16ejo5OTmsXLmSadOmYbFYSEpKIjk5mfz8fCZMmNCxrRCig7hc\nLu644w6ampqw2+28uCCHf9eZUdzE8wvfwYoHv9kMWhClRjM/4C5aZrnwNm1HmfeRUuil8d4o3j60\nl0cB3Qg8+6kf7uvEtXrbsl9TEO6Wu1XEuTllqBuGwejRo9m7dy/3338/Q4cOxeFwYLfbAbDb7Tgc\ngV5IeXn5MQGemJhIWVnZCeecO3du2+v09HTS09PPsRlCdLzy8nKiRo7mDu8tPLnaRNbN4xloFOMq\niecxCrDrITzO43z+4wc5tD6Zlphv4ruqmlBtNzePvIaEd9agBwX65T7t8AVRT6+2R/yVrlMfbwcq\nOq2N4uKRl5dHXl7eGZc7Zajrus5nn31GQ0MDV155JevXrz9mv6Zp7S4ufbJ9R4e6EF2JJTKaeG8S\noBEXG0Efw0ZTXXhgn6aTRD8OJej4IoJxxcTSGO/D5DTRMzQKs6YhT4GK03V8h3fevHmnVe60b2mM\njIzku9/9Lps3b8Zut1NZWQlARUUFcXFxACQkJFBSUtJWprS0lISEhNN9CyG6rWZdw6frGNZYCA1r\n2+4OCcyz7oswaMWKYekBMjmXOAfthnp1dXXbnS0tLS288847jBo1iszMTHJzcwHIzc1l6tSpAGRm\nZrJ48WI8Hg/79++nqKiIcePGdXAThLh42ZQLBSyPNlEeGornkj/ClGtRQYEee/7lo8CkUf4DD1sZ\nSeOQX4MudxqLs9fub09FRQXZ2dkYhoFhGNx+++1MmjSJUaNGkZWVxaJFi0hKSmLp0qUApKWlkZWV\nRVpaGmazmYULF7Y7NCNEd2f3V6AbcEeNj75NTdg2ZdOy6mGYHBiy0VauAv8MWGBj/GUfs3H9bzq5\nxqKrazfUhw8fzpYtW07YHhMTw7p1605aZs6cOcyZM+f81E6IbkYDSAEtKBDq3zHbAY2+HL7+pGTM\nXZwbmSZACCG6EQl1IS6oY4cjzT6jbd6Xw+vZnaSMgoICkAf5xGmQKzJCXEjHLYDRYAo5cp+6pqG0\nk03opdEa3hOjxYzLbQQWnvaefOIvIaSnLkQn0A6vYPS5f+CRjQq8zSeGtVJwoC4C9UUYu/dEoAyN\nbcWDLlRVRRcjPXUhOoHZHJj7ZYSl7shGTREU5mHNuHE8E5mB98ZKVkfNwdEnimXXt6BCdMLi3DyV\nolGp9aApei5XB22i59w0NHss9+W/gkd5SP3RPA5aQphrVPC3t/9G/bYjE+7dPepurkm55kI3V1xA\nEupCdIKiXWOgRzIfDu7F8s8TOHD53yg2GRjbJ/NBmoetRX0xCj/E4rfSUmXGpxSG5seIthFRGE2E\nuY4eA9/l6pHDCXq3HH1UAZ4hV9Gsmkn8+BX+eN/PaI0P4dqUazH6B/5VsHzXct4rfk9CvZuTUBfi\nQuv1X/oF92FHfST2/YNwqGB6bLwPS5QLd+KnaGxlYLXGrv/chrXHa4SVR9KjxoSrRyuWRJ3/bbqE\npPDd9Gx9n2vjF9H83i6cPgf9r72KBtVA6Ec/5G/36IRYQrgy+RttKx8V1RZR764/ReVEVydj6kJc\naD22cM09CwgL/YxvX/ZXHjQV8v3vL2DQgC/4/ewH0E0+xo57G9OQZi6bNJOeQ3/LdPuPmZr8EN9/\n4FFsmo9BQ9ehgH/+04Yils92jOb/HjHx00cjoTaF2kOyhN3XlYS6EOeo1ekBFEY7Dw61lrRi+BTK\nGzjm/YZ0Gj1RVL4zCr9f560Xfgxo/PjjgRhKB0ND95pAaWgNkVgr4vH6rWzYAiiNEKsfTYPHHnOh\naWVM/Nb/+HSdj7Xv1EDsjgvSbnFxklAX4pwoDpYeAGXgxfvVRzW3gqFQx99rLreei/NMxtSFOBdK\nHX60X8fKcbcjHnVLus29D1150Y/rzPuDvnpRDIVCKUWj10WTv5Q+1T4SP4Ei/Ayt+QijSvHJzJnE\nqpGw+X1eHTkAA4PJDj9WfxX1VQXoW1ugxgZW6/lrs7ioSU9diHOhaUd9ffVhH/Tvj8tiwWWxwKVj\neS1kOgCfXHrkD4H6irnWfYbiI0wk18PPC0GnlWuK6/h5HQxudtEDGFLjY1xDPZe73cQoRQxO+rSs\nxPLkHPjpT+Eb3yCsuvF8tlxcpKSnLsQF8K3ICIKBEMC6aRMP1TzD7wwvV3xac+RvgYJI15Geu4YG\naITrIXxo6sWS7zmI1jz4/xrMEyOGUMshro+aTMqbLjb068PPDpRQtm8P20b3oUyLYoE2lB99531K\ne5ayv8DgqffmUxKp8dRHT51Qv1Hxo9h076YL8JMQHU1CXYhzZHzZwW5ngsWNX0Tg8WoYrR5SFGT9\n+1OeHeVigKcU/XBBDeh3qBV6HCmnaWCxaAw2D6AmpJnePkUhoIdEQwukXpaK8d8t9BwcjVIH+aj8\nI+K9oOk+msKdLLxxIbY+NuL+Op1bhl5Odc8QXrjuhWPqVtxQzOW5l5/Xn4noPDL8IsQ5+nLulvaG\nX5JGRmDExaOsNvI1+M2vrqfOFslWy3CMtrlfYHvScbciKqDVit9jIqwhmMz37wE0+nk8sO0SXE+3\nEOPvSf9PhvCM6xkab2kkqaEPIcpAbw3m1bde5bfv/5aG1gbeL36f5TuXY9JNx35ppg75uYjOIaEu\nxAUQFwfBNjAdl5+ayf/Vfwy0w11/ixfdbOAO8TDYmg9AjdEDkg4y9I6hNBtNeFOaeenQS0x8aiKH\nbLW0qiDCW0N5IvoJ1mevxx4aR2bq9RhKbrfp7toN9ZKSEi6//HKGDh3KsGHDeO655wCora0lIyOD\nQYMGMWXKlLYl7wDmz59PSkoKqamprF27tmNrL0QXUuuuw+1zg4ISvwIUX/T6HHXU/e3e4255VJoC\n3U+hfQ9NQY0sG7ITgMYwByqynre0t2gNbmVrj+1s17azQF+A0+rCjyxy/XXV7pi6xWLhmWeeYeTI\nkTQ3NzNmzBgyMjJ46aWXyMjIYObMmTz55JPk5OSQk5NDQUEBS5YsoaCggLKyMiZPnkxhYSG6Lv8g\nEMLtc2PWzXg0Dz0O985HJjqP6aj3t7WA8/iSGibDhIaGzX/4aENHA2xmG6gWzAT+CeAzfPiCIEE1\n8GO1mfi/3AArg8Dh4I7HlzG51QkrJxxz9ni/hzeqKmHxUduffBImTjyfzRcXSLtpGx8fz8iRIwEI\nCwtjyJAhlJWVsWrVKrKzswHIzs5mxYoVAKxcuZJp06ZhsVhISkoiOTmZ/Pz8Dm6CEF2HfvgjV7Rd\nB6Wx58Nex/Snm6xDjzleOxz5yTVJ2FQINxVHAGBp6QVoXNP/arRWjRSVhIbG3cPv5rarwinTIlmp\npVD73V/Bs89CVBTrbvs2s75rC3x/1FftE7/i11Ojj2zr1Qt27rwQPw7RAU777pcDBw6wdetWxo8f\nj8PhwG63A2C323E4HACUl5czYcKRv/aJiYmUlZWdcK65c+e2vU5PTyc9Pf0sqy9E15OW0o9gL6CB\nWT/+I3ik324QuHe90lZHVdIOmrUWHh2rwXsKd9xGtu5S/Prj33FjWH/e0/Mx7jGY+beZlIab0LBQ\nrCKo2NEX1+uR9G0x4d92CduG5LH39dhj3rFM87Ax0kSTZSjhY8Lh8GdbdK68vDzy8vLOuNxphXpz\nczM33ngjCxYsIDw8/Jh9mqYFFsz9Cifbd3SoC/F10zu+B32CNDaVQYI54fCC04F9kf4+ABiawnvF\nPFRtYFzdr/sBA7cpcAPkZxEG/gxorXWDBn6TATbIs+WBBVRMDU09mzGHmQmKD0IzafgjfChdERQf\ndEx9LIYFVaeoeasmEOrionB8h3fevHmnVe6Uoe71ernxxhu5/fbbmTp1KhDonVdWVhIfH09FRQVx\ncXEAJCQkUFJS0la2tLSUhISEM2mHEF9rOibQFDavDcuWO9GSXiPGHUlCWSRfGEXcvzOcHDTSSodS\nUVLI7ek/xHB9xJioS2HNZqLuCqa61ApKwx3upvmzZjwVHuKcfiI/jcQUZ8LxsuOY91R+xfyq+ZRr\n5VQvr6ZvaRUtbxZT9ddN2O+w0+eRPp3zwxBnpd1QV0px9913k5aWxkMPPdS2PTMzk9zcXGbNmkVu\nbm5b2GdmZjJ9+nQeeeQRysrKKCoqYty4cR3bAtHtNPh8rKurO/WBJ5FotTI+IuI81+jCMykN6vqj\n+mkcioig9On7IbqFX46OR9sAH998G03azfxhcyhXjZjAU+mXwhWhVEcXQ+wgCG+k8N5pvNYSzPwR\nKViutlCWXY7X6yX1H6nHvFd5UzmPvvIouVouve/rjfV3UUQMiofgWJq3NnfST0CcrXZD/cMPP+Tl\nl1/mkksuYdSoUUDglsXZs2eTlfX/2Tvv+KiqtAE/t0xPmUxCeiChE3oHKYJSBGxYQGwrgoqu+tkL\nrmV13cXeu6KIvaOCqIBUadJCTUghfdLb9Ln3nu+PQZQFEbCs7ub5/SbJnHvOve85M/fNuee8ZQqv\nvPIKmZmZvPfeewBkZ2czZcoUsrOzUVWVZ5999ohLM620cjgW1Nbyt6IiBkYf21KAR9cpDATYO3jw\nbyTZ74kAyUCSdGKbcgm//y88wzxkmWMoC6yi/6aX2VKSz+kj/km3V3WeftbNWq+BKV1F9efz8lVx\nnDU/QLrcQOGqNVg9F5O8LJOZLTOprKr84TISyJfKlCSXYJbNRPWJgngTpgwLFocFX67vPzcErRwX\nR1Tqw4cPx/j3UKH7WbJkyWHLZ8+ezezZs3+5ZK381yMEVFUdWt7YBEMsTp5M6HbE9ooCbX6055fv\n93NKTs6vJt+Dax7ksW8eI1AcwAgYCCHQ2o+iyFcE9I/0AYGQNY7ZJtwQIMAZKtof5TGCUuUBycEP\nhmkShmRCb6pG8tbjj81GMcAZqKOpcDdfzSymQ7tCglFxlKSkYUqWcIRNhJUgdZZaotrE0xA1n/aq\njUBqPOX15di7/uC16n7NjbWX9ZcMUyt/MFpjv7TyH+Pdd2H6dIiNPbjcPxJC3WHlc0duX18PK1fC\nkCFHrne8bK/eztCMoSiKgtfjRdd1dtpcpCopB+pISEjGMbrZm80QHQsShGXbQYeEVYUgyIaBDCiG\nxJC9TowWG9v61fHC8xuZioSytz2K9C03rb+Dwr0+enVNYcGKCpKukajadSrCMoUNGflUDclgasct\npH3gwT3OzsLihbx99dsHrtf0bdNPRods5c9Jq1Jv5T+G3w/nnQevvnpw+Tw3LGuAeXdDONxAUdFs\nhNAOaX/xxTeSl/c5cXG5ANRZRwKdf1UZ4yxxyFYZJayg6zqqbMKi/PvMVuJ7U8Q6F3zk/CveUS40\nWzpms5ONcoiARWPTFf9HuCPsciRQYkuHIbPY1imWR8fL1Io6PIlxBJNHsVQPMcC3BRFQEAICtiT8\nWgz1thJ2p3TD2A0+3YUIp9FSMIkG81IaGpMQhoake5FlM9/HejRVeKHjrzokrfzBaVXqrfwhqQ2H\nme92YwrkkFD9Gc0J1x1Sx4udfSKDKAFqMJ/ahvfwGbf/B6T9geJ2UGTpQY+qDYRjYrCnVpCmefGE\nhtMnP5f32knEmoLEKDLU7cURUuiyuz+bUPCWp+INZXJ58HYe2fN3QmVJ6H0U1jVE4zWegrop3Fx/\nE6CyLOdODP/NnOWOIjYcILxWgWAclVv6ASkgdHyGH7cI8MUXzXT3BclbnUu4Nsz8+fOJiopi8uTJ\n/9GxauW3oVWpt/KHZENLCzrQlRaGE8MCMenAMdXwYhWNNIgovtM7UqnFk6iDK5xPte7D4y9ClSQU\nJQqTKeF3lz1Gr6PH7g34k5w4u22mZ7CBWt/FnLd0MXf1kGhnG8XAzpey/oN/UbnuL0zcLbMCwZyv\nenHaTU9wSf4i+j2xlDHvbkMxa4w2duIJjSPfqGBGy3s8wlj+OfJSntr5Gd383Zneso8y1c4trCbp\nO0hsWc7GGf3QNT+1SKxf6ycQCFOaU4rm1fjqq6945513qKur+93HppXfnlal3soflrvbtaP3mnUo\nMws4xzzhQHkoXI1hBLmzPpGom5uxmIMIBBoyZ4ltKOZGtj+XRCCmiREjWn5zOeNb+hFlLGHG8ish\nSsJW3pb+G6ag21IxeX24hi7F8bqGu+VGbvxQIikqidSkEN3sKYyUvUiSAQLCQuJfc55DOlcgTIAE\nEgb2pD1YQ4IKu6Brr7eh4CV6dNrD3ZUwUE7DXlNEt5BGAnBlDHRXU5gCjEOnkE5MP92BtryayrJK\n9HN0Vn2wCl3X6dGjB1fWXcm2pdvQL9Lhz28J2gqtSr2VPzhSeRW+zlaaH7rmwLp6RcXLOJ0jufHG\ny5kxYxcDBlTj8xWQ15TH5f5ZFM2eTf/2n7Kqut/vIqPL0wODJexO20HfpuFoDg/VKbsJRpsxZ9Vg\nt3X/zJEAACAASURBVEB15wDZW7aypT1kJ2QT3fVkmrZ7qVVqeaPjetg7jvNfHEXnge2ZIQqRNDBk\nAJndXYbiqdMpjy/ktZ7j4WOJqq42Lm8DZ512F9NvvJC8jDaUvq5z/+mxNKtXIkseJEBBkJKcQny8\nzhk3jKWkZQHLly+nV69efP755wTvDLJt7TYMv9Gq1P9LaFXqrfzh0W2QF/oX8fFnAODTfEiOcsrU\nWGocNdTH5NHMWhpNNorDyWAy/cwZjwK3m1Ff70UpUZGbJBYFAiAEUlZHYnzfAv2xBUJk7awnXw+j\nSQZruy2i77or0ONqocc8Nra5gupOpVxh1nm50ydMMC1iywkpkAwpI6Opy22gQqlAxKUD0OS30Ff2\nAPvDBhgyAom2VQ78BSEaRiiMWaKyBpArUxifk8FVjhhMFSkkiwyi5BiifU6aXaaDYrSrJhVFUYhO\niEHySmRmZiJJEu3ataPcUY6i/kZJMtxuaP6FeVGTkg41j2rliLQq9Vb+FPj9Tv7+94gjzMSJBjk5\nAfbt05k3L8jixT66ddPwOhshvZ7KykoeveVmJlynM23aNABmzpzJySeffPQX/PhjTvl0NwWJyeCT\nIBwGw0BKy8DqLwbAFNaIK/djMSK5i8yaFDFxFBJKXTqWqE4Mj9mJ7Fe4IO1CzOpcrhtyHatLVv/M\nxQWyFMTYn+jO3RJEi1FQwjI5SnsAZJ+DzmVZLFlWxTiPC6qSiCaWrnnZlE9MBOqPbYB/C3r2hJiY\nQzODHC0eDwweDB9//OvK9V9Oq1Jv5U9Bc3MzVquVcePG4XLtZMiQoSxalMAJJ5xA9+4dUdU6ykQZ\nWK04oqIYNWo0svw1p59+Oh999BHLly8/NqUO7OmRxFuDhmOu0WguXoGu64ScBqUTA/ANBBMFlWcZ\naHMFQgKfjUhwLSS+sPfFancdX2cFqCKArIaQEXTuEkvT8kZyYzVO0ZbwMTcSziriaedHlN5wK9vP\n2EtDt2YCu7xYZQmqy6HD8V36VyUUgs2bj3+mvXAhPPvsryvT/wCtSr2VPwTv73yfmY/MpOW9FsRJ\n46B3X4aNH8GFmuBsO9ScBfPen8e89+fhUAVBYwdh7zh2PXI/krKcs04X2NqnQvcm7DYbEydOZFX1\n35g2bRr5+fmEQqGjksPvL6Sw8HZI24t8ZiUjXcuIVlt4+uk6unY1MXng12QkRKGoj9On7wpCIoSw\nfYjN5+Hq/gZi1D+ItpzG5JM2INvLiDXvI+xPPeQ6EhCWJHIHJyHFDKfdBkBR+Np/cNhbQ4bVeAhn\nK4RUhYf35zf4nt2+yNPL9+5Dhmh1JPpfp1Wpt/KHoKy5jN6O3iSemki/v93Ow5U1PDXlTIZ+/gbq\n16+yLs7M7NlXMe38aZTlX4YrcTp/vWIQV177CoOG+qivup/3i78FAwzD4HhXiX2+3fj9e2nb3B/3\n7kr2dcyiW9IuJEnB48lk4z4LsY19EIZMdVU68aKB4PoehLuUsr5UZ2hLb2oGqCz+tjdZ2e2JiVUp\n3T2dXu0Ovs6FSUn8TQgSKlqgrhjIAsOgvelHaY+EhJAkvKIFEa0gSzrVLgMhwcv2vxBIOpMLdqyi\nwznT8UeZ8LxtZdPIgbi66tTbE/j0jEsAhdmmC3Fd6yc3LhW/JZ2zd+zAd+utXFRYSGBMgD19xtCU\n2pMrLdXYd3hg2DBwOkkW1VzNr7A/0crvSqtSb+UPg1kxExcdR1pCGkpTgPZtu5KSkIjXoqDKKimx\nKXTP7I7WFEVGejscVgeZyVl0z4S8kAulQoLgLw8gZzankNjSj4bSzWxJ60ebcDVByUdlS3d27nMR\nH305hpD5tuok2hvFODYMIpy1jNWlCkNWnUZF9xKa3EOoy+xMllZNQ8uhayFtzGbMQHyZD2EqJQQg\nBB3UH6IimtbGonYVDJDW83+3gmESqNJTnGu/k2vtD3K7vQHJJyOlC5DAN/cfWGQNWRLk6h1wq0ks\nazmDkz6KpUvlEhZ0GERB7UrOH3kZX6xcybkXXEBdQR3+Hfk0Dc7hdOdpJI5KhOJiGlSVOxKbuJrf\n387/AA4HfPUVxMUd/zkkCd57D8aM+fXk+oPTqtRbaeUneODU6exJbkdXZTuVhpfq5mYC0TG8MTyI\neB4+6ToGK0EuTgUkqHfFI2QZYlLwTYunVJMZppVwfEGEQW5WUF+eRMxgiZcvrmLVlflcG+5POGQl\nsHEQL9W6ufrr68iIeQu/ycmMojuZ2Ol9GrrG4fV+xunjS2mfnsuIvASGrF6LeePJfH3RFk4Nx2Ba\nu5bTnU7Ki7xs3LiP3PT1TNAcZLZpA2VlVCYlcUfirzmax8GoUVBbCz8RVPCouPzyiBXO/xCtSr2V\nVn4CXVZos3UZlrgdpFFDndQBswZT34cndLh8w9uUfbeO6NyZMELQprwMWTegLh/zPz5gSKWVilPX\nUZRSyLo9zZzj01jx9gr2Nezj4fKHCQQCPy+EpmJWFRo9JjyajDDMCBn0fjksLyzk1Tkjyb3gTgq7\nJNO0I5piVxO7MmNpaNjOWNVEwApqxg5kgvQxbkKSw+QMj0P3+NnSJxm19lZ0tYqHP6uhWupG7esS\nbWtCNC78EPHkS4S2P0XpXT/sCSQ6ErEo5iMIvJ9j3JT+SX6pOaPF8uvI8SeiVam3ckQMYbDVvRXN\nODSg1tFgVa30Sup1VHVP/HgLJeXLoaqK8b168c2LLzJm2jT8e0sRF9hBwNU3asCi/S00lh9wNH08\n8jIM4sKn4ep1AzWqhiw70DSN7iNG8NdQiGTzUSikHyEEOFUTZllmbFwcG02QeMFd8PEykJt4a3kl\n/0wNR0J6yTr7DcyJd1VA9wJqayGQEsQX8IIAT52HQEsAt9uNy+UiVoml8ZgkOhg1RsWQJfTv7+TD\nrT7Fx4PNyucPX0jC+qVcca0F/+07uP7azlz0dgyNcSqXDVDporbHnGKhf24LPfbJhBSDzaYlqOsi\nY9YSbGFAan8Gpf1M4pstW6Co6Bf0qpVfQqtSb+WI7KzeyfC5w+mR2ONAmS50trm3YYiffywWCCyK\nBUmSGNt+LA/2fZBPPvkEgO++g337YM4cWF2ymlC1TlHKhXxUMpiG5iDylSdirwsiXbaXmLg9NDUF\niYrqgRAhJNmM36ciO8OEnUFUQ8Mwg2GVic/x0JB4Eea0CXQ0x1P05pvsLipiVl4en/TocWSBD0M4\n6MDvt0UiJqpQtmMECGhqiEeVrJhbkhBIIFuI+PZb8QdOZ9yX6fyfcTOje3fjpF5WVMf9TLp6EqtL\nVvPwtIf59olvsa7+HWKZS5EoknJ0NA8sfJjR144m9e5Ull+6kvKN5WxavonYjnF8mrSQzFmZAFQG\ng/xj8TKGuD6m25cnAnDHsjtoUO0MGnnHka/3zDOwa9dv26dWfpIjKvVLL72UhQsXkpiYyPbt2wGo\nr69n6tSpFBcXH8h65HQ6gUhWpLlz56IoCk8++STjxo377XvQym+KZmh0SejChss2HCir8lTR87me\nFF9X/LPt2z/ZnjXT11DeUs4NX93A3Xe/z7p1X5CZORK3G5qa4IsvoMzwI4Uuoaj8TkRtM6JtEN1Z\nhf51NKzKIGzXUUN27A4PYV8psmwn2GxGjdaRZZ0Yfx3NmQbBTJmOSwqxDurFsh6lzOnl4v5du8iv\nq6M2JwcjOxtZln9W7h/jLhpKVdVa6uvBO8TEZyvPQiDh8cbhD0ZRY8oCwBBKRLkLCdlUiwh2QJd/\nfuNWQrCXTrDhXha1aDzEJ1TRBr+wsSDQnsavtiCEAuUqb60dhGQItm8ejogu4tykRO7qGo0WcgIC\nv/cH001DGGjozJ/bTE9fkLnnLEPnG+qzH6AFL12dE7maqYTQsLxp4XzlfEzzI9YuwdgoGm6/nFK3\nhyOnKmnlj8YRlfr06dO55ppruPjiiw+UzZkzh7Fjx3LLLbfwwAMPMGfOHObMmcOuXbt499132bVr\nF+Xl5YwZM4a8vLxjvoFa+XMgSRI2k+3n6yFhNVmxqpEZ6dKl0LbtyQwbdh85OVBSErGg26A8hnlD\nFY2WXWgTOhGYUY4hS0xz7uTjLR2597G/cPXVV2Mk3EOG6sHhDiCIrDZ8/7thdxR7XB3YW9KAvMVA\ny47izpgPyM/NxRcOUz1zJlu7dqVfv2ONCSOTkVFE377ZbLAHuGr0E9y+aC7O2Gqi7Y2kWyITHkXS\nkBAg+7DaCoCjS6sXHb2PDzmbcVlD6NnbAt8JbJKOSoiYmKW0SFUYugGWRtTUT6DkKpq8LrBL7D49\ngb3r6tm5cVtkvE1GZDAcCchKMwoyQ9tkYvLJnDV4AGJrOm1GJnHd0k3cceoFZGxsS125m1CbAOOs\n43B0dwDQaFf4DoN9pYdJTdXKH5ojKvURI0awb9++g8o+/fRTVqxYAcBf/vIXRo0axZw5c1iwYAHT\npk3DZDKRmZlJx44d2bBhA0N+q7Q0rfwpkCWZKe9PIagHya3NxX/ma1QnGqzv+i2VMdDYCOu7QmlT\nKQ3nh/CavoYEO3qBFaPLjVg7NCIBdntkFUHXdd6ZlERmm+GctuFVBvytkjp7KXe+NpH/mzSSPbn3\nc/79q4iNFjzwRDu+PPEUpp97LjluN/UeD7qu/6zMvzeSZHASy6CNmYy2sUgSKJKEIunYXLXUmypx\nhVwEgi3sLF8HIY3nnp8HkoGPGi4TADqCBpau/BJWPQkI9t6XiKaWMmPf04xDYdnYl6k5TUWxKwRX\n+Hlp6K1cXHITOR02s3z4EgrMBVhSIhuL5/S+Aqns2HLEtvLH4JjX1KuqqkhKini9JSUlUbU/yWRF\nRcVBCjw9PZ3y8vLDnuOee+458PeoUaMYNWrUsYrRyp+ELy74gmpvNbm1uTyx4Qnc3w2lc+8GJnYf\nyQY3FBbCxJ6womUF+UtbMBzZiOwE/FFNhLbmkFO3k7Cxmt27vQiRh6ZpVPk02ikyumzCUE3oqgqK\nhFD2L3VI7F9H/pUQIOpj8FX7MLJNiHDEa9MMSLqCVYtHAmQhHdintOkSNt3BhcZFuI1jk0WSJFSh\ngLAwoPg0nM5Cbmy+lisdt3BRypncX2Jh+szzeCXueYpuLmXhmX/l5L1rOLlC5aHoOJKcHQgLN5XR\ndtypqbyknAnaZ9z/QGeCmJFkCS2wFfWeDohQFHvki1laeBuFqg3ZLBHSQ2yO9aLO9u/vvzgwDpHB\n+Bmv1R8fb/VwPW6WL1/O8uXLj7ndL9oolSQJ6Qg3z08d+7FSb+W/m55JPQGIscQQY4mhrqwDOyuf\np3F7KT5fDI2N8FlzxKO0oSyI19QITVa0Qj+GYbAr1IRXz2fBghpgEV6vl8c2GbyVZSDQMUTkpSN+\nWxf5xiiIOs62Zh1T/LHdalK8hEup5XG9FzQ08zljwBvPHRVDIWznmeeeBZ4l5Z+QyAtksws3qbwT\nfSqJQ3wUy+9zqlVHoNDUKRqxGz7ufBFdcp3U927L4o3nMHLQfYzflENb7wri+tXwjPMZki9K5uXN\nL/Puk+OALYiGevh+CfUkIAysuvPoOzJuHGzY8PP1WjmEf5/w/v3vfz+qdses1JOSknC73SQnJ1NZ\nWUliYsRDIS0tjdLS0gP1ysrKSEtLO9bTt/JfgiEE+o+UrCYEBjKGHKauupLaWjdi/6Svuvr7CZ2A\nUDm4BVRFLDbqhADKyNsrQC7AUFW2NZu5ct0eVo28mlXLI+efn3g+YosNSr/l1U4So4p2om2q55uw\nSnV1Nf6mJjS/n23btjFw4MBj75BJQ+3YgmSLQtofqjYECEUnaKqNGDJKP6Rw9isCv+LlDXk+Y81T\nkM1Ht7e0cX0JQghaAi1MjUljXXNnmjuZmeE6h392qOHyjC948OHhzLr8Zl6Oe46dw3dw/a5mVrTV\n0c+GLaZsUtsGyJG/ZKzaAEjYdw9D4m1O296OEElkrpe4W0hcu0JCxclEojjhsx4o7IE39jCTDpzh\nLGKa3cYnMzpR2u5eAFbENqAKCf9Y55E70dwciWoZH8+YDRsYdeyj3cov4JiV+umnn868efO49dZb\nmTdvHmeeeeaB8vPPP58bbriB8vJy9u7dy6BBP2PP2sqfmpAeQghBXh5cccXBjn95U3fRkF0D4vun\nNQFZ98BzHpgiYTz+BHTr+f0RQDBwTT4Xd34ekgMk19VRE+cko7qG8rr29GYrJsLsKQ3z9KcN5FVt\nYsD7mw6SR1MVgqoZ3/ZkthiC8LuxPPX1CvLz82kJBtF0nVmzZnH22WcTd4yu5wLweLaiRzkxhHzw\nEUnwQ0itX8CYMXRtWA2LwCp56XUWNOblsacKCrvtoFMA4qQiFOUeOnTcysWxBvuasrk5DW7SYXJc\nGSeP+YKh/b5hk78Jk8UOqoZ08TyYb2C8fQk0t0XNqoczvVg/ngUXX8rC6m08ftWtLDppILb2Vp7Y\nuZdPZy6hzeuPoliGYd1vKKEUfI1JMWHNHHXkfqxbBzU1bOrfn3JF+c8r9XAYgsHjb68ooP55rL+P\nKOm0adNYsWIFtbW1ZGRkcO+993LbbbcxZcoUXnnllQMmjQDZ2dlMmTKF7OxsVFXl2WefPeLSTCu/\nH7W+WjaWbzyutvn1+YeUPfEE1PlCWO6zIQk1sszaR0DdjxTbBgHrpYjCkyBSyYBg5E8WXoPywWyM\nHQOJvqUAn8NBx+CHaHvjmbvlci6QX+Odk0ZxQssatrw8g6uvncHSR9vzwKXZDB37HnZfItO2P0t6\nz0pOCLjp3bKCF/7SxBlRuXwx+zri87w8f38PPhpz8EapKC3FOE63c7u9M6oagyz/+LaREIbM4b1+\njh4JgTUri3NHNcLDXxAtT2OQ/W12G93YbCulKehln9VOgRwNSGiaij+ssHDraQg1GiFLGIZMIGgn\nv6Uz3dosxyQs6LrCmjWTmCQ2kKdPJuGtnvR9sA+yfA6yHA0oyELFGkggcfM82p3SjpSyu7DogsQP\n1zCBjsx6LpLEI7irGLtq55bE9B/kVqRDn0IWL4b77uPVM85gZUICHI+xxMknw/33H/+Afk9SEsya\nFXkdLxZLZEf/T2LJd0Sl/vbbbx+2fMmSJYctnz17NrNnz/7lUrXyq/LCdy8wd+tcOsd3Pq72p3U+\n7aD3GzeCqa9gYMI4Huv/BevWwT+evYjQpM8xXBHFHkBHRSKS6kECoWMYQUbuldgodO7ZB9gehAwZ\n3jFASHRtI+EIxHPhzuWcYClHLVhLdHEpnbd9iXRPD7qU6jx6UyVdMgbhDeSxvDobyeMn3hHLCYEt\nOMp0Ql0skVmZtt/KZcwYhuXk0BAVRb2iRBIvjB178Mzr+uthfzKN/wQCqJYTqZ86lfx2GQD0v/BD\nCEMHkUt7BIu2CTpPU9DLL0eXZPbu7cI7cat5okbGioYA/C0KBRsHoFjeJzjYIMuuY0SHiY1biEAw\n54J3KONdxGAII9izew9t3VUM43KGv3w5peRTdn8B4ziRE0UF8BAqKqtdq5GQGGWMAmCNvOYH4SUY\n3jj8YMV+0UXQuzdUVcG2bfD448c2IFu2wE/onmPmkUcir1/Cn0SZf8+f55milePGEAbn9zyf+0bf\n96udU5HB6YxMwqob/AScW9Cy/EzsNhGbamOp2oNTcoqZ/E4+crgRSegYeoCsygpOoJnBlXEkiBgI\nWfGamtmWXk1DWKLBXE1i6rsUqgFq9RAtcU0EO2+iIbGRQJKJOd8tZ/SgnsSYU0ioMFCjB1Lj9vCi\n7wI2Bpczkh0YihkhaQghs3jyCyyuu49CXznhUC2Y7Cw+8zliHHEosmBM7jOYt207oNSLi4tZv34N\nC+fsIHDDdZQv2wy9OoMQrFq1C3FiMsGg48A4CCEQ7A8PIB3fEoyQJPq02UHVqxu5rfoTZl85n+WP\nPUaXOddSOLATCxftIxAIUPd+Mxvk+wiHruHllz9Ck3WuVz9DENmz0IwFfJuns75Ig/k6Qvhp028x\np3RLR/pOZva/riLxwSTmTvycTz/YgM2lEp38IguqX2HjeIlR5SNZ0XsFmqqx5YM8UgPjyNTT+ab3\nSkZnjqYl3IIqqwxM+WFP4oxnz+CG625AtR+qSnbExdGk68c+Uz/K2PetHJ5Wpd7KL6Y6WILPmo8V\nme5tutN2S1sy17dlxPok0sudlLraYJEEIWcF/j4fo29spmDgIAJGBiZLiJLkPD7qVseQqBBhGVyN\ntQSDFjZ1jGeouod13wxj6AnbCEkhuBg6jN/D3PIwC87vhhaK4tZLC1GFjapiH/R6h7CuRDYuDZnX\nVndgZ202LUGNkN6M0GReX9MRszmeNWtgwbmDGMGOH/pSXY0sS5w/bRrvOszYk37YFHQ4rHgVaDoQ\ndzEQ2UjQwgAY/LCsczQhFCDinCU0gUQ0iqLy1Zd7mQ288/Z7XNtgULmrlqysLOqKimg3XWVMp/N5\n5E4z06dM5bXkl3mybx5e3co/ikvw3ZdJUtoi3FPv5JL29dhKbMz7MERl0ADJ4NWiF6i/1E5ACuIQ\ngse3h7nLCXp3nYru8E63rxnXBMtqwaK3cJoYh2542FwEa4qXE04GyZD4bs13B+SfpE/i+Q+eZ/CJ\ng2mf1f5AuVkxY1bbsM3jOUyvW/ktaVXqrRw3oWCIjz/+mM3ry5GaJGQhk1mbSfqCdJpMJkzmZpSo\nBsJnFFMWFLQZupEaUYa8FTh7Ex7Ldmyyijmoc4rdTGyMFavQsYZ6Yo3JR23jRwS60ymjlDcqNQxU\nls0Ks7ssHUERZ6zOINFSRcv4pVhSMvDGpLFxzSlU+jLxGEGM9QlcOFWisVRmX0MmnkAyQuvGBReY\niY6GujowxKFr4apqol27dsgq+MrrIuuygDPKjkU3cPgiCtsW0HACMjISgli/hIIf1RDEaQZOawhn\nUCCJMAQPjciomBSWDV9GyK8R6jIIY5uX6s5NGEaA3VluUqslzu6axbo9LQAk+U080fI6Ie7jxc+v\nRMgzuexAODAzOCooauwDL37K85IgBgVPo8SjhWbeEn6sLwlk4HJlLlfITyE9BtYwTMyH+/anTZX2\nu+gK0R9FkrBi4dFaE4WuLK4emIHZMDOm4ofY5KYqEzdl3ISp0kS09wdnpX0N++h6ci++NlZj9OqP\nLB+D05fHA2VlkBUJv8AFF0D//kffHiAxMeKq/D9Iq1Jv5ZgRCIQaTbG7gZueuhdHXAaGYSNgwMMv\nvMc5+Zewtn8b7JZSHI7tnFkfB522cZ3qoetaG+FACzPWtIAtjbMzFZTiWrbpqfQ+IY90LYa0J8eR\nFlvEI3fcglTyDlWfjKbNxI1M76Rz3uNwyaQ0tjl9iDffJHDOTMKWRxGFqYScFt5Q6vH1fB+lq4G/\nxMWMpe2QqsajNjcT0jQI+3n3XTN79hydf5JxYEVF4pxiDzcXfI3xtZk5aNw+dwU3BgUb1DBOw8e3\nb4ZYn/0vhladzafrv8Om5zBGaNzkXY3p1UIqEg4OA3v5sMt5oPgBoovi2br1CbTHNpO5WiDJf2V7\nagF+SWV1fi+qqtaghU3c/mkX9g77F90fepzoZQ7eiv4UUfo2RFnQJlRi+WsvdEOHaIg21TFg4rVs\nWN2MVPk6hZhQzCnoIZnbjEe5XcxCNaWSRD1ew0ajbEeKcuOMacKqlNOo6jjPuIk3XniKxhFfMXjr\nMrLbZ2PFypQeUw70oWBJAS7VRXpaOicMPeFA+e1LbicjxY4oVQnNeQlr6jGsS1dVwUMPRZ6C9u6F\nBQtg586jbx8Kwdq1UP8HSL79H6BVqbdybAQCOFJXEhg0l/JQALmHgiyrmMVMUKFwoI3HhYSE4DvG\nIjMaq6IgJIGqPstHyW0JvT+fmLHvE/6sMwu+TEBgYEiQvyRiLSNpClLwesI3qkhiLCLrfeoLzmTe\nvPt51ojF94EX1BDmxnbcO2o3Hz99AwnJhXw23M8E6zd8s3IKus9EU4fnaDvuFAr95Viqq5HfeANR\nWkrK3Uspe6YT+xo0Xu0ZzYmHd3wGfmSoKIErSufS/iPpOzUBbYbKXVdN4pWXPuchq4MGOYqeM3Su\nW3svq1J20Gv4CTy++xIu8lzB6KjRhG6fxTVbS5n8o3PHWGJwGA7a6LE8ObsPV0e30CWpAQkZWRJI\nkiDW5sFkiuQqzWisZGLRavyucmLjbZhjdxAVNYhaKR61zk/36Hdojqqh5NTnOC++gZBUzOYtEp2u\neIq8LUHOVc5id1kK7uZoTuhSjdlUixQ2MIikzcuTo6gVsZyuNGAKW5gn98YrNHKNPLqIRjxFHvyS\nn/lx8wHo6OpIIon47X40p4Y57YewxnWxdWQlm6AUyM6GzGOMRjl+fOT3DTdAenrk99HS0ADt2/98\nvWOhuvqXbZg6nXCMYZ+Pl1al/ifBF/bRHGw+rrYtoRYs6qHJAh5d+yh76/ce07mU1d9yQm17gqvb\nceUbz5FQGo+R4aK+PA6HPhNCIWwIhAQhS8R++/sVDvmvQYbt8bDaI3jmFni6xUF7cxU9TW7QvFSe\nno+eWkPVlgnIkoYhCQyvm32iBjl2D5dcdQ33mG9i1svbeGTEPP7uHkXXKJlR68+ifcdVfHNmmFNs\naygtOxHZbaG82+t0s+ZQXCWhuIuQRBhJhEkx9hKnZlPukZjXM4bXjqDUfy8uuwyuXwUTJ22Du/eb\nRisGPZMLcLVATUDC1DOdMZNtLFF8INt566WutO1QS0V1GCNOZ75f4Aw0csbyHKpmWdhc04IdFdeJ\n++jTQyIv60uqF/WneVdb9p32LImdnES7dZrtdmqdTuQ6H4kBF+vT/LTdJ2NLHoH+pJlOm/sT1VhO\n9or+BGUPimFDxyDXKCVei0ctiKK8rIZ3v33/QH8GB06iqr4WrW+Ya9ZejbrThN1k54ExD6DKfzK1\n07Ur9Dq6nACHJRCAc86BuXN/PZmOwJ9sdP93mfTWJLa5t2E+mqwzh+Fwli+PLH6E03acxsKshWhC\n48IVF2LSjpxoONFzCnFKOj1qYthX/SClZgWlTRqGu4FAt71sGBHDubsNalJ1dvf0M3nFOlZ2iqLi\n5gAAIABJREFU0XDHmhncvpSKZC+BhQGWnvscDd/cRcqw92hKWUzXF66lY9IiyuKqsAU1OjZVE9+i\nsbifRLGvBaKqSE6tQrU30xy/AqnNTox1HXiiIEjw5PMpI5+oHd1gQBPJ1WWk5QmWCEH0chOiqYDw\n6g2YLBICQb/Kz6mULqB4n6DuR33bvRu2b3fhcLjY+B1oQ8yg7Y+RLiAYVNA0DvIzEgIEBpGfP9oc\nFdDUFCZkaIS1MPPefY28NbuoyaqhKamJkz86mRpfDe4yN0ntkg40Wx1ow1giHrlNRLEjpT3N0Sqm\n+np6bdiAf8cOTj0zSJx1Grc1WbDkuHEk3o48vTvJD6eS76vl3sv/ybnOF2nKrUA2NE4OfoSnXkbP\nGswWoikVZkbWfERcx650rq+kWo+l2JmOETJQm2KwJLvpFjboawljDjyNI5CIybCSUtgdTL6IoJJA\nRwchkVrdAVkWyLKMtD/jd2xYoqqjhmKoZMd0wJro5Kavb2L28NnE2+OP5asbic9cUXH09RsbIx/M\n922sVnC5ju2aP+aXxoZ/5x3Yn0Pg96BVqf9J8If9LLpgEUPSf72olyIkmDF+BnOr5rIiewWhV0JY\nrjxy+q9Vy+fi1dsgd+mMTdlOiBC2rm25d3wT3fqrVBjw0hAzmkXHZ1MpTR6Ix6oTViT22fris6vo\nNw5jXZckqlM8LIjrjxqXQMIsFz31fuzaVsN2TxumNhYwwpPPOxXT8MXnkG3WUOP8DBMrUU7Zykmx\ngph+OqMToSyjE5lyAFwGVquH5GGrSUq3oqIzo+RRbvG1IGWEuPBbg31amIxz1qGJeZwvSvknw+HF\nF8Fq5d7ce9C0JE44IY6cHND7mTG0yD9RQ4JaSzQttmiaFDsALdYojPgEtLAKEui2BBpjAcWEFhND\nU5KC0BLwWyUCchA9SScQEyBsDtPsasbisjCh7wT+evpfAbgiJYVNtRFFZAiBBweumhYmWGOZdNoE\nBixfxfzTT0PpmkP9tmjaKi+wQ/+M5jIXybcm4Q5KBHGx4/qJTLrpdepqFYqDDp77MprS9ww6TxxG\nc0kyLTWx3L9UZtYVexm+NERju3p8Pcp4ZvXZJDWcztmT/4J7471It7/Oor/MpHd5I+1yPHw37pwD\n34MBPawUBBSS73qJe7QvMEWtwKRLqE4Vn89HMOk+JmLFSEnGHnUilqhYpDZf8nZ+DVEm/1F/R6VO\n/Tn9oXuJe+mlo/9iG0YkVMGAAZH3tbWR99bfISHJH4BWpf7fRmVlxC36KEht0oky1ZPRKDBLbrym\nBj7v+CX+Aj9aXSR9XWpdC5d9vemACXbHsMaCE0cTJo/T1r2OhKCwNJWWBx6hZ+g7TnndSp02ntqk\nFlYPiWPUZ7lUxdcTsAmsA6CsIoVVu8vpXVeH3tKbrLaVNMbuJmDqRH5zOpPfkrkeC2k4UWJjmN6U\nTq5tAzVViYgCC327bKanJQaXCzK770OOgU7t3ZiJo0N2DoYM7Qdsx97Bityis2tqAp6AxIC25ZTP\naode6Wb5MyOo+HgsX+wMACVsHD2alM2bMeyCwYPdxMQUMGMGPGPzIFtbAIE70cSzk8/BGDGSDSYF\nocJbI6bg7Xc65Y9pYJOpHfQgTw6XEdEdqZo5k/vCDnTxDLtlGy9mXcMDbZczuetkVpes5tNpnx7y\neTzSsSPL5EhYawUNdXQFJ6+vJGk3nNhFxd6gc+E389licWGbsIGhwz8kJCKzZUWRePP1u4mPK+eW\niRfjiK1m5XIdZavBbR2KeLANPHvmHD5ffgm7todJq9AofxFawlC1G/YsDtNFgSodch8Ikz3Ki06Y\nD1aU4Q6EyBLw1tL9zzU6rK+A8ZeBSKki2Ok1gqYwcqKMbJMIhzV8e2vpkJuM0r+Od5e7kaQqgh37\n8N6nxZiMQ58GZVlGlg5ds97WKY3Cq99hxlXHkKqjqQmGD4f9iX2sHTqQqB1fOsZfDa83kjzgeDmG\n9fxWpf7fRH4+dOsGKSlHVX1BUy1t3r+Eb8Iaca/PQKlXGHSzhuE3kBQJJFB1DVMwhNcSSYih6oJz\nVq1m0rqNWEMKqghhMwxiPF7uuWEhllrYkpHOLqvOdmsHXB1qqEkvx2r2092koTULWLgI26WjUXdG\nkRlXTl5VHvGKn1WxgygjmVe4ErPUmcr0MNKwBjpvqKc+ykruvTN5+sUUOlVdTmleJk84CrAGDcK1\nZViEhqc5CqvNQ7PfiyXQRMhhcFNhCZoW4qN0QUAOEJZkvk7uSaHdSnX7yI2yLi2N1O3bCboO/Wdo\nUTQkKbIvMH3Rh1TmrKH/LAd3aBO4duUzPP/0V/SKn43kN0hdfCnXrX6fFy/fxb33zmFQYwdWhdYy\n1jaa+DFpqDUFtIt9j36eavhq+mE/k76ahjUUAsnE9rO6UNotyNOv+Xn50hhSPvSw8JZu3KNeyyuv\nfYslupmPqldSUzqM9hOGYd7WE7Mvj7iN9+Of/AJm9zqEAZ9W2aiuTuDZN+8iYHMQjAmRk7KShHZ1\nZAXPY7V3CI2xA3Fb3dR8cwbLHRUUNZZwO6/w2JxErASQRAtPSm0iQu63wZdlCfNjN/GYEndgRUpC\nYI5tJlq9ms/WXEzUnZ8z/sGXUGUTg8Q+XI62yEZk3Neu7UplpYtQqIDu3Tvz2muvHTIeN3y0nZe6\nNPDqli1H9Z0GIjP1f/wDFi4EoOL112ns1o2oY4n/YjLBnXeCbX8imP794ThSIQKQlgY5OZF/NMdL\nTc1RV21V6v8lVHurCdbkk9Qhi7K1i3+2/ms1zdxfkEeCOZ7acA0p5WYe/Fssl73UjN0fjd8aImSV\nsYTDRPnDNEQ5QAhczQKf3SCryM91a7/ijC8WknNnGm6LlVVvKvQ5L456LYmgqCcYjsVf0RWytuMX\nIVzhKBKEF4AY8zoUrQFXbAWxTTmgGCAtpEaZw5lC4lzjG4bmB3mtcity+yB+RaJQfRwLD/DdS/Vc\n67+IIr2Ela6PUHw6L3M3n92Ry+geL/Hx4qmkfunk8Ysf56U+sZilOhQJ4oWbRsnCnVHf8Kr9Zore\nFxiz93BNSQmfStJhw7eY1Yh9tRDg9Wi0tIQp8HgjbvlGGN0QNAV0hICw0FBpIckvWBtnxlXXnm96\nryW7sBtL7bmsT/UTb6/FmeFizOCRh/1cJE3jhvh4ai3PcoO4g3BHmaZbDKbHyKhXCryqmSA2bpg6\nCDlkojk8Cr/LSZ/HDeqrzCzRR7DTr3FKywp8zs1EST6S5a6o9kJisz6gMu9EGqqzGTphDihhvjWZ\nSAsvZ6K+At0F5t7r8WsmAr7+XOV7jstuctMlkEuf5q/5LiUSrdGoq0GoMiZXFM6iJBxKxGoprILf\nbyHkDMAr5zBy7gSGMpHo+yIxizXFh6rbAAmTGqK7bmK9HM1H8cvYumYr50784OCx12PpWmbm7oCL\nb4f3POx4mc3w6KMQ/e/5PCorwR9Z5onLzyc8fPixBfX64otImi67PRL0/8MPjz3cwfekpcHKldC2\n7fHH+T/jDPj00Ke7w9Gq1P/kCKETCBTR6cm+PPL6pZy718+mzC38VNRAR8CBJWymf5TEJ0YClqCg\nOaYNnigI2jRmP1WHpDchlIjru9WwoRhmPGrk0TE2VEFbzzqKTWfg1/vwblZvKt+1EHtRNKqhYGqK\nJT+ukedSl1BasYmHLFbyfTIYEkqKl93JFWASPJfSGd1hRauH0oHpnLLHhNSrN/Jjj+OsMTP1X+tp\n7pBD/5GzsFStpCRuF8N6XsnnQJexY+m04mRS7V5OvXshV81QcFvjSf7yLOSeL6Lt6osUjtgoV+2b\nzBt5W7l30jfoHHkT+KeJ3IiqohLtiEayRdzYZcMCksz3t5EsIruEmgQfpKTQr2oEXe6Pp+6qSUhn\n17KobB/TekxjZLezIKXvYa/kBJ5KS+OlK2V2ZA5l4Skfcm31PVzVrxdn7MrjhqlnsfS0c+j56t2M\n7ehi3e5VfHrRp+y8xsrYwl103u2kOjYZz+eT8Q1YTYgyvHJ/wkYJb765Hi3UFr/vWnJyIin9XgCk\nw4Q3ELKC+NDJI3X1mJmAi+sJF5tRpTAPua4iTm6gYyks7uqgINZMemM68c3xvGQ+AcMbw98MiWeC\nFlpkF7YWO+WkYvDjwGeCHng4kSYKG/8PgIL9seO6SBsYIH+NpGo0hVSSMvoxrnvHw47Xgw9CybmH\ns2B07n8BtgrmP/QQDkU5wmf8b9x4I/ztbxAXB3l5dPnnPxk+ZszPt/spKirgm29g6NDjP8dR0qrU\nfyd8YR99nu+DL+w7UCaQ0C2JkWTFP0O9v44qw0Se74f2myo2sTr3IfrbcvCpTqLsGRR0t+Ke+QJS\n6GAFphOZcUZ9ci5J6kLeHTGI1MZqJmzdxHVXXYthBjNB4Pu8oz+0lwghsO+XsiPQkWDsj2SWBR3D\nGwiUpIDqQ0v5muyQl24t7bFq20mpLiKq2kFnPzQVyHTSBaaF+eile4g1+VH2uLGnNxG3t4wLPi+g\nwtaLlhQvJlWhrV/CUu+l2a4xclc0n6PRHFtKk20vmt9NUpKErGg4gjXYhAchQdhZjWTYQEBls5sU\nsX8tWAiCQTjrrMfxesHY7+R4xZeTGdNvHosXw4m9fjp+iySxP+fu/gxH+n7LGMMMSAeUOoCs24hS\nzVwx5GzyrFaGdR3GUw1PMbHTRPr+hEL/d94sWEBpeiVTbjiP2rJSVgRbGOpewrBnNnHS7goCKwvY\nY9axXRDgwRdfI0VpokRV0LrdiXeFmd1t/Gyu01lZEiT2hAsRQsZpbiTouhJKkwgKhYpgIpmWOkSU\nn5AchhgPAUmhqToBc3cn/j5D6XjTLJ7zaCiqxHmNi0lsKSBL30WqLDOtTMVXrWAKyNgCFkZGzUGy\nSJRLYZ4xTUGxKST7glyRlMwH0VH7R04CNUxySw+M+nEE0s/DGnDQoaQ3DQxln+iCRc+lRAkgk0un\nkq1MuK3ysGN0kZBZfIqBrMpYYg/d5Df5TZx8ZzLb2iQc1ZgfoHPniMOT2Uy1olB9/fWs/1G+iJ9F\nluHccyEmJvJ+1KhfFv73GGhV6r8AIQQFDQVoxs9vwjQGGnF73AdtkK33wT01kGxSqa8Fu8+DQ6v/\n0VzmB6Jj4caVuUDuj44LJKbyVcNUMlMN7rxORih/J+i0HGaeHknPLGWDtfEsqlwuVEPjg5MGYzMC\nvLb6Vr5dVsGo/NsQgCluKZ1qdyLrOmY9RJUyDrNcTd47m3GXwFVXgKZZCIYuQEgqmwWcy3ie15Yz\nfk0h49cALN1/7dgDUowSHm4mFmmXAxF8FCk/iGSz8GHqt0h6HNflvcCNp2Rz+0ALsT4vxfJ8vF3c\nuOraYWmM5eSvPHjWX4ismdAbMpAXTeDkUDRmovkmM0SmDNv2dacTBQAM8jTzdtVwENtBgFk1eP5v\nj/Lu4qf4+EuZMPDPkYtZHYqEAa/c1XhM1nO/FTf1vIKtdVupia3BmmulwbBS1a0XxY5GCpw1lHS6\niHBYZ9PKpQTNErckpXHJurXEhUuY4K1H6QMnxfiIbRNE3/wepoo+6JJEnJJP1PB6mlckoAgrNaGR\nmE2l7I3xkKRnkJmyBU+UFf+uTLzrNqK88xa5IS9n9xyD6uhO9Won4+0DETWxfGKr4m2pO59InRgi\nJzHZnMr1rjLMvnre4gXOnDSahk7dmX9nDrI+gpBlEggZSZKJNunIgRAJuodT5Eeg03qk8Nm0DVgh\nYMHieACXbkNOeQYK9rGStUi6GVk7WHGvYysNoimSkan24DE0SwbRaFTfVs2qIasYfOLRJQIHIpYy\nX30FQI7TSf8JE0g9lqQ/wSBs2hQJ2wtw443cV1fHjD17jv4cP+YYYuj855T692nkj9JS4yd54YXI\netOvwSuvHPggj4YGfwNbipbiMP0Qte/tEU42drIfUvf/2zvz+CrKc49/35mzZSP7QkJYAgkkAZPI\nEsVSQaSIEOrCRaVoFbitdekF7/VGpFbrBRUpVdHeLraIfiiWSlWsIrIZQShg2NQACUgCSSAh+0nO\nyVlm5r1/nJAEDQlW8OT6Od+/ksnMvL+8884z7/Y8j27oOLwO7n23I65zc9gV6H1G8WC8hVd+eA9r\nwl8kNugjjjfeB0iarUaXgf9C7aCbAV3HZCjI1BLcDz+Dbf6LaMNOoUV6qI8yfBPBugvFqxHW2oRi\nUzApMHrbWmb/z0LiGuu5qXgnwhrGaUcSFaWn+YvLtwgWnpXJC3MfAwQqGobJhluz8tfw6fy4bB6O\nuuchegLYnwPzp+1foDuVuyD2LCgSquPBkChCQxgKukkBzQBhIaxvNKEWjWSLQXLfOj6zbuL4CAf3\nBCeQdsCMVpZAFJJwBRSRTEJVLAf1Dxl04ioGldeT2GDBIzyEbUvhh9iIIpG01fcyJFjj9jNbSGt2\nYtE0KDrNwk2h2H4MtjoTUS7JiSU30OhsItwIobYsmGotmkaPh6v6wtZiBW3AAPI/OEHriOE0/cdj\n6B9twG1R8FisNCIJDeuPFIK60Ajslj6cTEsFAZpF8TlaCRD6vxaz/RyLR/03MjGRWmsthqvjXh87\nP2ZW81NERlaz/c0jXDWmgqOal8KPPqKkvgFVUQk9doLmZjtbrtWJuH4I9SE1eFy1GKjY1TDWTKln\nelofQuuSMb+1jO8Ne4GivF9TvXQtQ6IPEOIxE2ULoZk7EJgIvu8nRKoWQoWgbh9YMuZgDnHy3xh4\nhUqcUCmVVp6TQSQpiYDB5m0eIgrNNJweyta+0ZSkpMBQFVKbkRl2VNHIqRozh1aHkmYEgXENjGyE\nimA4a8MyvAGP1wQhU7HaqjE5qtBVF5F1HXPrA+wWbPIhTg7fTdGRT0hK7DBnLvcAKpyTuTV+KbuO\nHOKB5Yuxrutzwfq2Wqzcf//9mM1tI9Qf3eh7D2wRRNgieLloF5gv/ple+ZsVnJw+ibocn9PSpuPF\nHKusgkWLLvoe5/E1Rgn+M+r19b6hydatPZ97IZ580hfsJ/irRrQn7GaDU2GGb4XluedACPqv+gOe\nfn1xpg/hn6XlXD0oudt7HDwLm2PS+dkhD7UiC5vTzt1bw5i2O/sr57aaXfwmdx2L3pvdfqwwI4o3\nrvTw2uMLkHcv4LVSGFkNs+7cihS+nnVXc+MTTsLPDkK4I5xTZ2OIsXxB2iooderYD67BUI77evNt\nl0dJydW6QaUQeFIkB1+De2xPc/qkTkWnHR/DxwEsAwSaxcxTZ1/H7NHQfHsaMFCprnOgrSoFLKjG\nfHQRTJ/wwTicAl0JwqLb8KY/iTQ5oe4XmBQ3ZnSM1j3oUZMJrnWhR1kJTjsD3iYOl6Sx90AmzAyB\n6BLy52dSRTwVIgmT9Ln1COFz/sEi0cc0kVR6NefmZgUSxRAkV1uoT/gV5uoC+ny/mUPueAwheMN2\nM6Ybgkg1vY1LCWG2bOLxlpFYLDE0Y8ATmUyvXUSroXED8NmnZVyR7maA1YoiDdTT5SiGxOI1EB6d\noUcVcn51Da9I6FujEd6sk17sQYyFUKcVpS0C79SqUYQ0xlF6t4G73P0v5dAQQhB7c+x5xyJLI9GX\nlrPvimCqhtlJG2PF5t7MtY82MmKjxow9Cvv/lMTZM2Es+v0XOOKPYlPAFNJEiyccl+5l9l6JKawG\nd3At3geyWKloCN2CNn8M+6uvInb/L7HbNIJb7LhKS2FHCV+0tu2fD7XgOZJEK+DCAKUtuZVUfLEM\nTL5Ra1HrCLSqwwyud1CrBDG4vApRZKXGkczMK1ejYCABKRU0Q+LQQRCJtKqIWIG6V6WpMQaZ4qQl\nJIi/TbrB11G4vgqCfPNmC55XaBlSw65pKcBAmr5cgbKBim1zUQ7PZ+yWTFLUruflj+vFDFGHUv5H\n3w4bXQrOGh3ROSuiHfylchki4uIf4obmL6jYWcBhk2/C6eSN/8Yb99zDi19jB4xHCNrDoEkJN9/c\n3entXBajvnHjRubPn4+u68ybN4/8/Pzz/v6/lZV4XQ6q83OQ5X/42vf/2DOAj70DCb8tD+X2GaCb\nfOFLda9vu5XsOb2YF4mmtu399G3IwJr/S6S0IqUJ95FXsWZPu+D1hgKOUEFSlZ3NP2oAJCYHmO3d\nlZvPr740nTqrcC+LmsGxRWDSbBRZ03hyWyooF+4VZJ2GKCdURQazLeg4U2Q2ZULiJoJNikLduQWh\ntjY4VDfoa0ges5rpF2sw8ozOT7d/D+dbBQh9JdKY3unubV+CznNAXbVlFXSnCRL34rp7EgITVl3H\nrHvRzDqjt2cy393hr7mOQ+yaEcPDf1vL70eqaAdXIoWXPmIIDI1Bqwyi4qTKHSX9KXclUHmji9LP\n/onmKGdY3zGYXApJe/rwel9wIQlrjQZPKxHJNRwpyeX2Ha28tCCWHYOGEq1DP70OzWSi8cc1HPw8\nhFkmwdnYCNweF0OS1uFRUolVMjix6gQzZy7iz/a3mDNnDiW1n5KRYaWl2oQcJFGLHKACUnBoeBOu\noM/YmnIKkrexLnIvzTMcLDM/Dwi8itbe6o6Zv0B3jyJxy0uoQhJ8zT42ehoJNt8APbnJNzVd0FEm\nMzaTiJq+7FVCcKX3Z51T4vZW8542hML4aoJjWvn3qSXUSsnTDsnBIzbMiooQCg2ai3CpUfRSPLrN\noKnCyup3H6RVD8Fls+NWaykc8TzOpO1INxhrvLDoJ+dejza2tjcHLz4728/W1k46pfn7+EPJHbcr\nTMuJp7j8DHEoDG9OYvP+/2JXTVpHSxPnkhmeI4jgKBMiSuJ2BCEIJ44axnxynCOHr+a68k0kJvlW\nVOMGuBjkMfj+mx0NVKgGUjfTUjrQ93WVAibOwqOZ2FkXiSo6hUdGUix0qqrKiE/wOSrpmomiw9eD\nDAdxFpAoFYBpCiZDQ3TzXnZmlbaD8ZZ/MFxtRVVUrtgumLHvr5jVizO5V7R8yidZoyi631dXV728\ngZ9e1JWXwajrus4DDzzAli1bSEpKYvTo0UyfPp309A7ngUePFjGquJCw1CjqS0y+ije7iar2oOgS\n6L7iYjnMovLXyXKVEmFqoUn3bZnKfbuGEzlheIIucqO+UEgw16EZbSUKKJ+m4IiFN80ubgla38U1\ngITWsmjEqWBCDTe7y+J5e/NNaIDwdLSl7mglhDp9AM+LmbzefwaZqUVcXzSY+CoL4dKF13bhlXrL\n1D/hyfuIMEVBW+MlYvbn6ICZTUyzgBRfDSVwDLgLMKGxX16Js2oMpBcja9NRsh6BxEIMQwFUBF5Q\nRHvuUKQgZPP9GPZ4PGYHAolqBlMoOKuv4snfXU+S8wSJfM7mxHH8xXScswlHefmHxVitvq/CsSKN\n5uEredv7Nmr/RFK+PwAhLVijohCKwG04aWos4mflVqqbBhJx983M3n6Wf+x/h6unLyaoTnL9c1U4\nm9/ltxNW8KMNP+dk9Amuve8tHnviANdZGtmQ/ynXGe/wg7TdhDXD6hqVB/WVhGdKnNKFgoGiSB59\n4hesXbuUhAlbGcH7DH64hgjPXDJG1/O7V86iNw9j9yc1lA96D4+Mwkg5hucTKB3UQr8GM2eCFPh8\nJg2Dd6CHCjKP5KI5+lIXt7u9vo+aD6P2DyG28M8oim9edebqySyesJjRST0kvjabOxbYvkR8aDwP\njLiZvNEmli17Hm9zM5vm/QlXcBSVahC/HBrJosSbMZsFrW4YHGz2ZRQUKh4Uwlqd2ENCiXPXkNns\nYLwu6H8smg3fqyalNpGxJ1ZgmA2kS6Xm6ljen+sirVBBbVJR6lVOaJGo7MUjTjJNNrMq5a/UHV+O\nwEqoR0GRBgiJPLOAw3VxDE+BdbXRqNKFYalH/ODR9siXP/lwHmUxp2gI7fj4GxKsQQoxcXYkgsJD\nx/m1bscQCosjlrJ90/UUM6GtZarIL5kwqYK06Oe9gF5FocUbgsXsYuigjljwEe5QQoIbMFs0gkPc\naJokNNLOgIHvg3DidDqwCYFVSqrrpzCiz1MMiOhw9/9y9y1rnIecKc52bb5xpMCrK3ywaS4eT/ce\nrZWV0RRs900vLfFImj5KYF/DRBCwZ3IqrN/c7fXnuORGfe/evQwZMoSBAwcCcPvtt7N+/frzjLqj\nwsr2BZnMTA1iUEkxAFbpYbG2igKGEkZkD6NVgRAebIQg4z3EWx00uOLY3Dya3+2dg0fV8OV67wap\nQJBv+IiET0vzsJhaMb+pAQKP9hQf/K2H1Hy6ApoZB2ZsNJPKngsV9iX1YEv9gkhLCQ2NkvKjd+Gp\nP0yReTcyqq2X3I18sSmdxvdyaTL1gbMfsvrtnyNEa6e7+8rsvKtGnPe7BEcIiOkgR2MTA1FKPGjC\nRFBQE0OG7qQioR+qrhF8qpxmk5epEUl8Zm5hX0IFAG6bFff48QhvDQtH/hSh+hx0pBBQuQbshZzs\nk9lRA61HwOwk1qkw7HQkU0qrABfQEaTsFzUWOP0FHplD04oz3Fs9CNuhK4k59DoCwc4ZCjFGBNds\n+SOKVsK1H43h0H4ToUYfhKsex6EBFJ3NYtgnfUg1tyCvLmTH/gewYGXs2MVIKdBReEm9lzIxkiAx\niCLCMV1h4JUWNgoPpabtHIm8g5M/34nRGoStqRLfPiUDISVJJ4KoS1Hh6C3E5P0ntbUaY04OprQ6\nl+z40vZHMFgZS2RUEkpsYvv/Zw81o0WGQ/TXjH3SBSNH/oLX1yyi7IkyHDs03KrkRa9OyqdruLvw\n7zRLSTaSc2bECDNQgyQaQHQ0kTExhKJS5YrGCElDrZW02AVKq0S1gSFMxMtjjPk4jZbwBLQEK7aI\nejwN4TS5b0FicJotWOTfcQ1+BNH2NNtZLzj4qZuDz8SAPH8TuVWAKiBf3QQN0J5z5FxbQaFPURWq\n9NJg1xnsDkbRAB5HhDzebb1I3SAy2IPNbODxSibpcG+lxKW2tf1O0XiP6c+SKF5hDZXcWbmfP8tG\ntoU0cy4nucV8Tg9gDuafFb9ld8VzXZcrYd1hsP7B6rMLnXDg62TdZC0+73hF3FHq+1QUgPzEAAAF\ngklEQVQBEBJkkBjrJS75NG6PgVHWDBYH0vwJZ45fxdDPCrlYhJTyEqRB72DdunV88MEHvNwWq2H1\n6tXs2bOHF1980VdgIBl1gAABAvxLXIy5vuQ99Z6M9iX+hgQIECBAgE5c8jTZSUlJlHfaflNeXk6/\nfv0udTEBAgQIEKALLrlRHzVqFMeOHaOsrAyPx8PatWuZPn16zxcGCBAgQIBvzCWffjGZTLz00ktM\nnjwZXdeZO3fueYukAQIECBDg8nHJe+oAU6ZMobi4mOPHj7Nw4cILnrd8+XIURaG+lyaIfeyxx8jK\nyiI7O5uJEyeeN63Um3j44YdJT08nKyuLW265haamr7hh9AreeOMNMjMzUVWV/fv3+1vOV9i4cSPD\nhg0jNTWVpUuX+ltOl8yZM4f4+HhGjOg6amFvoLy8nAkTJpCZmcnw4cNZsWKFvyV1icvlIjc3l+zs\nbDIyMrq1Vb0BXdfJyckhLy+v+xOlnzh16pScPHmyHDhwoKyrq/OXjG6x2+3tP69YsULOnTvXj2ou\nzKZNm6Su61JKKfPz82V+fr6fFXXNkSNHZHFxsRw/frzct2+fv+Wch6ZpcvDgwbK0tFR6PB6ZlZUl\nDx8+7G9ZX2H79u1y//79cvjw4f6WckHOnDkjDxw4IKWUsrm5WaalpfXKupRSSofDIaWU0uv1ytzc\nXLljxw4/K7owy5cvl7NmzZJ5eXndnndZeuoXw0MPPcSzzz7rr+IvirBOQZpbWlqIifmakd6+JSZN\nmtQWPRByc3OpqKjws6KuGTZsGGlpaf6W0SWd/SvMZnO7f0VvY9y4cUSe20jdS0lISCA72xcqIzQ0\nlPT0dE73hihpXRDcFmLE4/Gg6zpR3ySX6WWkoqKCDRs2MG/evB53EPrFqK9fv55+/fpxxTfJ0P0t\nsWjRIvr378+rr77KI4884m85PbJy5UpuvPFGf8v4f0dlZSXJyR2xfvr160dlZaUfFX03KCsr48CB\nA+Tmfo0Iid8ihmGQnZ1NfHw8EyZMICMjw9+SumTBggUsW7asvfPWHZctoNekSZOoqqr6yvElS5bw\n9NNPs6lTNMSevjyXkwvpfOqpp8jLy2PJkiUsWbKEZ555hgULFvDKK6/4QWXPOsFXtxaLhVmzZn3b\n8tq5GJ29kYBT3KWnpaWFGTNm8MILLxAaGupvOV2iKAoHDx6kqamJyZMnU1BQwPjx4/0t6zzeffdd\n4uLiyMnJoaCgoMfzL5tR37y56zgFn3/+OaWlpWRlZQG+YcXIkSPZu3cvcXFxl0vOBbmQzi8za9Ys\nv/aAe9K5atUqNmzYwNZvEvXyEnCx9dnbCPhXXFq8Xi+33nors2fP5qabbvK3nB4JDw9n6tSpFBYW\n9jqjvmvXLt555x02bNiAy+XCbrdz11138dprr3V9wbcyw98NvXmhtKSkpP3nFStWyNmzZ/tRzYV5\n//33ZUZGhqypqfG3lIti/PjxsrCw0N8yzsPr9cqUlBRZWloq3W53r10olVLK0tLSXr1QahiGvPPO\nO+X8+fP9LaVbampqZENDg5RSSqfTKceNGye3bNniZ1XdU1BQIKdNm9btOX5bKD1Hbx72Lly4kBEj\nRpCdnU1BQQHLly/3t6QuefDBB2lpaWHSpEnk5ORw3333+VtSl7z11lskJyeze/dupk6dypQpU/wt\nqZ3O/hUZGRncdtttvdK/4o477mDs2LGUlJSQnJzst+nA7ti5cyerV6/mww8/JCcnh5ycHDZu7DkZ\n+rfNmTNnuO6668jOziY3N5e8vDwmTpzob1k90pPNvOQBvQIECBAggP/we089QIAAAQJcOgJGPUCA\nAAG+QwSMeoAAAQJ8hwgY9QABAgT4DhEw6gECBAjwHSJg1AMECBDgO8T/AdLm/5ddDZNTAAAAAElF\nTkSuQmCC\n" | |
| } | |
| ], | |
| "prompt_number": 4 | |
| }, | |
| { | |
| "cell_type": "code", | |
| "collapsed": false, | |
| "input": [ | |
| "fig = plt.figure()\n", | |
| "ax = fig.add_subplot(111)\n", | |
| "for idx, subj_data in sy30.groupby('subj_idx'):\n", | |
| " flipped = hddm.utils.flip_errors(subj_data)\n", | |
| " ax.hist(flipped.rt, bins=20, histtype='step')" | |
| ], | |
| "language": "python", | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "output_type": "display_data", | |
| "png": "iVBORw0KGgoAAAANSUhEUgAAAXUAAAD9CAYAAABDaefJAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xl8FdUd9/HPmblL9n2DBAgQtiDKoojgEoWg1YpoFcU+\nylO3qm2t3ayltUXtU7DaurVU21Kb2gXUKqB1QdSguAVERA1LgADZ9/XmrjPn+ePGsMomCSH83q/X\nlcvMnMk5Mfebw5kzZ5TWWiOEEKJPMI53BYQQQhw7EupCCNGHSKgLIUQfIqEuhBB9iIS6EEL0IRLq\nQgjRhxw01Ddv3sy4ceO6XvHx8Tz22GM0NjaSn5/P8OHDmT59Os3NzV1l5s+fz7Bhwxg5ciQrVqzo\n9gYIIYTYTR3uPHXbtsnMzKSoqIjHH3+clJQU7rrrLh544AGamppYsGABxcXFXHvttaxZs4aKigqm\nTZvGli1bMAz5B4EQQvSEw07blStXkpOTw4ABA1i+fDlz5swBYM6cOSxduhSAZcuWMXv2bJxOJ9nZ\n2eTk5FBUVNQ9NRdCCLEfx+EeuHjxYmbPng1ATU0N6enpAKSnp1NTUwNAZWUlkyZN6iqTlZVFRUXF\nXudRSn3lSgshxMnocAZWDqunHggEePHFF7nqqqv226eUOmhQH2if1rrXv371q18d9zpIPaWeJ2od\npZ7H/nW4Dqun/sorrzBhwgRSU1OBcO+8urqajIwMqqqqSEtLAyAzM5OysrKucuXl5WRmZh52ZYTo\nKyzLy5Ytt2DbvqMqbxiRjBjxFwzDfYxrJvq6wwr1//znP11DLwAzZsygoKCAn/70pxQUFDBz5syu\n7ddeey0//OEPqaiooKSkhIkTJ3ZPzYXoxUKhRhoa/sfw4U8eVfnNm29k6NCHcLnSjnHNRF93yFD3\neDysXLmSv/zlL13b7r77bmbNmsWiRYvIzs7mmWeeASA3N5dZs2aRm5uLw+Fg4cKFJ+wYel5e3vGu\nwmGReh5bx7KehhFJWtr+Q5aHo6TkO1+672T8XnanE6Weh+uwpzQesy+o1BGNDwlxIvL7K/joo4lM\nnlxx6IMP4N130zjjjM+kpy66HG52ygRyIYToQyTUhRCiD5FQF0KIPkRCXQgh+hAJdSGE6EMk1IUQ\nog857LVfhBBH7r//hd/+9sjLtbe/QnR0IkrBgw/Cuece+7qJvklCXYhutGEDnHoq3HTTkZX75JOf\nk5v7bx56KIlNmyTUxeGTUBeim2VlwZlnHlmZUGgdZ5wRIk3uPRJHSMbUhRCiD5FQF0KIPkRCXYhu\n4vfDfffBvHmg1JG9amvhkUeOdwvEiUhCXYhuYtswalQ41LU+sldMDOzxPHchDpuEuhBC9CES6kII\n0YdIqAshRB8ioS6EEH2IhLoQQvQhEupCCNGHSKgLIUQfIqEuhBB9iIS6EEL0IRLqQgjRhxwy1Jub\nm7nyyisZNWoUubm5fPjhhzQ2NpKfn8/w4cOZPn06zXvczzx//nyGDRvGyJEjWbFiRbdWXgghxN4O\nGerf//73ufjii9m4cSMbNmxg5MiRLFiwgPz8fLZs2cLUqVNZsGABAMXFxSxZsoTi4mJeffVVbr/9\ndmzb7vZGCCGECDvoQzJaWlp45513KCgoCB/scBAfH8/y5ctZtWoVAHPmzCEvL48FCxawbNkyZs+e\njdPpJDs7m5ycHIqKipg0adJe5503b17X+7y8PPLy8o5tq4ToBZ599hY2bYL774ff/ObIyvbrt4pr\nr+2eeokTQ2FhIYWFhUdc7qChXlpaSmpqKt/61rf45JNPmDBhAo888gg1NTWkp6cDkJ6eTk1NDQCV\nlZV7BXhWVhYVFRX7nXfPUBeir2puTiElBb79bfjFLw6/XEMDjByZDoS6rW6i99u3w3vvvfceVrmD\nDr+EQiHWrVvH7bffzrp164iOju4aavmCUgql1Jee42D7hDgZOBzgdh/ZS4ijddBQz8rKIisrizPO\nOAOAK6+8knXr1pGRkUF1dTUAVVVVpHU+SDEzM5OysrKu8uXl5WRmZnZX3YUQQuzjoKGekZHBgAED\n2LJlCwArV65k9OjRXHrppV3j7AUFBcycOROAGTNmsHjxYgKBAKWlpZSUlDBx4sRuboIQQogvHHRM\nHeDxxx/nm9/8JoFAgKFDh/LUU09hWRazZs1i0aJFZGdn88wzzwCQm5vLrFmzyM3NxeFwsHDhQhl+\nEUKIHnTIUD/ttNNYs2bNfttXrlx5wOPnzp3L3Llzv3rNhBBCHDG5o1QIIfoQCXUhhOhDJNSFEKIP\nkVAXQog+REJdCCH6EAl1IYToQyTUhRCiD5FQF0KIPkRCXQgh+pBD3lEqhDg2vN7w61CamsJ/+nzg\n90Mw2L31En2LhLoQPeT006G8HEzz4MfZNmgN//43NDbCm2/Cd77TM3UUJz4JdSF6iMcDn3wC2dkH\nP66hAQYPhhtugG3b4K23eqR6oo+QMXUhhOhDpKcuxDEwf+dO/lRZ2fX3RF3HYGXR0L+Z35e1sej9\ncir945i8rhhHlf+A53hgyBBmdz4mUoijJaEuxDGw1evlu5mZXNP5FLBQoIKf6TISa2O5vl80d45L\nZYrLzeLRoxkwSO9XfsGuXezw+Xq62qIPklAX4hhJdjoZGBEBgF9FoAAjZBLvMBkY4cRUkOl2MzBi\n/7LxDvkoimNDxtSFEKIPkVAXQog+REJdCCH6EBnIE6IbvN/SQgiNJ66Dt5r82KXNNM+Eh5sgQUPq\n/zxEl+y+VdTp9RJQiqciGmn3mkAWQ9fsZFNVBKd5ApT+qg2AlJkpxI6LPU6tEicCCXUhusHi2lps\npQGFUmAoBRra28KvUx9rpWGkC29K+CPo0woTRWtQsc0bnvLY1q6wbYUGlKFofrsZHdQS6uKgJNSF\n6CamVkS3RpKXEMmvshN5ahkUF0F7q82NW99mUulCIlUpAPffMBu3p4Prlizjl7PmAD/lqk1fY3X7\nX9hgTSF74Zns9MzE+iAC/v4svPYajBlzfBsoeqVDhnp2djZxcXGYponT6aSoqIjGxkauvvpqdu7c\nSXZ2Ns888wwJCQkAzJ8/n7/97W+Ypsljjz3G9OnTu70RQvRm27dv44UXNtDRMZ36+tXMua6Njl/5\n+Ojn3+Mmx/dps9sJ6j+hgId+oQh4/0UUP+XUO1tpWtaAzriPmCnt6ODTXOr/GovfGQJ1dce7WaKX\nOuSFUqUUhYWFfPzxxxQVFQGwYMEC8vPz2bJlC1OnTmXBggUAFBcXs2TJEoqLi3n11Ve5/fbbsW27\ne1sgRK9m8fTTT/OPf/wDj8dDff1/eW3FP2kEXlq1ijqrgamfTCP7/SnkfHA20z7JJ9txJwqIKjgP\n9+b+uN/+JdU/qeF3jt9T7WwAl+t4N0r0Yoc1+0Xrve+AW758OXPmzAFgzpw5LF26FIBly5Yxe/Zs\nnE4n2dnZ5OTkdP0iEOJkpDWYpoMXXniB1NQ0hg//M7++7zmio8E3NXwHaWBmAPuKENYVIQKXB7BG\ndH4sLwvgHGSgLDcxrhgiOMBdS0Ls45DDL0oppk2bhmmafPvb3+bmm2+mpqaG9M41KtLT06mpqQGg\nsrKSSZMmdZXNysqioqJiv3POmzev631eXh55eXlfsRlCnFja3DCh3wSeLn+aH076IU/VVBNlGFyT\nls5fdkawAkVc1WVUu+rkwtdJqrCwkMLCwiMud8ifl3fffZd+/fpRV1dHfn4+I0eO3Gu/Ugql1JeW\nP9C+PUNdiJNVbmoulMOFOReyyiwlzjS5cNAgXm/dCUBU0yRg2/GtpDhu9u3w3nvvvYdV7pDDL/36\n9QMgNTWVyy+/nKKiItLT06murgagqqqKtM5FjDIzMykrK+sqW15eTmZm5mE3QgghxFdz0FDv6Oig\nrS1804PH42HFihWMGTOGGTNmUFBQAEBBQQEzZ84EYMaMGSxevJhAIEBpaSklJSVMnDixm5sghBDi\nCwcdfqmpqeHyyy8HIBQK8c1vfpPp06dz+umnM2vWLBYtWtQ1pREgNzeXWbNmkZubi8PhYOHChQcd\nmhHiZJOT8wroxcAUqqv/AcCmTd+ioX0CfhVgk/czGhsnAVeRnPQeqjYJ2w6wadO3aGlxEHQ2oElF\nPlXiyxw01AcPHsz69ev3256UlMTKlSsPWGbu3LnMnTv32NROiD6i2ONhp9/k4kv+zbYPNxLFFNLu\n/xBugmGnFJB0o4vYDg/D/vMfEq+OAa7koQ9/wulRf0YFLKyrV6Iuvg4r1AykHu/miF5MLqwL0QNa\nQiFcykHK5hQm+cexAXjv/vth5zUs2r6DT5qaiFCKRb+Zz6fbW+AlxVWnvUpwRw2my4W72cCIGAKe\n490S0dtJqAvRHbRG2RYp3jKG2TYZf/oT0Z5bGP3BNpKseuAMXK+sglxoebKOHH8Ah1K0uC386SEA\nxjY3UWJrbAuCoZTj2x5xwpBQF6I7dHSgrBBuy0ei1kTs3InDsohp9uCyWgEYXtYKuXB5k8F7Xjcu\nQ3F6bCybEz18DGS1KAytwAJvh0w4EIdH1lMXorsoqIgZxgrTZMeCBbTGxVF00anUTJsMQP3wCwHI\neSCHTb9MZMevkhn26DASLkgEoDB1ANpQaPmUiiMgPXUhjrGf/QxeXjqK8SNKaWhUaPt7TBsZib/W\nyYLH7+chpYloVgSfBe6CuBFu4ma6yb65hppgkLeb2kHFUndeOdazGvN4N0icUCTUhTjGNm+GEVdV\n4/o8gI5phPZ/EZpcCq/cgzX+EU6JauT/vHcu72WW8hyg+y2mau1E6oa+yfoNG/APP4tIPRBniwvw\noQ/1BYXYg4S6EN3AGR8CNBHOWPxk8uMLruG3b8TytahBTAmlkaI99MsYBMDkrDGs3ZVCduBsPr9+\nArYB7c99yjYjDj0tDktv4CyuxDLBZhGR+QqUQr39Nv8bM4YLEhOPb2NFryKhLkQ3ymnczCm6kYt/\nfTMT2yDmrVai0Hj915P14TM8PhnyP/4zUe3nc8fr93HdyHlMW/0Rzxf8iFvvy+fRp+/AteUSlt09\nmdd25rIi+nN+278C16jR/D7td9QHg4euhDipSKgL0Y2SdQPrjWqSf3cND3/XxRXT/8E5QR/rV1gw\nfjSwlKhpE2j5fBC7rrkYZ1w0mwrXQNDgv4+1Eaq0CHn+zt0PNNM86nNqh1cytyAE/UrYceNatm/+\nL09u3AiAYRj88Y9/ZPjw4ce30eK4klAXohtpZbDZUDRdcgkv/TiC0SPeZZzfg6cQmgaOAMA1IZ/6\nlmQ+n5qCqq9nR3lleHvcnWA5Udsv4Eb/aj4/ZTgr3U9zg6sdfdVwns5JI3/0BPI6n3dw9913s23b\nNgn1k5yEuhA9wFlbiyPYj8TqZtyB8Dx1s3OxPKqriGx2kLx1K0RFhW9cAoa4ktkaEwKVwyQzk1C/\nUazxuDkj2ocem8wrKTGMGXQKUztXSU1JkRuUhIS6EMfctm2PU7JqPobv+1i6EB16lCtP/Q0+XxoP\nLarmUR2ig7fRLwbgLZjb/jW8oQgqSpzUPvggbo8HwwGz6hfyuvtG0BDrkfUBxOGRUBfiGGtv30Lm\nhOkMN0zqVkxkjTGHZaPfYcq2v3HFdY/w9UAHGxePoXVqBL8c8GN+kLCcgvcTOO/nzfzX68VjWbgc\nikf6P4hu3kp4SUaZ2CgOj9yrJkQ3cEbFEx2tiCAKSCQhtI0IlYJ5ZgfehE9IdaRhsgsSoaPj7wTp\noM1+FttuOt5VFyc46akL0Q1CX/SsVfjPJnMwHSqGVzu+QZLqT7Zh4HNkA5CUeDEuVz8SEy8Ar7/r\nHJFR5dBsh0+DJugrBSDKDMlijeJLSU9diG6ktEIBgyOjcCjFrPL3uFK3Y2iNDlYB4POXYlsefP5d\nnaXCvwjcrhpgd6hbgfDxGS5vD7dCnEgk1IXoCaEQg6wdJDS14GxuBQ0R/nA467o6nB0eYirK2T12\nrjnrrKWgwkPqCrDtdgC2fQ98EUV4vdsoLZ2H11t6PFokeikJdSGOMa1DuHU7SmmsCE1Cgka1bmB5\n0gVcveoZUt57EVdWGWNbVwCQ9Eo9p6wp5dafvoDp/SLCYe3aa0GbaMDGwB09DoCMl8AZHI7LlYFt\ne/D7y76kJuJkJGPqQhxjfn85w3U1hmME/uwQ546w2XSZj+2qHzHJmnhtk9D0VwKRQSiGnVdAw5LR\nrHc8jhWwuzrrl623eddlMttuoJKr8L+8BcakozekYloJmGY0hh11fBsreh3pqQtxzGl2qtOxgg6i\nNjlZ/qLJhNsj+N33F7NmzXWkvHsltT+6l4/+fCsADiORtlEOQjM2Yzg9X3TUeS5tKEGHzTKVQIrx\nGhHnx4EzSCCQcRzbJno76akLcRxd/RlctvFlJjRuJcFTjxr3XcYEg2x2w21ld0PbLQzWz5PAp9S0\npmPZNp95waquozWilY1l7ZRF1ZCQcLxbInoL6akL0YMyir3EPlCLshXxW+P5RjG0+G1WmyPZ4gfb\nVjSq8Mdyvd1OVRSEMInWu9i+tYRgCN5rh007ymlsbOS112p55JF/HedWid5EQl2IbqS1jdYQ8Pux\nPO38781GKlU6WoEvNTwnvTg9nTeGzcE85yIMh0GFaQKK4n4PsS3JSYkaAkoxJS+PCDfckgrTJ40j\nOzubs85Kwrbt49tI0ascVqhblsW4ceO49NJLAWhsbCQ/P5/hw4czffp0mpubu46dP38+w4YNY+TI\nkaxYsaJ7ai1EL6I1bN4CK1fCY4+BbUNdXWPnDUg22DYX2lBi/Zj32j/jev0aPm3zYtPLAIQsaNi5\nmd+tXk6LbaHRgGZndELX+LoQh+uwQv3RRx8lNzcXpcI/YQsWLCA/P58tW7YwdepUFixYAEBxcTFL\nliyhuLiYV199ldtvv116EaLPq6+HD96H2lrYuhVAowwHJgowwDC4x3TSz/w2g+NuZbqRjwODkZET\nATANiMvKYuakSUSZkuLiqzlkqJeXl/Pyyy9z0003oTvXbV6+fDlz5swBYM6cOSxduhSAZcuWMXv2\nbJxOJ9nZ2eTk5FBUVNSN1Reid3A44Nprwz11pSAiwuzqZCsFF7gM4qPH8d1TdvE9l42JItWVGd5v\nQERcHKOysnAa0jkXX80hZ7/84Ac/4MEHH6S1tbVrW01NDenp6QCkp6dTU1MDQGVlJZMmTeo6Lisr\ni4qKiv3OOW/evK73eXl55OXlHW39heiVPFoTdDrAVOjLr2DIlSOoVh38xHUB7ltt5v2omY/OcDH+\nbQgmpVLpC/DDsWNpC/ol1AUAhYWFFBYWHnG5g4b6Sy+9RFpaGuPGjfvSkyuluoZlvmz/vvYMdSH6\nIg04QxbYGla8xltrHucy17+Iz59HQlMH/zoriYZQgCdPB4/7fQKu+xjwmYdPcm/AuLgF2/wBZSkt\n2P4Wtg+K5k7dwFBajnezRA/at8N77733Hla5g4b6e++9x/Lly3n55Zfx+Xy0trZy3XXXkZ6eTnV1\nNRkZGVRVVZHW+eSVzMxMysp237JcXl5OZmbmUTRHiD5Aa9CgPB4GdVQSHdPC2uSP+WnTUMrrBhOv\nmsnoAE98NNUtgxmRVswGbWJUOTEc44h0V9PkqSOmMom3z1pBlK784tIrGo3WGo3GRmN1XmC1tVzD\nOtkddEz9N7/5DWVlZZSWlrJ48WIuuOACnn76aWbMmEFBQQEABQUFzJw5E4AZM2awePFiAoEApaWl\nlJSUMHHixO5vhRDHmfa18qdbbuGyyy4LX3vSuxfm0hoCdhBfyE8opHlr3S6mfHYO49eeyrRSOK98\nMIM2X8i4z6NBuzA+jsL16fW4Ev+H3jmFtHWXkN5usnrHm3gt+OE4+FvDSj6r/YylZg1PD3oJ169d\nvLb1NWY9O0uC/SR3RPPUvxhKufvuu3n99dcZPnw4b775JnfffTcAubm5zJo1i9zcXL72ta+xcOHC\ngw7NCNFX6PZ6tq1dyw033EB4acWuy6SgwDQVuCJwYjJ7+2Sc2kmsFX6mqGE5CbWn4Gzs3zmeHv7v\nxe/Nw9TO8DEazhk8lSgTHvkYbkzOZ0z6GC63Mpiz81KsX1pclHMRHcGOnm666GUOe5mA8847j/PO\nOw+ApKQkVq5cecDj5s6dy9y5c49N7YQ4gURER3PZZZdx221/3mu7IhzqyunENAymmYP4EPBFhXvz\n7bTRkmGzeUhlZ4HwdtvqLKzDZ/F2KGxtUBdKxdTVPdQqcaKRtV+E6CZ+G9pjWtGx1Xzi1HREb8VW\nNhvTGon6/m85Lb0RNxBjfsTPmEWrCYuNKxh2SpCSrZB/14843bCJ8jl5sNZP/9S/c15CB0/87w9c\nVPFHSD/eLRS9kYS6EF/RG9tXYtkWrYE2frzix13D6UWtFs2nfQynPs+30OwyHsBvBLnrklUsOKWJ\nj/5+NafULaEubiTP2j9hUPIzeK+IZPs2B2hY8+87eNb2kVuSQeT022lXF2MmLWFs/7exbRnWFAcm\na78I8RU98/mzaDSmMsiI2b0srq0hZ+No1JO3s+6vBqf9/Qmi/ZEsf+JyDNuguS4RqxJ8NdHsrBpE\na0MstjbxesOB3Vo1iNKqAdSUDsHwKoK+VIKWfGTFwclPiBDHgKkU0c5ofjz5x+w1N0AbaPunxAdb\nKLLH0a4jGKf/CMA7RhZFp53NhlGjaB9tUTF0IFoprMQkgjjYPsaFHhNJ4xSwDPmoisMjwy9CdDf1\nBhWuazgn9gW2OztY7f4hu4D6U5N4euKtpNW10Gbb7IwYigaslGTY5WTT6W5sHOy4HBxvRx/vVogT\nhPz6F6LbhYhRHszOWS3Ryt+15/RP3+PGfy+m3z+dTP7fWxha4yopIRIvFz/Vhrmonpji41VvcSKS\nUBeiJ9gal9+HYWtUKHS8ayP6MAl1IXqI0XmnqbL2v+PTGfATXgBgtyhfY9dSAwCO7aVd74X4MhLq\nQnQ3pcOviBC2Gzq+mCBjhBM6IREyEiuZfv17RBvtXbk98qe/wOUOkJJajY4K4onf1XVjkhBfRkJd\niO6mAWXgJZKgdhLoiNxjB7S2QoV/AO8uH4dXR3Utvbvxn/cQDLpobkpB+RwYURkS6uKQJNSF6CEa\nE6UhoWXv9VlsC4K2E09zNLbe/ZH0NvRDa0XIcoCtQLl6usriBCShLoQQfYiEuhA9zI4O7PV3Q4Gh\nLJymdZxqJPoSCXUhepBSFhVLn9trW0IiZEeXMn305/KAUvGVSagL0RN0+KWAiDX999rV2AjbWnNY\nXZJzXKom+hYJdSG6w76TVGwwgwc+NLlqIr/+xM+komuIbjM4JTAGPNFM35jAos39ePRxcLWnM+jl\n8WTUD2CUL470+2YRqnZ2ezPEiUfWfhHiGDvgpEMDgkqh9f7jKxEdqbybaBAavQJv1Ay2OraC28vK\nsctZXn8GcflZWDSy7tQVDEyo4eMED7mRW6isSWGzUY2VXsjT9zmwtlqQDM77nDhMBxkxGTz59Se5\nKOeibm+z6D2kpy5ED9Bd/zmwZqfCF92IbYLX8IJhk9qcRbnLpjwVtBEizhlDyAyS2JpEvBFJciiJ\nb639Br9//re8sfENznSfCcCK61YAMHnAZHa17Or+xoleRXrqQhyliooK3n//fSrWVmBr8Pl8PPfc\ncwcMb601KOtLbx4yTVD7rB7giQyAf49jIsLDLU7Dj+lUmG6TYFID7al+MmIzcDaE908eMBmAWFfs\nV2+kOOFIqAtxlJ544gmef/55miOd2ONsvD4fixcv7ty7T3hrDdoOh/s+NGD5fASaW/Yqtpb3semP\nVhqvM0SDXYdWmopRb5DSPIwWlcjLQ97H6VzP22nrKH5dlnMUMvwixFHTWjN79mzOvP1MHKZBYkJC\nuKeuYN+5icowQDkx1P5j6toGOxAg4PXuNUwTYDMaGzSYtiLKCF9pjfENIFI7cSuLiWkW3xjs45r4\nq0gPyUNLhYS6EL2CIzaOuH4Z4acmdeb+hOSvo8zwR9S0FVERKSggoSaDKDuRSFcs8e2xfG2Ih+lx\nk0kOJR+3+oveQ0JdiF6qxRcBX8yW0aCM8EJgRgCUdmEYbtrb3di2fIzFbgf9afD5fJx55pmMHTuW\n3NxcfvaznwHQ2NhIfn4+w4cPZ/r06TQ3N3eVmT9/PsOGDWPkyJGsWLGie2svRG/T0kJyoIkBLXWk\ntmhSQ+2cpTeBrRltfY5h28Ts9OOwoX+wmYggRAcDDPBVkNnSiiNkEWfvOe6++31Fa0XX+yZfE7We\nOmo9tQStAHPfmEutpxaA8U+O76nWil7ooKEeERHBW2+9xfr169mwYQNvvfUWq1evZsGCBeTn57Nl\nyxamTp3KggULACguLmbJkiUUFxfz6quvcvvtt2Pb+z8QQIg+6/HHmdT0MRdu/YgztsL4jl08xFOY\nIc1toSdxhoIMeqWV6KDNOS2bSemA/u2tTG8s5ILtpUT7fEwJBUFDSLXvdbnVtnffvaS1Rmsb0Gjg\nnIHnkBSZBEBNe02PNln0Lof8d1tUVBQAgUAAy7JITExk+fLlzJkzB4A5c+awdOlSAJYtW8bs2bNx\nOp1kZ2eTk5NDUVFRN1ZfiF7GsiiNyuKvEy7i5QmK1+JymaIewHIZfNf9GH6Xm89vTaXFbbAk5UzK\n46EkMYWnMq/j6XGn0RITzRfRberovS63ZsYN6HqfEJFASlQqKVEpmMogqIM4jPBkti/+FCenQ/7f\nt22b8ePHs23bNm677TZGjx5NTU0N6enhK+3p6enU1IR7BpWVlUyaNKmrbFZWFhUVFfudc968eV3v\n8/LyyMvL+4rNEOLEdqB1vNQ+Ww3D3P1eGZiGgaFMWQSsjyosLKSwsPCIyx0y1A3DYP369bS0tHDh\nhRfy1ltv7bVfKYU6wDStPffva89QF0IcmN/VER5+MWxQYOvw0rwhhx8/EYRsGz82LUFNm24nqMJ9\nfLtzPrytZejzRLZvh/fee+89rHKHfdk8Pj6eSy65hI8++oj09HSqq6sBqKqqIi0tDYDMzEzKysq6\nypSXl5OZmXm4X0KIvusQT6GzrNB+x7w++a9ghiC2Bq8rRHnzLjSw9ZRVvO0tZXtLHSvNOm77VHOf\n/TAfRX0gHqqzAAAgAElEQVQEQKOvkaAd5OPqj7unLaJXO2io19fXd81s8Xq9vP7664wbN44ZM2ZQ\nUFAAQEFBATNnzgRgxowZLF68mEAgQGlpKSUlJUycOLGbmyBEL3OgAO+8k1R9Sbpra/9e9cVv3gKW\nA1r6Eel3EGvFojSMXD+dM/ypDE9M5xIrnX+PN3jQvIdJnvDQZ0pkCqYyCdmhY9YkceI46PBLVVUV\nc+bMwbZtbNvmuuuuY+rUqYwbN45Zs2axaNEisrOzeeaZZwDIzc1l1qxZ5Obm4nA4WLhw4UGHZoQ4\naRjhz4H+kgFwh8u139i4YUTstSkxJUXGz8UhHTTUx4wZw7p16/bbnpSUxMqVKw9YZu7cucydO/fY\n1E6IvuQIAzkhtHs1LwUEd/hgggKvm1hnJP6aAM7aACrbYOifhmL7ZQxdyB2lQnSLvZZNV52DLurA\nwy9aQ6K7hik3FhGr2ug8lAvveYLpmSHS0yohJoTOfw0ifYx+9B58I1poTNC8mnczs2Jf4PK/JlEf\nJaEuJNSFOGptbjcbUlIojx6IPdCB94wz+NTjIRSlsOMUWkFzbAwMiueZ8/JoOd3CUgavJ09CKwik\nGfhckdTWwVY7h/f/fTrtOgYID8s/t/Ba3qxyUFefge5w4Nj2NfC5qV81mchWD0mm4oyPH+ev3tmc\nsaEZrxGeHeML+dBomn3NfFL9yQFXhhR9l4S6EEdpff/+rBowgMroLHSmA/+4cWzq6CAUqdBxBhpF\na0wUDIxj+Vln03JmCMs0eDtpAlopfNkmu/pnA2BhYHuNL66nojW0t2qCQbBssG0I+MIrOnpbNaGA\nxsDAGbDQbe2EWpoJWX4IdIa61rT4Wnjyoydp9DYev2+S6HES6kIcJQ3kNjQwsfY9zPd9JPz5z1yV\nmkpEg42j3MLQmoFVtfD2Lv614NcMejgCdzDI/SV/xLA1zjqbPQfa/cEgdmt4+KXDA8+v/hcUh2ih\nhu2E+PeLr+Gp97Nw1dsUvtPB9m0NfLAqwM03wQcP30FN9efwHETXRmMog0EJg4hwRHQuJCBOFhLq\nQvQSIduGztli0TEwO+9bqDEOEuhHDg5umHERMWlufpQ/lfzzoxgxNJmvX5TMkiUG0+/5JwOzToc0\n0AEJ8ZOZhLoQx8h3am6i/A/hZTEiO8LTFw3gLD2Jtf4Cvh/swPBH4LvnqQOW3zeKld57nnmgYfcw\nilYKu6kZmprCYzNeL/j9CCGhLsQxMtQ/mKQLEwHwucMzXWxgk9rCKMd9/McRgXYGcF776IFPsM/z\nSxNifXv9vSExkS+Ga7TDgScxEVJTwTQgOhocJkJIqAtxDDmSwg9/1nt8sppoJNrcRq0y0IaNOWr9\nAcsqvfdE9jZfxF5/7+d28UV/XsmS1uJLSKgL0d20pipoEwx58ActfrXk8GajaC23j4ojJ6EuRA+I\nNhSG4cI0DCaP2LsH7jABQz6K4tiQnyQhekCcqTANJw5TceHYqL32GdIhF8eQPCJFiBOUChq42uNQ\nlf1JaFCkhZIJhPoT2xJLR2QHKaTQ0dKBf5sfb6QXAPdAN4ZL+nJ9mYS6ECegYEY1jpoIRr8zjlGr\n6/mF9RyWLx6bSahlCm1oTGVi6wTsp35JAwa21yL+7Hjip8SHTzJgANx44/FtiDjmJNSF6AXcls2g\nXeMBMDBQwPhdI3i/fgSt2FgkkLI+m4QRyaiNudjaQSDfg9H/RaJHvsx78ddQV7SaZruKiBFuAnEB\nUqPTaPI2cuekO4lyRtH0VjPa6pw26fHA3XdLqPdBEupCHI3Nm0lqasJwOBhS3hJes8XW1G3bduDj\ntcZBcK87jEKOT6k1E6kaYGMkL6Vw6CfgHIHuvLHf0+LB7/Bj4wAsGjy1WIZFhyOA0/bhKommtTVE\n7emKf2TOZlPxNnbZVURlnI5v4gcMT0inzNPOLXfeRVRUCs1WKcqlSLgnG+rq4O9/7/Zvk+h5Mrgm\nxNG4/nqG7thB1q5dnP3HK1Ahhbah4U3fAQ/XaIKmB78ZYmt6Be6gG8Puh1u7icCBw5dOeksyaIVW\nGlvDplFllKbtwEsIkzaqsttoi2rBztmK56K3AUUgoNEaAgEI2eGPs2/D17FtKCvvwe+H6DUk1IU4\nGrbN5pwcPh07Fo+Zge0AZSrir0o64OFKGRhWPG5tMrzZicN24AyNIN5OIrEihsimiZy5cSLssTKA\ncuw9LSYj0wSlMRQYZhAUOBygDIiKApcjXDj2awtkhuRJTIZfhDhW1P5B/MXTHIOJNi7tQZk2pr1P\n4moTbIXWcpu/+Ork97kQ3eiL9dFNjyIUiEBbBhkFkQAoI7wzEBwO5RG0dKTv88gkIY6chLoQPcAI\nKCzLAbbCVRPukaclVQHgcm6EgV4Soiv3W9RLiCMloS7EV6bJSdyG06HB2n9dF6XAdoJhWGBoOoaG\nOrfLolzi2JNQF+IrcgzYyWPT7iIu1sLyrgtvVDo8xq40TieE4mxcEeEx9eobOwAwnEEgvBy6EMeK\nhLoQX5VpUdHen4YmB2bMtPA2rUCHV1oMBMDVYODriEMHTYbMjQPACrgBCXVxbB109ktZWRnXX389\ntbW1KKW45ZZbuOOOO2hsbOTqq69m586dZGdn88wzz5CQkADA/Pnz+dvf/oZpmjz22GNMnz69Rxoi\nTj5/rariti1bvtI5Hhw6lDuzso6qrMLm0qRFxH/LS3RULebcR6nJriZqUy3nDHgHT+spJEzayhVn\nvMgmw2aWvp/fmiHK7/RgRNlY3s6Looc5jB6pXbQ7/fyp/wp27oritAhNQ2KQP+/UvJJ+BfpGC56G\nFn8LAJ7oDbht91G1TZy4DhrqTqeThx9+mLFjx9Le3s6ECRPIz8/nqaeeIj8/n7vuuosHHniABQsW\nsGDBAoqLi1myZAnFxcVUVFQwbdo0tmzZgiGTZkU3qA8GuTMri98MHnxU5efv2kVdIHDUX99hBDk1\n+j3aP7kJ/8gduN6fQLRaT7C2g5r0LEI+sCsTWe2fxM3R77LVOB09djVJnzvZtuoGOm6IRuHb89nT\ne1H27rRXwIB1ieSOyuQnlaMIDt7BP+ohsdbk+izYFPgPm596gF32R8S54mijHTOUgDbbj7p94sR0\n0LTNyMhg7NixAMTExDBq1CgqKipYvnw5c+bMAWDOnDksXboUgGXLljF79mycTifZ2dnk5ORQVFTU\nzU0QJzNTKZyGcVQvU3316YO2NvGvm4gnGE3k+e8SueMDgtWx1LamUROAxvIk2tvPpvRmuGjOkyin\nxa7/04Hv81MwXQd/pqjeY03eoMPEMzGWkGngiYii1Z2I360g0o3PjCGUHIEdHQuAUgqFkumRJ6nD\nvvlox44dfPzxx5x55pnU1NSQnp4OQHp6OjU1NQBUVlYyadKkrjJZWVlUVFTsd6558+Z1vc/LyyMv\nL+8oqy9E76Ei/BgqHyihQ0fjQmFrRVERnHWVwXj3Uuw7Lub0m2LZGXTgrU/DbVZ86fBLe5wLahUR\ntZqyQak8ODCFB5Oj+XvKuWxxDKUjy2B07XCeC/XnvVOi8T/xC7h5DZPXT6Y6UMOupBpyynOoe6gO\nj9NDy7stYMLO+TsxPA3077Apn78TAEeCg/639kcdg1904tgoLCyksLDwiMsdVqi3t7fzjW98g0cf\nfZTY2Ni99imlDvqDcKB9e4a6ECe9zo+IsccVU8OG1lNdjP28gtz3W/hc7+DST9cw/IJmvle2nNoo\nFy95vke8p52BLTWcsWkzRYOyGK6djGr2EfRAeaLCFXRhtVpYTgvbb6NMhdVqoTss0GC1WgCUzi2l\n/8395R7zXmTfDu+99957WOUO+b8wGAzyjW98g+uuu46ZM2cC4d55dXU1GRkZVFVVkZaWBkBmZiZl\nZWVdZcvLy8nMzDySdghxwik+VTMwTqGdTj7w7A5mrVQ4sN1utqf2w28pOlxuRjz+J+75gZ/GZJN+\nzWBnDQDAsDVKa+qiwOGFJ377NA2haKK8Lm4d08GkT1cRPbmJc//3MdGVAd65YTpjtm3lyk/e4Zy1\nG5n64IM83A7DfYW8FQ2Fw5P4cNSHZPwog5SoFErvCa/SmH1PNtTFwr8NhswfAkDZg2UHaJk4ER10\nTF1rzY033khubi533nln1/YZM2ZQUFAAQEFBQVfYz5gxg8WLFxMIBCgtLaWkpISJEyd2Y/WFOP6a\nkoAgqFCIsZF7fKS0Dg+tBAIMaKjD1aGJDAZwr/0+WD60vxoA5a0GbzkhR3iFxzUZEIiCe/LOZcLI\ne7iOPxHAyUtpF+KJSOOds89i+Q/TaVTjKI538vFVCZz9hydoNhzkJ8L9Z0TgtHr++yB6h4P21N99\n913++c9/cuqppzJu3DggPGXx7rvvZtasWSxatKhrSiNAbm4us2bNIjc3F4fDwcKFC2WMTpwcNKA1\nEXtketdPvtY4rBDKAm0pdrqriAhBoicZjCpUQxTO1Cwc1s69Shp1p6BCzq7zmGbG7nM7nN3cIHGi\nOmion3322dhfcmfEypUrD7h97ty5zJ0796vXTIi+RIO2FbZtghn+J7LTaYEF6Jbw+rl6j4MBFVeF\n0TFk9zn27B9JX0l8CZlALkQPUAYoh8bhCO7etsebSNf+U2B080BsbaJRBHBgW2Bj0GFFYYWiAYXP\nl8nWreMJWmbX74RQzfDubo7oxeRat+h22tZU/qkSq+PwB3rNGPPEnGJXU3vAzUpr3JYPw7Zg32XT\nNQTt0P5dLNsFOrzRwuhcxlcRwolDh4dfLCualpZU7D3mpAeKL4IxG45Ne8QJR3rqotsF64Ns+8k2\ngrXBw35tvXMrVssJeLXvS5Yt0Fph2Q78thu782MXDO4eFw8F9n9Ahtn/I3D4IOMzlMtLU0QVPiNA\nW+Y66txlaDQqZSMRQ1/AGdohIzICkJ666CFmjMnQB4ce1rEXXQR3hKoYOxa8B3kYUPPXwIqCZ/8L\nP/853HDDMapsN9AKgoYD2zxwP8o4wA1Isd5EotqSgYPf6l/tDWI1r4HEi45BTcWJTkJd9Drr1oWf\nufnCC2DEfflxT7RCmw0xNpSU9Fz9joZSgKlxOANYnQHudAbDF0oB9wHmIJraQXRLKtTHoAOaRF+I\nCNsktiIax6BmFKDrw738kB1Cs8cc+RaN5WnH3hqiprqGlCEp3d9I0StIqIteyTBg8GBwJHz5Mcm7\nwAxBfDK0tvZc3Q5HvBe8EYogqZxNDFuCd3GF6ef3ASc/+N8PSWhLY8x6F+2xTjIJEt/ipTp173P8\nY92faWgaz0A+IoDN5yUVXNkRS449AD4ZjRpoMto/lrxVw5ny9qVc9qxF/7qBzGI7p+/K4+KtMQys\nHUDZjEpGfzb6uHwfRM+TUBeiGyR6FN4IMPBShSZeraPUMYmACvFx9jrO2DaWmiSwI9pJwE9dRyRj\n/E+j+F7XLJYV9uXcr6Op5FLi+QvX5b2DkRxLNF6skU3E1n2L7/7qUpRth+9eBXb992FmolDo8Hpe\nGp5AQWEh54yNoKA440vrLPoGuVAqjhkd0gTrg/u/GoLhGR4H2lcfxGo/AS+IHg4FpmpnW3wT7sjX\nWTvsDSxHkBVjV9AS1cr2Qc00JbfwaWQDK7Pj+c9pnr3W9npuXDZbhp4GOEEpXoqbgzI1W53DKYlJ\n5buPBXn++ov53ZOX4Nz5HKrVA7ddyexpr1Fw5TTUMzOJX3AVr11czwft7TQ55WkcJwPpqYtjZvvP\nt1PxhwrMyL2vbmpbE2oOUTRy/2WYtdZov+ac9nN6qprdxrI07SEbWwfxBz1YliaoNTgDbLM1gZhP\nQYPdArV2AwF/DCErSNAMoQONtNjevc7nsuPZc0ZnpPaE32iFoXX4BqaQjaFU59PzNFprlAbT1iil\nUWgMLb23k4mEujhm7A6bIQuGkPW9vZ8kFKgNsOaUNUypnbJfGW1rVjlW9VQVu9WydxoZsNODFx9b\nt9VhuSbSgg31JcwCKouKsSfZ8Hf4bduDtL3zddqTE6lsNwn6lvKG6cNhQPBLJide4HsFMDBCkBC0\nMNCk1/gp1W5MO4i1x4XSBF94bvxBeTzw618DMNDeAb95G4zDnBj5zW+GL3qIXkdCXfSYjpIOPrvs\nM7S1O2x056JXH474sGtbqHE8lg6x9vS1KDMcMkopRv1rFLETYvc7b28RDGlGJbh4KzCQ0UPOojLJ\nIL3M5FNGs5H+nM/TfM5M/Hd4eeSPj/DrifHYUWVkKw/lQ27i24PLeUpBQ+cgzHlVKyhqGM9gNvKx\n0ux0DGY4O0k0GqmOcNFfKcr7u7GVwjJd6H3uajpoPCclwS9+AR2dD8EmAD7/4XXpX34ZkpPhttuO\n7hslupWEuuh2c+bANQ0wbEoEoeaxOJJ2/9gprfkH73BFyxld21psRQcmt7SOp8NwkJoMf8/YgL/M\n36tD/UC++PXldDbgc9jY7gAoGxM/ZNRA56ydSG1QlJGGvccnMqhcWMokgBNQBGwnCk26XUu15Qyv\nh975BfRevfJwnNud20JaU+bzgWuPQ0wT9lijaceCVQy871xwHEZPvaHhiL4HomdJqItut2UzxMfB\nij+1UfZAGac8f0rXPm1rtmXDhx/YuFevRIVC3HEHxISiWT1vBbjh5lsgMXYnzrWJ4Nhj4rrTCS4X\nMGS/r9mTHIQ632nQB74YaRh+oiJbMR1BQpYN2ODY4wKxCbXR0YTcii9CeW3S2VSEBtDcaIB2spEx\nXMLW8OGdGX7gCNb7/W1TR8feoS76LAl10SMMAzLTNAF3kKw9hty1DduArMYN8J2r4Zxz+L9+MOzv\nUndfFcqwuMOGpvWa1i3NGH/bPSE9JymJoM9HhPtjvLgJ/CAHV9rxTC4VXrnrAHz+KNraEmhvTwB3\nG23EUlaWRmb0JrQeTdOmaPzn7z18EnA5dj8VyakwIwy6AluH/xP0+0G70dre6+YjANvwwSAXre4A\nD3/4/7An/ob7n/8r7aM8+9Wv7oo6Up9P3Wv4xVQmv7/w92TEyDTIE4mEuugdbBuGDYOXXuL/pMGH\nTzQRHRyPZcEdN9jMG1dG1NkBjMG7n3m7wxOFvWonbiOTIW872VS0HufYQNf+qMgckhPOIsY8yFoD\nPcTt8qOcNhFR7YS0RSxtpGRGQTOgPscZPQZP0fV0nN8EuAHFstLp7KgfwCia8QQj2fre+Vwxei2v\nrb+VinezuNt2YYVyaWltwQqaaK3A13m3ViAao1lDO7iDMKzNzTYgWBmiZPnu228dpoPbbruNHZt2\nMGrkKNQeF0rveesetjdtl1A/wUioi6+kpKGEW/93K7a28cZ5MVoN3AXuvY6pPDeK1v/ezqXrLsU3\n3kdMQczunRparmthWcs9DNijTPTZiaSlgT+oeTPpHdai0W4/qBiUCoe0X5tw2qko4OEtFveWp1AS\nqztPq0G34lWrqTzrLFJdx3nsQe0eElH7/qlqGXhRE9nOQtpcI/ASAjSXO5bygtNBNp+zHT957jdI\nNuo5r98Kfvb8P3DYHzLcbxO3LcR33/yMP8y+EB2MAhQdOg5nMAm3p4IIyyCv32iqXS4GRsAFF+y+\nfvGznz3L5LsnM6R4COfmnovaY0z90Q8f7fZvizj2JNTFV7K9aTstvhYezH+Q8k/KcSe7ST137/vd\nv7MQIh1w1+C7qHqjimF3Duvap7Xmtvdvo7Ktcq9Q79oP4NS8+3gy+tY/UGVMYd266wAo7L+LUz58\niJ0bf0Vs5Q7mfDoMT3N4zN3v30V9/Ys8/fXx/GOJzY+u66ZvwL713euCpcbEZgr1qJDNtc5/8v+C\nIX7wgc0o76vENF6EaQNYxA/zkRH8hI2OwXyxIMxU9QbrjIlks4Zq5SVPryaFerIiV5OjS3CoIIMj\nK4gNeBi62s+T19oEYiuhWhNNOy5nEu6I8NDXoMEGLhdkZsKUKa7Outo4nU09840RPUZCXXxlyVHJ\nnD/4fEqCJUQ6I8kavPc89ci6AE5jDecknkNpUynjBo/r2qdtTaw3loAdZF18B1StI5gCG+ogyQJ/\nSEP7Fooj49GeOp5bBdu2rePUU6Eupppqs5ZGtRPbhvY2aGkOn9fvN2lvj8Wy4Z576JFQ1/tcoPyi\nzxuJBRqiaQetifeBS3dg2hbNEVCjwEnX0uldXhl6FZvjcqhuNnEoRXpLHUbQpt+nbRSEvkUtC4jq\nCJIe1GB5ibNt6vco3xF0YQYVtnbQEHUhyoikqEhx27DHw/XVIWBhd307xHEioS6Oq1AoPHPkn1te\n4dkzN5Py72toOz+ab/+vA9PUX1wP5K7+AShupjlyA85xbtoTAzT5oSy+kY5zVnLHxtf4znchrvM5\n562tZWzdupDXvQ/T2ENtUbDfQz0sDFbSH+00+ItxK5brRe6ZFmLgxitoSUlnl1lOOzDUdGBjd56k\nsw1p/dihY0lSBio2gz//5DR+FP8egTNTmfH5av6j32PJiBG05pYQahwWLhYEKCNECG23EwoF+cze\nyI4yB8GcNLSGd955BwCtLfx+WLt2Lal6n9XExAlLQl10O5/fRyAYZOWHK6lpqqHm1ZqufZ9+8ika\nzQdFH3A+is1bXLBpJc6cy7GsKnbu3AlRUVS0esCwsGwLpaDZ8GE7nbhcNr7bAlxfMw3nhWbXmLDW\nIZKTA/C349XqIzMiws2b9c7OB1iHtyWVlZJbN5pN9mxc3g/ZvOjrNMzZwvOb/y+eQASP6NHcUD2K\nre2n8Kb/ctqIhdaHwPE+raFTsdfejMcKsZD/ULqihuT0kdgxmvOvP7/r6yo/3Pad2/ie/h72Vnuv\nRGj2NdMWaOvZb4T4yiTURbfyev8/e+cdJ0V5//H3M7P9dq9X7g7uKEfvTVSQomDvPWKPBo3GJEbU\naMTEn9FoYoxGjQp2RSWoBBEEBJTe7ujH9d7b7m2f8vz+WASJXRONyb1fr3vd7OzMMzPPzH722e/z\nLSEaGuoJW8M89eZTBOuDxP/5iK95R1sHDAGXy4USDpGTk0NpqUpWVhbr129izNhxbP3V7ax+Ngl5\nxXyeX/EjsrNH87OfwaN1ddQ/9hCvWJbwWOqbHP9iXzxjYsFJzc3rGT/+fFK+rwv/FxAJdzBu2Gaa\nDuzGH+nE5WpEVUP08VSiKgYFZhfNLXuw5aSSE9rHXiZAQhF05eFiC0pKC5SeyWUMZMeU+9npVqEv\nTLllCgAVneV0rq7B0eDEKDR4dMujSPWICam8s5zlpcuZ1W/W99UFPXwDekS9h38rUkoEgniPh0UP\nL6LyzkpGL4/Z1D/s6uIXG9+ivNVPkrGR+uZy8qdciDyxgvC408ha6+Hg0k2QnMAdPy0G12jqT3Li\ndDZS1Ahl0SjT7XaEEHjURFKTUolPi31hGEbS93nZn4mAo+OCPhFAJCPyn2OGsNmTyU7zkao8R0Jy\nJgOSqsmI85LTax0Pq1FOFXWkjItnQ95WJnV0sY7h+D0vg3k9Dqqx9V6JUTsGS8jF5D4/osLmxrHH\nxvvnvg/Ab9bfxV9XP8ik3EkohQrLfrTsKO+XrD9m/dPEbw8/BHpEvYfvjO4g/L0xhc1Pxl6vTPbR\nGHBiqdhAVIGc9nY2bhiLrgu27h+CdDUAhQBsdfRDmCZGmg60U9YaC7R5bvVqnppt0hTv52/19SQ0\n+Lk0I+P7ucAvQJgQp0ksIQeGPVaeztGgQO/YezzYhLzmaAGd0lLNdj0PkIjubrCEEebRAUaq8k+z\nq4eaiFhAxQuGBQwT35vrCVx0LiMyRjH3lLkArO+/nmgaVFZVEs4P8+SOJxGKYFr+NAalDvo39EIP\n3wVfKOpXX3017777Lunp6ezZsweAjo4OLrroIqqrq8nLy+ONN94gMTEW8PD73/+eBQsWoKoqf/nL\nX5g5c+a//wp6+M/GMAAJPi87r3+cp2t+znn3Lgag8XQH5NgQNSU4jSTygm2M+Xs589tOR7cKbKc/\nSKK3m2YTzt0XR1LDEraUX4M9QTL6kmoAshoaUMI2FF1QEQ6zpKqT/k4nQ77HS/4spAJ+q0B3hQ8L\nbzg7JtCmAuI3WYi2Q6PkTokWhccDZQR319Fi6piKBjUlvLZEQynvIKT/hTdlNWfV19MR0NgRaib4\n9tuovlgxa11AyAqKqmMoKjXH+zHjdLZ5tuK6Iw4ArSaKsRd8mg81XmVPyx52teyitKOUP83603fe\nRz38a/jCnGxXXXUVy5cvP2rdAw88wEknnURJSQkzZszggQceAGD//v28/vrr7N+/n+XLl3PDDTdg\nmj1J+f/nOeTdgiuOJzwR/GIXGz1z2eiZS5X9XXz+VfQmgNG/HV0JstEzF136kZEI2uLFdJeVAQb7\n7/kxv3/qGWZlZnB2//48OWMGT86YgaooqIAqJZdnZjLQ5fo+r/Yb42yrJqvLj10IhqeZDDX3YW2z\nYCuHAinJazLIbfHhqgV3R5ihsph4WYPZEsQIgz9iYDQ1YTbEfDrjNLBoMVOUIhRys44nzmJDKRPM\nGTeHOePmMDZjDM4ayIvLY9auWTxxyhOcP+T877MbevgX8IUj9cmTJ1NVVXXUuiVLlrBuXSz/9RVX\nXMHUqVN54IEHeOedd7jkkkuwWq3k5eXRv39/tm7dyjHHHPNvO/ke/nOYPn065TvLEVaB5dEjj5U0\nTbwYXOo3aD7gA/kSnZHYl31oyRK0aDf7QmHMkYL8DMGLxx7LlBqViKFyrqKyS+ocQFCdHOVJJYmi\ndS/hcuo8XbkXgFNNExMTGQlRtm8fXk89+1paiBjl/FDMwQ4Z4di/nIVlUB5LTzV5udWPYs4hlS6k\nJujGhA1RImoFqmIizAg/SlqEBYkhJM9MNNmT5SUaV4gcpLGEv7EGP1HXZsi/io2bz0NtihBw90Ii\nuWzxZQC0eVsA2NG4gwlM+D67oId/IV/bpt7c3EzGIZtlRkYGzc0x97SGhoajBDwnJ4f6+vrPbGPe\nvHmHl6dOncrUqVO/7mn08B/G9u3beenUl0gpSCHz8iO5QkJeL8ePa+UPHi+/sr2JK3Ar732Qyl6/\nn6lTFjAAACAASURBVFebW1i9uYxowypo2kKn7OBu86cER0Qx0Vjn+xkNTU8D0J09krulRHatxFpZ\nwUpvGIATTRMDDaOtmdef+Adl1jKestmoKd73g5nkUzDR7W6evWgCwSTByItSiHvpQ24b+xRyiI3F\nT9/DWPvP6bi8nfOGv4JtcxrXv7mIR2QR1wxsYsD4J/nxSjdPzroM72P3Mk2/kNOUhfx05iDMroG0\np9Zxbu9zqLR7EAh2z9kNwJ0r7uCvGx5gSp8psOd77oQePsXatWtZu3bt197vW02UCiE+FWzxz+9/\nFp8U9R7+e9ClzsHGg7TvO5Jvu6vVj4JGcqQ3fn0AUS2TBQt28dCMeNy6StfA0aj9LTiX7MY0YdNo\niTEqNhgIl2TCmkxQFJRLriAj5KZppOS58+OJu380qALPJQo4HFiy8/j1Xx/n10nN3NWnD78+dSo7\nd/6wlcoVB0n+AAKY0hShV1MU6xg7dsOGpbMfeWY7S7fk83D2NjKClaiWdESHwKMnk+hyYWBHhJLQ\n44O0dJUQcaUhU+Cd4ncAKGuPJfbSDf0LzqKH74t/HvDee++9X2m/ry3qGRkZNDU1kZmZSWNjI+np\n6QBkZ2dTW1t7eLu6ujqys7O/bvM9/IB5ZNMjBJUguS1HsrjUVOuAg3DkSnyygfuZx5CH3oGpb3D6\nwoX44nKZ/d59PJ4F/TIMnv3lxMP7rgQeAlbMmH64NJs8VI9TnhfbxuuQxAeDXFMxHWbAxEcfhT59\nvruL/jeT0xnEgiDjN/1Z1tLMuYoGgESgScH5keOJGgs5jdjEsTBiAyk96EB2WRGmACR1rbsIp49H\nZkoWFMUisg62FAPQGGhkkHUQ66zrKJtURlt8G2tPWUvK1Sn0e7Qfa+vWHnVOA2QDARw03Hhk/bC3\nh5F6Zuq/tzN6+Ep8bVE/88wzeeGFF5g7dy4vvPACZ5999uH1l156Kb/4xS+or6+ntLSUCRN67HT/\nS0z3TmeGZRBJG8OH14XDklp03NLBE0xmLN20yeH8310qqQ3TiaoqazMziSjNhIBbMo9Ddwpaq66j\nTbmKRtPE+v5KLv/lnTxyYBfJy5exZqZgcmAyT89XOPeXKj6Xi/n5/+Csfn8l3uv9/jrgWyKlQFWP\nhJSOLE3D4vAQlinUvVDFSWdUYB4qjSQwUYXOiamXEZi2AvF27ItMESZISTLtOJQcojKWd+AMf38O\nmFbG7YWbxj4MAwbEzC+rHwAJT57xJI+88Qg7Nu/A4XNwwrITaH+knfJzy/npyT89+kRveB1GDGDA\nT04AoPiqYvSOntH+fwpfKOqXXHIJ69ato62tjdzcXH77299y++23c+GFFzJ//vzDLo0AQ4YM4cIL\nL2TIkCFYLBaeeOKJLzTN9PDfx8DQQOKTisg+JhHGjWVJWxuVexRq1jZwgdDZ4ipmRmAvKy84mX+M\nhN5tNi6YH0/X4HwC1jDQTvCl/khdIJ9vRHaq+PZKpCrwn+bl6QI75yl/5+VzWlh2dyEVlX05FxUQ\n6NLC3n2CqtIMXlvmpmqfC02z0toKpvYddsLXtePbUyAvD61BsiF5LB1RNzidIOD2+0zsvjRqm27k\nyZRs7LkZ3GDdwaZjjkNraUVbaqX63AJCSTbWj4l5upgKkKhBB6hSRxzKOxDf2AiawRgTePZZePDB\no89DgFAOmVMPLX9y/T9vixCHi1T3fM7/s/hCUX/ttdc+c/2qVas+c/2dd97JnZ+oe9jDfy9z3p3D\nlrotdLZ30rCuAS2kETbCvNS1ji1bw+wu2URgbArKgVqQhXwok6gMNPCejNKxbCv6+wpb7E42+a10\nrGyE0WHqssF52QsAmIZKVDPISIcmJMfndDPYZ1BNC9npu5hwvJPo5L/AUhOQqMIkO90kZWQnl03x\n8fwDYUpDOi6HxKv/uydMP7/9MgygjAlRkzJlDpGwhnxecqf3Plo2XwKT+yFtDkzDoKKlA62vcij0\nVFCblki8dKKZKXS4PVicYTSp0OF2I1OimIpCxbhRJFsD+ONjOexNRaCmrsTv04jUVWEmTKDJbOJa\nVyYCyTMDMjm5ZA1cPJmIEUFTRrK3qg4zkEHShWMxuktR+6qsrVpLSAv9m/uth38HPRGlPXwj1tes\n567Jd7F25VqeK3wOi2JBmIJ1UxsoHtyBYa1BWk3MiyNITPyGFRwKrdiRIgrSADVCIOxEsdowCHPc\nfqhvf4omMxOBwC5Nur3pmJeP5LHGtaiGScmSXNy1nSQ+7Ya0Vux0gjEdTIlW24YxqoWORauwtnUj\nkIiA/p25Nn4iF9dhMhBUk8tTKlwqbqFK+RnyDIMfv345z9gsVHl3oZYYOGwqk+sqWBcegd1wgYRe\nRh1/eKONXy99nHn33IOMvx+31c9V2vOsenEeFtHAKWnvE219luvWWZh97uPYHQqJKRrWughJcS10\nCQMTicOahC4UnEHopyVCWi8auxto62zBJmyEpRXDOZTUmk7YD9PPms7B9oPfTcf18C+lR9R7+Gpo\nGowcCb5YjdCVgWZSnDdzSijM3QENqUuS5K2ctt6LY6MDl8dOq6YhAhqGITjgOodTBzQwP1LOLy84\ng7aNk6C9lQH1eUQ8+9C620lq9bBUXom9/yYidRNRU3didDTC4HzCaTUcV9RAyQgP42p/z+j8TAbN\neYcld95EuQQpTJosTXSonbzs+wsDckEcBEvid/+Ia1aV+n5O/OYYIqPcMNTLi+pNdMo8TJsNplzL\nhwljCY0GQqtAgKIoJCYnIRSBogg+rt+ENJCYhMOVKJoTS70b2544MGOTxsveHcnE8W5KZGxyWuCg\nPfkqHMH7EINSsDcIeilZnJ69mVcdZzG2Icrtk0dTccmDLCi7gyVLHiA1ZQTVqU48V95I/msa5Xt3\nEW7JxTCgufVzLvLgQVizBgBXYw22A25Yk/zlnZOWBsOGffl2PXxjekS9h69GNAqVlVAac4O77MUT\neeyUx1mxcjkLnl/A70t89DLm8sCse7l+t8701hBuw+AJzWCaoTOt6zla9qhYpcR7n48XtUzOE2tp\nMwtIUKI4TC8tzggCldTxmdTndkKyhtXnRBvQTaK7lDG79/PGqktx4uXGn15MVe7fiCeWGlZRVEaM\nHMHW/HwKDAO5s+k776KP86mHHDa60qw46v1Y/VZoMOhvacAmFNRUMEMNZDRpTLXG83rFMuDoLIhS\nah8vIGXsC7PtH82kjZQYph1zbBNz3DdjoY07+nqJSw+Te0oDV9oW8Iw9TO4ta/jw5mO4QoXC+g9o\nD/mp6T+VgNfKhktP57EJnST/FqrzYodpbhYYXdPo7IS9e8HfCiuWg9YXFr4GL10Klk8qxaRJ8Nxz\nsGsXACnFQSw1Ftj6JSUDIxGorobPiV/p4V9Dj6j38NVRFMiJVTVqTrKi98qgOymBRptKmpRUq1lU\neuIpPfkcRt5yPHsOXMHBV02GbLdTUnsxr75WjyolO1f3p3tbE0+MaOK+DZ20zN7PsvdXkex1Yy25\ng2kzFvHKogsZPvBhKoudOM65kt6F/+Dqpcu43fYwugYhU0c3JCYxrwtd6pimxCQ2gpWK+glTyL/e\n/qIJE1Ma6KbEIPbfFBJdkZiKRNV0nKEDJFbk07rDwvX2xTxrv5auwQZG/VucvGwm3ac7eT1YdVS7\nQoKixmECCAX9nA9R3lNx9x+EYWzEMf9ctFNe5+CBCUyhigPuVtLdu0muc3He0m3MD7uwrfMwft/7\nvDghgY7m/jhkF0N77eF959kY3RW0Fgxl7istvL43k5XvTyU1tw+hpGLiM3TyL+5HbZnK8RclUP+R\njdBnzYFefnns7xC1VxaTODWRzCu/pEB1UxOMGvVtu76HL6FH1P/XMM3DJpSvRSDw5U2LmP+0aXMQ\njQvzUcIs1hk5jA2sIh87f52dxS79fV6c9QeqLRbUcCKBTpCLt5Nf7ePF1jp00njtGomU97LrvZg9\n3PvWW7wH9DIArZuVygqG3/oaKgaG9RcQNbmhchYJ7YkcnDCQPbNnw/nnwXnn06pE4cI6oODrX/Pn\nsHDvQi49dSd0FfHuRhOZehNiu4k5Bl4eDSZ7kcp+wr2hZWZvSBiCm5MxeYw45TQ0GWHt9HjCDgtk\nnkLRrHyes06nKjf/U8eSvRvJcNm48q0HkW8Z/MqAM/NSeX/ZZVwhtvOK50XYo/DHzkROWNWA4XBQ\nXjiOY99dwWqXA61tKP3tDVBZxOC0WnaPG0S7oXLZ0w2Qmorabwq1bQkg8mnuiNAc7oOak8ib0WwM\n58B/WZ/18N3RI+r/a9x3H9x/PzgcX3/fvn2/ZAMZyyMrutG0TixECUTKMUUgZjc+7gDPe4Pg2oFk\nEoo1hGkRWOUcrlbXcWfyNoYGDjD7siXYHRrRplZ86/eQeuE0QHLj/GWMMuM5acYTdJ3cys8K5vHG\nOfNYZLuN27IeRLTeiuPld3E++x74ywlHo4hQBDMuSmVlFJvtiHng2+T9qmv9gKsqrNQPvZKfj3+e\nFYsfY+jpD7L+cT+nb+ziAccg9s2aTHxVH8ITh+P1WLm8biVL5Blkj97NXrOag4OcaDYLxA+jdnga\nG5Qh+OLjSdi2hggQjTpofXs0/1CuZlZiKsecPYMq5XXUV6ewqCwVDTvvylxyui/F58tkQ2Mi3TQR\nxYnT5Ud1WPD6yiFkIi0awY5yTnz375RuHcGexyYQ/+cLCOthIpEIilQwFYlij0OJRtA1g+CfHoYV\n+pFCqz38YOgR9f81AgG4916YO/cbNyGlJLU1FaPcwNnsJDOcjpRtKIqBatMQofepfLGaie0utKaN\n2HUFkAzypFOt7CO5rJUqC5i6gRULffbnYFNc2KWGYhhMWpnNrqCLlD7zsUmDoWt3Y8WgymUFn8nJ\nW7voFVpPwo1+VAmKlOS1NYNpI9p+E1HjbKR2OlIWIk0XoHLssRY+Tj0uJQSD8KtdX/2at22D1atj\nyx94bXSGRxL2noCUL2EaH3+MBD4Z/+md34/yzIqHKTIvYOa81RRH3+b6J56ke1gWG0se4oyHr2ee\n/XWumX0mm/espXG6lamnPk1h3RQalXysITfddYI2az+CIpmovy+mqVJPHLSngG8Q7d0OKolHi55E\nXdMOjtXD7Npq59W+b1JPlDNsFqTNwnHGINzverheXkdY9RJRIyi6wERBcXhQtSCaEuYXShYZvqm4\n2/IJ7PGTMNr9jZ+XHr5bekS9h69N9/Zu7vzdnfhe8DHEP4Q7un4Ncjbx0VSMUB86is5AaxyLFBpT\nAxYyowdozTDpKM3n3r07uPy0UdAKcfY4QBByNSHcH2B2tmAQYljy42w+TxAa9ipEoJxYPvJiCeJX\nj1B4x1344yxMdMLIS5fwlkUjY/ZqrKKb3OpbsWy7FSmDRKMaQgSR6CQkDEFVVQBM00ZT02YeffRR\nkjIz+b/bbvvSa16wAMrLYcwYCEetRKUdU8aE7pMWe/OLs1l/JYRicM7l91LueZDrLb9hSrmX3TPy\naR7QQXrSdAJhG2urZ3GjKGN+fpRu35v81NvEUHbzqniRGsdItugP885xj7HGN4pUWii0NiOzPUST\nbdh0C/tzz6RZFNLR1obNJwg7HFiHD0JuaEM6D4JUSDScjG3NoPX1lh5R/wHRI+o9fAopJd1buzGj\nsRS5f3vqyCgVICfqZ5rpYnVHDiVxz3Aw+RmWNZv4pB9TaWFP1nsk5HWTNnIXnUXb0A4I9GM2cNWY\nEEvVLhz73mZw11RmjF1HSmoDrfGl+C0NDGrR+XH0bmqPXctEzcbOIMRtcvFjNcI7x55P9fpspOZg\n0wvPsyW+mde8ecTRgJ6xnuc23Yw14XyiSR6cqanQ3oyu+1GeG4Je7WDUqA84/fQwo0eHiEQEkyZZ\nOfPMM1n41ltfuV/OOQfmzIH73ttL1etFtGcVowiJYcCiBbdRs38VY0K7wAnIj+0Wsdwr34SzxBJW\nFRaQcEI5hV396e/8gHcT4zir34tckRmHIlrIGNJJb8tHdE/yUL1fIhZqZPbawv7kbSzJTqQtmIIL\nAzwbyL9wL+/Wl/LmdXcQXr4G+xST+c/+mTzfCA5kN5E5ZwkdZ9WjJ73LWGsftjnexUzL4rRvdPY9\nfF/0iHoPnyJcGaZwciHOAicA/aphpAc8sZrOmEGDaGeEKwKV7Aqlssk8AUNW4yEe1UxkTO0EBreP\nQozcRbYWhyuok14dzxDLWDqyKnBJCJs22vwOjM4UFKMVp9XE4YW2YBbvd/nJEIm836QSejONe4xm\nnq/8CVM3FxG9rp70N7uoTm3iuKFN7H1rPKap4ij2kNC/CW1gGGerCxlopbu7AyVNgw4LnZ2p7N5t\n47LLIByORbmnpf5rElD5uj1sXDWNgZlvY1OixFT9YyTwec7en8+8Xf3wZFWQ6QjQ7PYRyihhWWWU\nVNcipB862rKRmHQEJXabINptwdYBIOgbfxDXgHZsnyh1Zzn0KwVfzAX0+aefIseXgsUCe9bvRiYm\nUntaDfi94DxINBpFmoBjEw8uLuS54gVYLCpCqEedZ79+/RiaMhRbuw3X0k9PVPRJ6MOdk3uizL9L\nekS9h6OQUmLqJohY4I7qVululiREanETq6qjRW3opOJy15OqqowPjEfTxlFJiCphYaGaQuexFYwc\nWENjSSstrhTW9hlFXbGDxLeu4SOyaBlmUFs4gakfnoO7K0SWvB9T1PKGdjMu27u49l+N55SbaJEJ\n6ForpbvHcqq2Gc6tZ9q6JXw4sohrTmjgb+/8nl3ATGUjvXr9icQxTi74MIXfhlrpkH4cZ84kurYX\nk5atIlibCPULwbCC9jT2pUtxfkl1Lk2DZcugoiJWme/vf4d9ldm0RnIJeLOQUiBNFXd8B0P7FpLS\n2AUkxHwT4dD/yNe6B9NDf+Kt0H7aCloZrNRxwtoiuvpMo1Jt5EW7lzl741i6+AYuETs4GLeJqHUl\nI8qS6bW6GakqhKIueslGXFb74XnO1k6dwrehMtGCISWmEaWlvYkkj8CSKnFlQ6NdogO2sIkAVA0y\nrZL8bMlVJ5uoFjOWMOxQrpfqKpPSsnqGpFyAy+YiPvPo+QRfxMdDGx/qEfXvmB5R7+Ew27dvZ8KE\nCUgpeY7n2L1hN8nEogQ/DhfZN2Qfe4/Zy4MvP8iN5/0fBxL6w5qDbCwqZf6vL6c1Pkjr9GoyUnwU\nOH102Pvjs5lIl8RM0mF4F90jTNididsTG0naXM2oyc2ojV3IoIuA6SDQ1ofWsqkQWUEiQCckUAdA\nsSnY39JMU8CHYRoAmFKgAwG3m/U5OWhaAPwBpBqr2cmAARCNh1NPhagCi1XU+noSvySHQFERXHkl\nJCVBSwu0t0NxXC7BaDOysxdSCgZX72GDfwiKlKjm0e0JCdlIhCG/sidJvnESwj8KNauccZYirq9v\noiFpFlus7/B6pR/65hNzHpUMoZk2zcRiMZGA1YgyoK2eCXIbhQ/DsPHDSEnfwmm+CCn7obNE5yRN\nkOlJJjc9CQ6m0uAuQRoGcc5E/FYnuiUrNv+gqDQVqRx/+an89u+LuOqqTPr0nonbPRyAeO9S2qrW\nMDYwlkh6hID1aLdXzdQwZU9Jy++aHlH/H+f2Vbezo3EHECsqnnhzIqMHj8Z5u5OSmSX4Rvqorgd3\nsI5W1U8gPcDIxpEIKcjT+3EgaTyKVgISPN46rDY/E3YWcf8H1XSdJ7DvTEQp90LiapYVpEFGIeau\nU1DbhuHt60KzRXhk6GqK09MwRDrIUyFzF2RtR1EMrELHIsNoOLiSxdzF+SgMR6EVQQkQc1OsNvNI\nMyXN3nQeL3sC6bsKzezE0K2Ayru1Y5k2zQo/GgJhYA5Il+tL/e/bzCgJs1vJ6Q3Z2TBlCmjbSmnf\nVE54eCVCMZm6+z2eVy5ECIFUPv5IHRH3VCASZ6M+2Ito9BvcJEUh5b57OE60w6kSW2EV0gJSkVgv\n7uQm/FhlCVt/JDCvA3+eYPd18EiloHEFuEcK2sdCNBHMMFiQXBcMUt8hUWUSLn+QMSEbT0kDy7Ag\nCb5khFCwWh0oBQWUNnbQecKJvCMcuNodWLwxc5LmyqF1/Em8Zgvic3tprWshL1qBjVhE7Jb6LYT0\nEE3+WHSvEmghRZq0+r96tG+aKw1VUb98wx4O0yPq/+MsLVnKzRNvJj8xn8LCQl778DVuOfcWrBEr\nZ5adSdaNWdz/mGDUwT/zUX4JFfk++mf1RigwfdJpvNfeicVwAZKw6schLQxp1wgb8TTFKZiAw9VK\nsmpwxt6x2MIp7DA8tHXZidSATbcy7eAgJrY08MoAoOwCnLkbsORup9+ID/nJsNu4Zu9jPHXaJizL\nY4o4WN1PI92kWfxAbJ1EIABbikbasPeQpQHq6kysVghhcuCAyrRpX79/NhrtNB9fR5wvCRywOwBN\nhoPuODfGIV//how0AqgYQtAe7yGmabFhuRSCXQg6M+LoroonIQH4CrFf0mdFNjjpUBMov+dFWgr3\nUlNzD9JVQtolT6GssKAoFty/PolFZhxTvCYtgKbZ6ezK4YMlV5BcaUUE0tgX8HL9Hjv+sBvHRB+1\nxffz2zvSMSwCw6hCDA/wgS2A3H0t+vQwoVAIX5qOOjLIsJfqKGtsQyvdSLmqkOhMQFFiGSHDIT/B\nUJAVaimKTeC1mPicThIP5RSI+CMEpwYZ9VQsijTNZ7A61HH49Zfhj/q5e8rdzD3+m7vf/i/SI+o/\nVCoqwO//+vu1tEDy0YmXjsk5hub6ZtYvXk/r3laWvLyEU7RT+KjyI9bcs4YWLcTuOD9qKEpkJRzo\n3EeH1sGTf38Ojj0V65RJcKAIh+nBHjGpTuvFexOzyUvYTkqvJuLaVdKNfPwTnQhCtOyPR+AirXcG\nTrufgjM2Eupfw70Ak+9n4ebhRGlAPziAwZVDKWEuzSf9DZbHzldXFSSgq/9kOhHgcAXJHbCFzqYI\nimISmx/8dmkC3NUJTKkoYMQImHMO3FdeT3VJMd1KMWKSxBUAXCCkRNWPtp9/XLHJo3tJ0To579H9\n3H95zCSx/MBCEGBKSUgPUeerJ6LCS0W/hgO/R9+UzONyJE8KBWFMJUn8He+Vo5mZmElAWNk40Yvu\nS8Be1xe3pYmgCKNIsOjQqzFCsC2JhIqzOLY9kZHX/hmblohhb+OjPpn0La0nEmen3pOKJdKG227g\njg9R0ZYBjhIOKpKGfMm5Z28geUMBmUoXOEPYjQDSiJnNFGsYQ4TICFuJSIOOjN7YAq1Ywn7iSOej\nOi8t3Qk03XpoZN7UBE+POvL6S5i3dh4hvSf979elR9R/iESjUFBAZGB/OkLtX7q5acYm+T7mTU8X\nO5//Fc2OFEoTTuLKd5ZS+PDdMcN5sspzK17meI5ng20zDeWtSCnQBCjCgikl1ZEWXjFfpbYtBDu2\nE/FWg5SEELTFQZeh4Asp7EmKo8HmoclTxfChVQw7pwRFU2m1JBGyWTij9714Iw+wJNBKqbceCaiK\nxBhejZCC45KAk26gNZpEQfGR0ogyUUekt2Cz+7EeGqmbKJiGjUB5HKVvPUhbm4amjUabPQ6CCsGg\n4JlnYPHimGvit8Y02VlQwFWfKBAhITaJ+InvkI8Xo/Y4vJZ49t+UD90HMVSVBm8VJIKCwK7aSY9L\nJ2Crpn3TU8RlvEVVTh592ttRpSRgc/P4b2o5bxuc4PTwoqKwYXIH3UlFqC8VckbTPvIs/TCV4wg6\nVEYcKGXTwGIaOmaxODSIyu2ncbpNRU+uJtkRT8DrQHZLklUV9KkoYUF3SJLdnQNqP4rxIFFxjWrD\naVSj7PZAfAgz4AIEEglKFEWCVTpwmgoBdwoJEZ02azknlOUy0RdgUdjCormLALD7OznJH2Hpodcf\n4xrqImla0qe6uNYbK4/ZFmwj1dVTKu+r0iPqP0RMEywWXnvldh7f+jgXDb3oMzeTpiRcFWbbFigt\niRUyBqA29lczvQ8uxwAa3l2NaLRgd+XhTCvA4xiIvTmRgcln0JgYIYwbZ7yXIbnbqawXONvTyWzr\njSO1H1pmFMs+wF2K+IcLywwfJ+2q5Za9m3h1VA72lkQSAgFSRZA/vXAjB7fNJimhjeZ2gfZIEE8U\nHv1HMl15GchwE70dUBcGJeAhNc6Hp0NScpOFpkorG4wo7NhBhb+dTn+E7UWSO7iLhVgRBFGUKJZU\nH7+87TSefjKTysoo1gf2EvwoHsfLAzj/fMHYsbB06dfvcpsWwCxaw6PPt9HY1oCuGaS3tyNSJCnR\nNo4XG3G1RUj2BsBzZIT+MRGhoAuVQJ4T9orDHiRALIWCULBZbMy6+EfMWzUPgPiPPqJo0iTiLRZO\n7juYuDgvYGdo6CkkTxK0xKO60wnJXuzT3LS44jGkJKQpbLAPwrJ/BJN7ebHvGYpROZ3yjaMgZwNv\njsjjxAf7gkViegx2dq4hnRz2H7+V/C0j0LR6AoMKMCM2iktOZoxZwpV7AxTcDhtfS2TBrIswpUl7\nxyqqKrZw0zlDsBYP4OVTjmFiqIw3DIX0/bmMfaGQeJK51fkzANJMkymGj7ebbjpy6aYdWaNg2xmb\n0LYpAquI/RIIBlsJaSFe2dvKzybeDBMnHvGr7eFz6RH1HzjD0ofxq+N+9Znv+bb52HXjLoYmx6Na\nID/v6Pd/qwUYWmMhqayWqwNRLP5yrG01qMoHbDdHsPDAUpz2GgAs0QjSCrouUKSCkFYeX2NiKmCL\naqhSMvO4IBvOX8gfzxU8aoLmEGi/gxtNiWqVaIYTLuumSrqQEubqb/Hnn7WyJfhj3h5XxdKEe3h5\nlMkTdZK41ijT3Qqz3lAR7i6yZ7TRNSbCHz3zKD43il/TqPJI3r5HQwnq1Mx8lQlCR4RrKa6SjB7d\nRVWVZFL2KnZmHENUGUBSEvTq9c36eVTlYs7ceiv1u/ui9aqnRNcZX1wMAwwemVGIV8yl2OJjsE8S\nDXcQtfjx6hLlkECpQqB8CzOQv8vCgqcfgoK7kK4chqWXcbCjH7RnIytOZKEeJqyFwGhi+5p2iTST\ntgAAGl9JREFU6lNXENHXIbtBzVWIdqtow0KE7BH0F4dSN6GSoBOwSeLbuwjb7BTYvGTOGsHBRgdJ\njntpVwQSjWCcnZnTJoLlQ0a7Ff70px9T3HqA2X94mrTW/ky5fhzt7QrOD0IUH9+fcPOFbHKHGfnq\nEoy+15Bz8mgkJnjL2Lt5EbccOPTryowiDBsyYsESb0EzTWyKwmh3LHq1ojOMLwL27TvgiSti6S2u\nvfYb9+H/Cj2i/l+ClCamGUHXdTQt5n2wtWILRm948fQD2J1w6ona4RqauuGlPppGU1KISRv28YEV\n/iohKDR+k5KIs9nChl4a+/uOZbknmVo9luLWgo4m3UgSaUsLoFltCEPHH58KffpAcyHhpe9AZxJ9\nKaelJsxcdxYd48fz1OlncMlTG1hTNh7dG0/902DYTFKaLFy2oB/br0pg5+IRRHvvYGTLEEZPLSW+\nPQ1jq52UyRJhb8XoncxxAR8HRBNF6Jh2IKKxZ0wR55WC4ZBUZMCpud289ZbkSvEkOb1rWcQJ36p/\nFWmyrd9USt/8I+YbpyPW7iLgcmFiEiKDbZ03MSznfuKCQRRpR0gro+JUNuuxn0dWIRDfQtSlFKxZ\nPRsK7iKYfgEnX7qFPWErWsjEJ/7Gvc5OEiJ9OSPlDmRShJMjVrp7aXj76CS2pbCpvYBhnRrh5BK2\njppAQ7g/URsIBTRvCC0Uwb94BY13T6MtmoCR4YOKKCApDkQoWbkOVoLKXnAc+WZ0uru48Nq3sctE\n9m3ycMopYK1/jz/c/zpVRhRzTSM3XDwQw/BTVvdbqp94+vC+zc2vkVA0kOxFJ9H+TDu7o3aWht3c\n6omZFN8+8DatwWYGpRTwt6UCU9MwPmlH/Kz7JAR25dunavgh0yPq/wVEo1F27LiC1tZFzP2NSmmN\nFSEg3+zHj4zZLHtmHgBv/eXo/fTLr0ZUVdK7vo6wgNUeg8Tj7fxmrEApeZTy3E46jp2H6W3GYvpR\nVYE1amBiRZpWNLuJbrEiTB2QWHUvetsmZlfsJKslm85ZBuXWAfi7P+T383fwfwvmI6REGgKkoG/k\nVc5rv4de4U4AznkMYOOhsyuE+RIdQdX8hSgvxj7MvVGw6ioZ185l+mnbGbYZTrUo/OSB23BOvgd3\ntyRlK4xba6BosCl8HOdUrMQWfg4WxcPqfYjakxlhfvUsld0Ls/hj1Qzs2ggCs1PpVC+gyzkSpetK\nzuFxiop/TmfxLZSnVNLYuRMjQcViOsh3qGwx4pGM56Kq14gYDqyyBZAIaTIgLsSWLzn2801NOBWF\n5rg4fO02kAoPLb4B4bFAUgudbheMgJnEIdQg8t08GJLMAzOfizUQ62qi0sYvL4I5t0chRaEJMBWF\nk8s24IiEsKpR3viHyTTXborKJ1BT4CQ44Mc8nelEEEEZfTZmSoS4ZoGu2JFIojJCyIStikAU7kSG\nlrF8hUnQH+Tisy/m/qiJb/cCrjztBSBW8EOIKz5xdQbpbCK5YwVNl9aiKQ667LlcddihX0KBky1T\nGpnUJCgq8zB/w4Yv7C9dSiomTiT3m2Qh/S+hR9S/R7oKN2Muf+9r7yc0jUSgKtCFX8Rx3NlT2bVm\nC6rVShhrbPiFpJQK5ol7uaV7Dnlm70839JgACkg3TyJFUXmsW0VdYSW8JsztN/2cXjum0DYlCZY8\nBX0yEX36kKDpSOxIEU+boiFkGBSwNG7FvXI7GW4HF0/MwRZQOTAhEfbm8Uzcbsb+xsLm2j+x0mtQ\n/dFYKE3AF7ePE6+/iYrEAAoJRK2tYDph5BTEH24lrvEgHXvaqbfcw33HqLTUJNIxXfLyK+djre1D\ncfNeOgijY6GLJDQUdCmos+ksifdgdkfRFCuFqYPZaj2WmWPsMLQv4vEwg+X+r9zfkcJ4Thy2jST/\nNhquzmH16wFsoplw75hAj4/bRKfnCobkFeHWm0hJgXI15rYnLGEk9VycMJ+UKc+xIVyEgURTJL5I\nGKwgU0Hzaux37SePvMPH/UVuLnsO+dEHHT4yx+yn+tXl+I8tJdNlI09WYBh+KiqXM2vIdl7sBQVl\nzVTsHED6i1ZMLOgWBYcwafUlcXfIoPfVpaSmCLpVB15XIpvNvqhKGAwbMpDPeM/djD2xhQ1lSSxx\nv8fUthNIlRq1e8dj2AO4wio6KooWpclbjipUgkNyqZpwKZevOJsaZycd/tUY6SkQWI4I3IIecHLY\nxfMTCc+E8NJhcdGtOdD2l2NV6/hkTGokYS1aWT3pnQmk79XoW1PE9Mbqo+6NVCWG60iA03pLOpe8\n+jhxh4qnjO0zjHm33n1U2uX/dnpE/XvkpVtP4piKKLt727/2vq0nOrk3Mgx3XDbnFT3BqUPSIWhg\nOLIR4SaQxqFIdcGkinGUp79MRI2NiD8Z2JgQ1Dmmo4AOo5MSI49TxElECKKaKpf7b+FBXKTtT2TW\nnnH0Tj6W3uHVRMikONHNM3NS0N1WhBZAjx+BP+8aFOK5TPpQpIMroi9gCoWOuDjQdTbcPoJISw5R\nPPSnkfJAgP5PPUpJoA0hrDAsCt1W+OsUZKAY9kWRQJfeRfFHXaTGHQtNAdqjXSSEPGCatAMGKgHi\nMBWFiBVarQrv9HUTbewiYlWpTsihTB3IzL4KjAXp2PGVfMUPIyHF4Sc12ko428ASiRDvaKPFEqSm\nZhDJRHG4/MS5rLSpSejChdmVgdeXgmkNQu9WHunzHnWOOERNGBPQhKQiZAU3SGssPUNBqIATPEfM\nRPPy8g4vz+hq5s6rl3PW7+/AfrXOaXkp/Erdhqa5ueeefFa8sw3mQCTtd4gxp5OpBbEBnYpCljIS\nbWuUH9V3k2B5m0JXb0oTcmnr34UlauBuiBAKuWnVZlFd9RccdjsHow2Yvp2483PJqhH4w8cjI58Q\nRhFHX9coFMNCqNJGfX/B0IBKvgzSyvEEa8tRZS1uMe9IygQpMVSBeijKN6BH0aWCThqYBhbaDjc/\nTBnCvrZOcrL6oBVrqLWC2TUtnLlr5VG3RqAQcQWQh44RsbiwGWGENEGYRIJv0776DaILZn/qttps\nvcjKuvprPAg/DHpE/XNYu3YtU6dO/dz3J2x8n13dHQAMrKnHHQpzqJjalzduSqTqZE40G3Wcwhqh\n0Br04o8GEOaRkYwpQDanIpszkFIc3YQC4oGHGLiukYc02NBmo0JrI1pgkNhsJ6r6yOrKxOe0IUwL\nIRmA9A6UBJPutAQWn38hhsWCkPCkqSKxoGFhrdKKNKNEavuz6LYWLCIblxGhd4tGP59GesNowtLJ\n/nEryfnFRTT5+mIPdhGwSTL8KjqZ2GjAROX5pMfREajczo3qFvRIBjLOQEY1Gi1WNCWFbX1XwmXX\nYQlXoYVbDhX6BI6Nh3ESHmvnGlnPDBlFCW3F3KXTyQxmbi0h8WCUbmDBlWHSaAUMkDH7t/B3YDF1\nFN2AYBtBw8ezjSH+XuZn8Fe476+88gp79+5mc10V8Ar3Fw5BZRDR0/3ow1IQzgEwbzi3Wd5ECyto\npoX32p9hpSaJdgr05gT2xflgbB00w18aPTxk+TGnzF3JrVv2kB12k+SIuempjSo2u425tXPJcmV9\n6eOj7drJQtdIVjKZ9vYQ3TPSeWL6G/ykCepPH4/UGplw/1LO0BJojVfJ9g7lDd4k3jGKIf4RDC4T\naCJEd5mCapi4giHqpOQ6mcWE0j6kK8n0fX8ot14F3WVOsie9jmfwuqNPQh560j0me7QRKNZZdD/9\nCAB9MHFjsGnBSG5Z9zuwrQIzcFjbMUBNBBEPJmB29gdpoXLQS1Qn7ya8SxLfawdP7TaZ5u3GGwVL\nPIQk2Ah/fHikCS7dieuQDV0AYVXHbiqYwsQEmgSIzWXc/OhKHPITgydpoukdeEavo7mxmcxhny7F\nNyR1CNPyp5HoSGRAyoAvvS//KfxbRH358uXccsstGIbBtddey9zPKMhwzZJreL/8/W91nGNzj+X1\n81//2vtJKbln7T2Y9XXE7a4n6A1+apsPd9QwZexnmCwAWtvwpB3DNQc/YFyTyZUH69itCEwhv5Km\nA0ihYArBvXaFJYFDhYZVIO6Qn7PqAKEScx7/nEK922GHEgt2uT41QvfwMYRvm4ezcTPS8OPytdPR\n/TbJHT+h0+bHKsKYKePQht+FCNYdaedwgM4nzqPvDdQGoqjdpbRHC2n/+SbaC5IY1mQQsQjMFJOW\nn/2SmT9+nBy9CiEFqm7FioJEQyJIzq1j296xLDNXMq6jHu2aPqzfrNDL8wq3R23c5j4Fd/49XJZ1\nEf37p3Lb8huImLGqo1ZrEEyFqCr40H4Pt17wa0zTD8Pv5Be/UtkyI43syTbscZlEGxqx2boxFQua\nCs0uN87pF6IXPYsUJkpcM/GD13HZfjev9EtCfkG+l49F/eGHH2bI6F7kO1axFgtnnjMKq5CEbDbK\nXTrdDo3hFywj0eKjvN1Gij2RqtIOCqps2Hv1pvqM6/m/6nWcpV+DIxJPTllfslo3s7jIxvAzRmDp\nkiQ+EcfIi0aSaCR+pWfm8aVLiUR+gbLgGS7oPBW/v5Bdu+q5+pxTGTjaCk0aq6b8mXYdHO48xJMX\nkKlAU6iWY/U+JGsmLllCvCgFCX87qz8LzhuPK+hAb7Rj/FJw3XvrsSiSsGMZmhFg4aMLeU2RQMdn\nnlPUJoiOCWBeYOXmspOx5WXjDMCoQBXl6kY8V9UgKEBIyaj95Vh1HSWqk7+/CUtnLPzfkNvpbY7m\npM0XYRcWkN1QH8FDhLlMYYv2ZT6oOiiHJlB1O4SjkOkidXQv/rGklKApeddbgRBHu0OqpsDYtA29\nqBlqU2IrbS6wuUExIa8Zdq2NrbanYut18Ve6T3ZNY/aHH/LbefPweDwUNRWxoHDBV9r387CpX918\n9C8XdcMw+OlPf8qqVavIzs5m/PjxnHnmmQwefGR8dPr2D1iv9yVv5APEOz6jUsyXoAAzRQ1/Xn8v\n89bMO+q96jI3kZBKS8lBtMjnZ8f7kL28tLaGcZWtNAkByqG81yJmn6s1YMa+mDufkIAmkJ9I1jSD\nYizAYMAARpuSz6uPILIVhOfokbbA4IqWqzg9kMrvALCAIY6YBYQRG4oc2vpjo4ng/9u79+AoqkSP\n49/umck7GQIkISTB8DALeTAzgo7g8jYbEWO5al0hi9RVvLurrrXgroWs5dbCVhS0UlcDu3XvsoWP\nom7J6molaog8NIvKI0AAiQFCNDEhJBCSMMlM5tl99o+BECAPdivQc6n+/DWZ9Ez/5kzP6dOn+5z2\nYs76MyImuBG/cVrlhG0cyaPmMEoyoHRXY24PJ8GdRJNRxRSZy+Ke6RQf+ZA77zHQ0LWQru86mPrn\nr0hrMuCU46kJzMERq+I0+7g0SFMKRIIvFgGoylY++zCM0VGdHOrzGdwXRjDVfITkxIZrpw2XQAiZ\n9KyviPR/S0Kdl9L1v8BzuJlGuZtngcAds3E4eihtrSJSRBKX/BNaXGcBCTXBRkANUH6XxIGIdL6f\ndjfe9lOE93yMm5/SbYzj3BiJyB6BIguqb6unOU7C7YzB4b4D18c/hvGbaT7fSoqzje4ZrTR/foCk\ns0mcG5eAx9yMKjcgGHhQi3t+JtkJbfBX+MfdfyJNduFAoclbh1E9zoE5T/AX8zJ++c1y9kcsJT78\ndV6su4ORzRmcKE2Ab28jZ0UkiRhwtf0nTygTUB1RHN1djYmx/Nrza45VHGO6PB61ZyMd5R2krkzt\nN8vvs7M5uncvZYEA/nPT2f7ubFTjbNQwlb99GM9H5f8BM6bxt3/8iippAs2d4bhGZGDwRHHfktV8\nXN0BcgCTTwEEkt/EXftqeK16A4fcENuWzn+rlfg85xHCjyzOI8Kzcd6XP2D5XKLGjsIQa6DbFpzo\nS4wUNHsTEUfPIv84eMJSSBL7Z+eAACVlLNH/uwnD2VYMhjb83nrGp1bwk+njUEdF4t5lYc/OmZg7\n4/lSPEy+f1Pv5aCjGE0ccaiovGcsxaHei9d/J70NkvFuiDoDDX+n7XMVwfckehTa3hqgYQSsF4JV\nVVfttARggrW3p3FO9XAhsY3041W9/5YBQ5iMN/baEa+Nd82g/r2trP+8nOjoSL5pbORgdASjI6Mv\nv70EgQQFruNKHQmJ2nFnhlyud3kxWLPl37B3717WrFlDeXlwTPe6desAePHFF4MrlCTYtpW79/wP\nljMCZ00nvqbBR0UqShxV7W+g9Dl8cqseBAIhq4AKxmClN18cYqSpb4epzJgRO4gKuzw0WZYhJS6G\nHO85qkUMDXGTWNRygqkNZ1EMwfdZqwp+L186ucMVFdalElNkGSTwmWDjRAsqwXyqkK44IQTQNiaB\nb+NjOOd1Y5AkhCRQzD4Mig/FAKpJQggTrp4cArFRuDJTkH3Bkz1+o4Ia5gNJItpogHAvasAESHhK\nP8Xz/G8J67pAROfFcryYz29yI4ARztG0dnpIn2DAq4YT0ewnufY8/rBoXMdH0f7NBGy2PzGrUWZH\ncgpOw+UdkCoJqr7NIy62g0hTgPDWHyF1jiTYm6nSLcl0SuEgZCRxaeKlYIAIuZue275GXfgCbFiM\nwbCmt/wBlKfrEGOv+lFIIKZ1gAQGRSG36iBHJ07CGRlB8vkOLKfqWPp/gr0zBO6xJ1lWW82nrrN0\necKQY1pRzdDolIhyRPFpkgtnciThXoHbPRGDUFDCz6D4TBijvXgSPFCdCRfikSSJexMSsKans3bt\nWux2O2lPzmXmqDJeevwUb8jzeUKq5Pi4OTybNpoI8z5i5v6MFZY/ULIihU3HS/lZbi4PfPEEHXec\n43dP57F72TFy1mRhaO4hL+pperriQZL4Kvk8M76byfdp39Ma3opryQ+Y7rGh1J/FaB6gneX3g9NJ\nyTYjazb/kakLfhN8/nw7HDtGjXs8B2bfC0bPlRspgCG4HYU1zAgWvsGA0SeICKjcZjrGBXMXB4ol\nfhj7I1b818/pCQPFEcPpc3V4ImsJdpJcZlTBqAbIMLSxZ/o8pKNmRGM0SQ4f4TEdXEjei2p04a9s\nIfzO1IvbkYy42DBx3/sskteF8HoQQsZgdKL6BXKYgjEQzUhvDAEl2DIVfboj6TvRpQge0V7q8PRF\nOFFUA+7uSAx/r0EKqIQpAe7x7+U7ZTKmPp/BRBdhOIJFI4zER9Xw0zmJvb8bIQXLb87OH0hq78I3\nQiWACSRxxWWpkpBQa83BftKruIjiBBnIhh7uU3aza/REXJdmDL30tQABr5eAP9D/dy4DUR3Q46Ik\nBd47waBHmZdzDXOl/sEHH/DZZ5+xadMmALZs2cL+/fvZsGFDcIXStQWg0+l0uqFdT3U97N0vQ1Xa\nw7wP0el0Ol0fwz70KiUlhaampt6/m5qaSE3tv59Qp9PpdMNr2Cv16dOnc+rUKRoaGvD5fGzdupUH\nH3xwuFej0+l0un4Me/eL0Whk48aN5OXloSgKy5cvv+LKF51Op9PdODdk5puFCxdy8uRJ6urqWL16\n9YDLFRUVIcsyHR39XwOrtZdffhmLxYLVamXBggVXdCuFkhdeeIEpU6ZgsVh4+OGHcTgcWkfq1/vv\nv09WVhYGg4GqqqqhX3CTlZeXM3nyZG6//XbWr1+vdZx+PfnkkyQlJZGTk6N1lAE1NTUxb948srKy\nyM7Opri4eOgXacDj8WC327FarWRmZg5aV4UCRVGw2Wzk5w9xmanQSGNjo8jLyxPp6emivb1dqxiD\n6urq6n1cXFwsli9frmGagW3fvl0oiiKEEGLVqlVi1apVGifq3/Hjx8XJkyfF3LlzxaFDh7SOc4VA\nICAmTpwo6uvrhc/nExaLRdTU1Ggd6xq7d+8WVVVVIjs7W+soA2ppaRGHDx8WQgjR3d0tMjIyQrIs\nhRDC5XIJIYTw+/3CbreLL7/8UuNEAysqKhIFBQUiPz9/0OU0m6Py+eef57XXXtNq9dclts+E/E6n\nk9GjQ/PuK7m5ucgXL/622+2cPn16iFdoY/LkyWRkZGgdo1+VlZVMmjSJ9PR0TCYTixcvpqSkROtY\n15g1axbx8dfeJSiUjBkzBqs1OKFZTEwMU6ZM4cyZ6x88czNFRUUBwZlOFUVh5FW3egwVp0+fpqys\njKeeemrIKwg1qdRLSkpITU1l6tSpWqz+X/LSSy8xbtw43nnnnd4BVKFs8+bN3H///VrH+H+nubmZ\ntLS03r9TU1Npbh54FKLu+jQ0NHD48GHsdrvWUfqlqipWq5WkpCTmzZtHZmam1pH6tXLlSl5//fXe\nxttgbtiEXrm5ubS2XnuD2cLCQl599VW2b78878tQe54baaCcr7zyCvn5+RQWFlJYWMi6detYuXIl\nb731lgYph84JwbINCwujoKDgZsfrdT05Q5E+KG74OZ1OHn30Ud58801iLt7NKNTIssyRI0dwOBzk\n5eUNOZGfFj755BMSExOx2WxUVFQMufwNq9R37NjR7/PV1dXU19djsViA4GHFtGnTqKysJDEx8UbF\nGdBAOa9WUFCgaQt4qJxvv/02ZWVl7Nq16yYl6t/1lmeo0cdXDC+/388jjzzC0qVLeeihh7SOMySz\n2cyiRYs4ePBgyFXqe/bsobS0lLKyMjweD11dXSxbtox33323/xfclB7+QYTyidLa2trex8XFxWLp\n0qUaphnYtm3bRGZmpmhra9M6ynWZO3euOHjwoNYxruD3+8WECRNEfX298Hq9IXuiVAgh6uvrQ/pE\nqaqq4vHHHxcrVqzQOsqg2traRGdnpxBCiJ6eHjFr1iyxc+dOjVMNrqKiQjzwwAODLqP5zfxC+bB3\n9erV5OTkYLVaqaiooKioSOtI/XruuedwOp3k5uZis9l45plntI7Ur48++oi0tDT27dvHokWLWLhw\nodaRevUdX5GZmcljjz0WkuMrlixZwsyZM6mtrSUtLU2z7sDBfP3112zZsoUvvvgCm82GzWbrneAv\nlLS0tDB//nysVit2u538/HwWLFigdawhDVVnDvuEXjqdTqfTjuYtdZ1Op9MNH71S1+l0uluIXqnr\ndDrdLUSv1HU6ne4WolfqOp1OdwvRK3WdTqe7hfwTj4s6Pzun0qUAAAAASUVORK5CYII=\n" | |
| } | |
| ], | |
| "prompt_number": 76 | |
| }, | |
| { | |
| "cell_type": "markdown", | |
| "metadata": {}, | |
| "source": [ | |
| "Fit the DDM using the quantile $\\chi^2$ method. We have enough data so that both should give good estimation and the quantile method is faster." | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "collapsed": false, | |
| "input": [ | |
| "m_opts_dt16 = []\n", | |
| "for subj_idx, subj_data in dt16.groupby('subj_idx'):\n", | |
| " m_opt_dt16 = hddm.HDDM(subj_data, depends_on={'v': 'intensity_grouped'})\n", | |
| " m_opts_dt16.append(m_opt_dt16.optimize('chisquare'))" | |
| ], | |
| "language": "python", | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "Optimization terminated successfully.\n", | |
| " Current function value: 3401.904787\n", | |
| " Iterations: 6\n", | |
| " Function evaluations: 767\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 3401.979622\n", | |
| " Iterations: 6\n", | |
| " Function evaluations: 769\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 3401.913137\n", | |
| " Iterations: 5\n", | |
| " Function evaluations: 628\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 233.583164\n", | |
| " Iterations: 5\n", | |
| " Function evaluations: 738\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 233.608812\n", | |
| " Iterations: 4\n", | |
| " Function evaluations: 546\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 233.594329\n", | |
| " Iterations: 4\n", | |
| " Function evaluations: 591\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 233.595491\n", | |
| " Iterations: 6\n", | |
| " Function evaluations: 863\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 233.594648\n", | |
| " Iterations: 7\n", | |
| " Function evaluations: 981\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 233.594529\n", | |
| " Iterations: 11\n", | |
| " Function evaluations: 1588\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 136.571051\n", | |
| " Iterations: 7\n", | |
| " Function evaluations: 959\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 136.570902\n", | |
| " Iterations: 8\n", | |
| " Function evaluations: 1027\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 136.572882\n", | |
| " Iterations: 6\n", | |
| " Function evaluations: 782\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 305.963801\n", | |
| " Iterations: 5\n", | |
| " Function evaluations: 681\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 305.963051\n", | |
| " Iterations: 7\n", | |
| " Function evaluations: 1067\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 305.967587\n", | |
| " Iterations: 5\n", | |
| " Function evaluations: 699\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 272.622007\n", | |
| " Iterations: 7\n", | |
| " Function evaluations: 1023\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 272.622105\n", | |
| " Iterations: 6\n", | |
| " Function evaluations: 981\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 272.623730\n", | |
| " Iterations: 5\n", | |
| " Function evaluations: 698\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 192.348092\n", | |
| " Iterations: 7\n", | |
| " Function evaluations: 1001\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 192.349625\n", | |
| " Iterations: 6\n", | |
| " Function evaluations: 838\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 192.347191\n", | |
| " Iterations: 10\n", | |
| " Function evaluations: 1284\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 1012.890375\n", | |
| " Iterations: 5\n", | |
| " Function evaluations: 691\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 1012.881600\n", | |
| " Iterations: 6\n", | |
| " Function evaluations: 812\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 1012.903440\n", | |
| " Iterations: 11\n", | |
| " Function evaluations: 1511\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 1589.476309\n", | |
| " Iterations: 6\n", | |
| " Function evaluations: 859\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 1589.476011\n", | |
| " Iterations: 6\n", | |
| " Function evaluations: 825\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 1589.475908\n", | |
| " Iterations: 6\n", | |
| " Function evaluations: 857\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 2414.309596\n", | |
| " Iterations: 6\n", | |
| " Function evaluations: 774\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 2414.312397\n", | |
| " Iterations: 5\n", | |
| " Function evaluations: 646\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 2414.351011\n", | |
| " Iterations: 9\n", | |
| " Function evaluations: 1132\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 144.816843\n", | |
| " Iterations: 5\n", | |
| " Function evaluations: 643\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 144.817067\n", | |
| " Iterations: 7\n", | |
| " Function evaluations: 977\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 144.816406\n", | |
| " Iterations: 6\n", | |
| " Function evaluations: 868\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 1271.663933\n", | |
| " Iterations: 7\n", | |
| " Function evaluations: 1017\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 1271.668092\n", | |
| " Iterations: 8\n", | |
| " Function evaluations: 1019\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 1271.692043\n", | |
| " Iterations: 5\n", | |
| " Function evaluations: 615\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 457.299011\n", | |
| " Iterations: 5\n", | |
| " Function evaluations: 706\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 457.296911\n", | |
| " Iterations: 6\n", | |
| " Function evaluations: 924\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 457.297574\n", | |
| " Iterations: 5\n", | |
| " Function evaluations: 748\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 167.563991\n", | |
| " Iterations: 6\n", | |
| " Function evaluations: 853\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 167.564340\n", | |
| " Iterations: 5\n", | |
| " Function evaluations: 659\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 167.563619\n", | |
| " Iterations: 10\n", | |
| " Function evaluations: 1406\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 298.700179\n", | |
| " Iterations: 6\n", | |
| " Function evaluations: 810\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 298.706513\n", | |
| " Iterations: 10\n", | |
| " Function evaluations: 1335\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 298.698700\n", | |
| " Iterations: 7\n", | |
| " Function evaluations: 1047\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 321.195225\n", | |
| " Iterations: 5\n", | |
| " Function evaluations: 664\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 321.194627\n", | |
| " Iterations: 6\n", | |
| " Function evaluations: 902\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 321.194534\n", | |
| " Iterations: 6\n", | |
| " Function evaluations: 820\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 319.075838\n", | |
| " Iterations: 6\n", | |
| " Function evaluations: 816\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 319.076048\n", | |
| " Iterations: 7\n", | |
| " Function evaluations: 958\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 319.077493\n", | |
| " Iterations: 6\n", | |
| " Function evaluations: 800\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 1362.023483\n", | |
| " Iterations: 6\n", | |
| " Function evaluations: 767\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 1362.019146\n", | |
| " Iterations: 6\n", | |
| " Function evaluations: 773\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 1361.982701\n", | |
| " Iterations: 7\n", | |
| " Function evaluations: 939\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 257.663953\n", | |
| " Iterations: 6\n", | |
| " Function evaluations: 949\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 257.663124\n", | |
| " Iterations: 6\n", | |
| " Function evaluations: 833\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 3418.643476\n", | |
| " Iterations: 8\n", | |
| " Function evaluations: 1054\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 273.913742\n", | |
| " Iterations: 6\n", | |
| " Function evaluations: 814\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 273.912639\n", | |
| " Iterations: 6\n", | |
| " Function evaluations: 823\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 273.914749\n", | |
| " Iterations: 5\n", | |
| " Function evaluations: 713\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 213.468541\n", | |
| " Iterations: 6\n", | |
| " Function evaluations: 801\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 213.468604\n", | |
| " Iterations: 6\n", | |
| " Function evaluations: 853\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 213.470632\n", | |
| " Iterations: 6\n", | |
| " Function evaluations: 829\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 1355.979181\n", | |
| " Iterations: 6\n", | |
| " Function evaluations: 753\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 1355.977647\n", | |
| " Iterations: 6\n", | |
| " Function evaluations: 767\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 1356.032103\n", | |
| " Iterations: 5\n", | |
| " Function evaluations: 600\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 346.818692\n", | |
| " Iterations: 6\n", | |
| " Function evaluations: 827\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 346.820638\n", | |
| " Iterations: 6\n", | |
| " Function evaluations: 852\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 346.823281\n", | |
| " Iterations: 5\n", | |
| " Function evaluations: 649\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 239.454573\n", | |
| " Iterations: 6\n", | |
| " Function evaluations: 869\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 239.460452\n", | |
| " Iterations: 9\n", | |
| " Function evaluations: 1159\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 239.455138\n", | |
| " Iterations: 6\n", | |
| " Function evaluations: 790\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 243.473585\n", | |
| " Iterations: 6\n", | |
| " Function evaluations: 833\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 243.482388\n", | |
| " Iterations: 6\n", | |
| " Function evaluations: 815\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 243.482384\n", | |
| " Iterations: 9\n", | |
| " Function evaluations: 1264\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 174.935349\n", | |
| " Iterations: 7\n", | |
| " Function evaluations: 1024\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 174.941447\n", | |
| " Iterations: 5\n", | |
| " Function evaluations: 668\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 174.935933\n", | |
| " Iterations: 6\n", | |
| " Function evaluations: 846\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 1512.066062\n", | |
| " Iterations: 5\n", | |
| " Function evaluations: 685\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 1512.061789\n", | |
| " Iterations: 5\n", | |
| " Function evaluations: 660\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 1512.067919\n", | |
| " Iterations: 5\n", | |
| " Function evaluations: 676\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 175.100773\n", | |
| " Iterations: 6\n", | |
| " Function evaluations: 819\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 175.102962\n", | |
| " Iterations: 8\n", | |
| " Function evaluations: 1038\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 175.106094\n", | |
| " Iterations: 8\n", | |
| " Function evaluations: 1022\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 204.213015\n", | |
| " Iterations: 4\n", | |
| " Function evaluations: 551\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 204.217278\n", | |
| " Iterations: 12\n", | |
| " Function evaluations: 1501\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 204.212719\n", | |
| " Iterations: 4\n", | |
| " Function evaluations: 569\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 211.446052\n", | |
| " Iterations: 6\n", | |
| " Function evaluations: 868\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 211.444544\n", | |
| " Iterations: 7\n", | |
| " Function evaluations: 993\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 211.449337\n", | |
| " Iterations: 5\n", | |
| " Function evaluations: 784\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 396.255425\n", | |
| " Iterations: 7\n", | |
| " Function evaluations: 1054\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 396.255508\n", | |
| " Iterations: 7\n", | |
| " Function evaluations: 990\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 396.264392\n", | |
| " Iterations: 5\n", | |
| " Function evaluations: 666\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 162.647666\n", | |
| " Iterations: 6\n", | |
| " Function evaluations: 755\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 162.647180\n", | |
| " Iterations: 6\n", | |
| " Function evaluations: 767\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 162.649963\n", | |
| " Iterations: 7\n", | |
| " Function evaluations: 967\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 189.471638\n", | |
| " Iterations: 7\n", | |
| " Function evaluations: 1055\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 189.471703\n", | |
| " Iterations: 6\n", | |
| " Function evaluations: 842\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 189.473439\n", | |
| " Iterations: 9\n", | |
| " Function evaluations: 1250\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 1304.562867\n", | |
| " Iterations: 6\n", | |
| " Function evaluations: 860\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 1304.562133\n", | |
| " Iterations: 6\n", | |
| " Function evaluations: 859\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 1304.576542\n", | |
| " Iterations: 6\n", | |
| " Function evaluations: 810\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 1399.608272\n", | |
| " Iterations: 6\n", | |
| " Function evaluations: 802\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 1399.609324\n", | |
| " Iterations: 6\n", | |
| " Function evaluations: 842\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 1399.607913\n", | |
| " Iterations: 5\n", | |
| " Function evaluations: 694\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 2718.897080\n", | |
| " Iterations: 5\n", | |
| " Function evaluations: 693\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 2718.915493\n", | |
| " Iterations: 6\n", | |
| " Function evaluations: 775\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 2718.902494\n", | |
| " Iterations: 6\n", | |
| " Function evaluations: 789\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 2397.729708\n", | |
| " Iterations: 7\n", | |
| " Function evaluations: 897\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 2397.729014\n", | |
| " Iterations: 6\n", | |
| " Function evaluations: 872\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 2397.729445\n", | |
| " Iterations: 7\n", | |
| " Function evaluations: 909\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 661.202563\n", | |
| " Iterations: 6\n", | |
| " Function evaluations: 855\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 661.197503\n", | |
| " Iterations: 7\n", | |
| " Function evaluations: 994\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 661.199567\n", | |
| " Iterations: 6\n", | |
| " Function evaluations: 839\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 142.902416\n", | |
| " Iterations: 6\n", | |
| " Function evaluations: 827\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 142.901776\n", | |
| " Iterations: 6\n", | |
| " Function evaluations: 920\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 142.905435\n", | |
| " Iterations: 7\n", | |
| " Function evaluations: 947\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 1234.625333\n", | |
| " Iterations: 6\n", | |
| " Function evaluations: 743\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 1234.593618\n", | |
| " Iterations: 8\n", | |
| " Function evaluations: 1045\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 1234.669174\n", | |
| " Iterations: 6\n", | |
| " Function evaluations: 764\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 1305.120813\n", | |
| " Iterations: 5\n", | |
| " Function evaluations: 672\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 1305.119692\n", | |
| " Iterations: 7\n", | |
| " Function evaluations: 1027\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 1305.526211\n", | |
| " Iterations: 11\n", | |
| " Function evaluations: 1438\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 332.096872\n", | |
| " Iterations: 5\n", | |
| " Function evaluations: 696\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 332.102625\n", | |
| " Iterations: 7\n", | |
| " Function evaluations: 966\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 332.095861\n", | |
| " Iterations: 6\n", | |
| " Function evaluations: 921\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 2515.729672\n", | |
| " Iterations: 6\n", | |
| " Function evaluations: 860\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 2515.823530\n", | |
| " Iterations: 5\n", | |
| " Function evaluations: 640\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 2515.730863\n", | |
| " Iterations: 7\n", | |
| " Function evaluations: 930\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 1607.681280\n", | |
| " Iterations: 7\n", | |
| " Function evaluations: 910\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 1607.699314\n", | |
| " Iterations: 8\n", | |
| " Function evaluations: 1010\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 1607.680918\n", | |
| " Iterations: 6\n", | |
| " Function evaluations: 902\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 251.949398\n", | |
| " Iterations: 5\n", | |
| " Function evaluations: 692\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 251.949496\n", | |
| " Iterations: 5\n", | |
| " Function evaluations: 656\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 251.949313\n", | |
| " Iterations: 4\n", | |
| " Function evaluations: 540\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 221.990537\n", | |
| " Iterations: 6\n", | |
| " Function evaluations: 914\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 221.990455\n", | |
| " Iterations: 6\n", | |
| " Function evaluations: 851\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 221.990536\n", | |
| " Iterations: 6\n", | |
| " Function evaluations: 869\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 1202.627537\n", | |
| " Iterations: 6\n", | |
| " Function evaluations: 740\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 1202.619802\n", | |
| " Iterations: 11\n", | |
| " Function evaluations: 1788\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 1202.623038\n", | |
| " Iterations: 6\n", | |
| " Function evaluations: 775\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 134.675462\n", | |
| " Iterations: 6\n", | |
| " Function evaluations: 864\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 134.675404\n", | |
| " Iterations: 6\n", | |
| " Function evaluations: 864\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 134.675471\n", | |
| " Iterations: 6\n", | |
| " Function evaluations: 864\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 1345.773926\n", | |
| " Iterations: 6\n", | |
| " Function evaluations: 800\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 1345.771313\n", | |
| " Iterations: 6\n", | |
| " Function evaluations: 855\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 1345.771457\n", | |
| " Iterations: 6\n", | |
| " Function evaluations: 862\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 1278.689528\n", | |
| " Iterations: 5\n", | |
| " Function evaluations: 705\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 1278.666843\n", | |
| " Iterations: 7\n", | |
| " Function evaluations: 968\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 1278.682159\n", | |
| " Iterations: 6\n", | |
| " Function evaluations: 853\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 190.272846\n", | |
| " Iterations: 7\n", | |
| " Function evaluations: 976\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 190.267662\n", | |
| " Iterations: 7\n", | |
| " Function evaluations: 1068\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 190.268448\n", | |
| " Iterations: 8\n", | |
| " Function evaluations: 1150\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 1299.411000\n", | |
| " Iterations: 6\n", | |
| " Function evaluations: 751\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 1299.459396\n", | |
| " Iterations: 4\n", | |
| " Function evaluations: 501\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 1299.410527\n", | |
| " Iterations: 6\n", | |
| " Function evaluations: 770\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 1248.616368\n", | |
| " Iterations: 4\n", | |
| " Function evaluations: 490\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 1248.615636\n", | |
| " Iterations: 4\n", | |
| " Function evaluations: 497\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 1248.616999\n", | |
| " Iterations: 4\n", | |
| " Function evaluations: 497\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 2291.594944\n", | |
| " Iterations: 5\n", | |
| " Function evaluations: 634\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 2291.589819\n", | |
| " Iterations: 5\n", | |
| " Function evaluations: 687\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 2291.592605\n", | |
| " Iterations: 5\n", | |
| " Function evaluations: 627\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 1466.936039\n", | |
| " Iterations: 5\n", | |
| " Function evaluations: 760\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 1466.935504\n", | |
| " Iterations: 7\n", | |
| " Function evaluations: 1014\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 1466.937740\n", | |
| " Iterations: 7\n", | |
| " Function evaluations: 915\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 165.936327\n", | |
| " Iterations: 6\n", | |
| " Function evaluations: 816\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 165.936017\n", | |
| " Iterations: 6\n", | |
| " Function evaluations: 854\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 165.935915\n", | |
| " Iterations: 6\n", | |
| " Function evaluations: 914\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 293.617734\n", | |
| " Iterations: 6\n", | |
| " Function evaluations: 937\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 293.619032\n", | |
| " Iterations: 5\n", | |
| " Function evaluations: 686\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 293.618743\n", | |
| " Iterations: 5\n", | |
| " Function evaluations: 714\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 164.349884\n", | |
| " Iterations: 7\n", | |
| " Function evaluations: 908\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 164.352565\n", | |
| " Iterations: 7\n", | |
| " Function evaluations: 913\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 164.346843\n", | |
| " Iterations: 7\n", | |
| " Function evaluations: 984\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 1206.369292\n", | |
| " Iterations: 5\n", | |
| " Function evaluations: 613\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 1206.353149\n", | |
| " Iterations: 5\n", | |
| " Function evaluations: 620\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 1206.373972\n", | |
| " Iterations: 5\n", | |
| " Function evaluations: 617\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 2237.637405\n", | |
| " Iterations: 7\n", | |
| " Function evaluations: 916\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 2237.637372\n", | |
| " Iterations: 7\n", | |
| " Function evaluations: 940\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 2237.637173\n", | |
| " Iterations: 7\n", | |
| " Function evaluations: 943\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 222.482554\n", | |
| " Iterations: 6\n", | |
| " Function evaluations: 818\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 222.485647\n", | |
| " Iterations: 6\n", | |
| " Function evaluations: 826\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 222.480913\n", | |
| " Iterations: 6\n", | |
| " Function evaluations: 905\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 154.818600\n", | |
| " Iterations: 5\n", | |
| " Function evaluations: 752\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 154.809390\n", | |
| " Iterations: 6\n", | |
| " Function evaluations: 992\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 154.805170\n", | |
| " Iterations: 6\n", | |
| " Function evaluations: 1082\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 1299.141821\n", | |
| " Iterations: 6\n", | |
| " Function evaluations: 828\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 1299.139300\n", | |
| " Iterations: 6\n", | |
| " Function evaluations: 892\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 1299.153878\n", | |
| " Iterations: 8\n", | |
| " Function evaluations: 1073\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 1341.673339\n", | |
| " Iterations: 6\n", | |
| " Function evaluations: 763\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 1341.663495\n", | |
| " Iterations: 5\n", | |
| " Function evaluations: 668\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 1341.658421\n", | |
| " Iterations: 6\n", | |
| " Function evaluations: 892\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 238.755314\n", | |
| " Iterations: 7\n", | |
| " Function evaluations: 935\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 238.750952\n", | |
| " Iterations: 7\n", | |
| " Function evaluations: 930\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 238.755528\n", | |
| " Iterations: 7\n", | |
| " Function evaluations: 905\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 1347.611249\n", | |
| " Iterations: 6\n", | |
| " Function evaluations: 796\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 1347.630802\n", | |
| " Iterations: 5\n", | |
| " Function evaluations: 656\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 1347.592136\n", | |
| " Iterations: 8\n", | |
| " Function evaluations: 1111\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 1345.592752\n", | |
| " Iterations: 6\n", | |
| " Function evaluations: 786\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 1345.594683\n", | |
| " Iterations: 5\n", | |
| " Function evaluations: 634\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 1345.602592\n", | |
| " Iterations: 5\n", | |
| " Function evaluations: 611\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 1275.383253\n", | |
| " Iterations: 6\n", | |
| " Function evaluations: 738\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 1275.368789\n", | |
| " Iterations: 5\n", | |
| " Function evaluations: 641\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 1275.362254\n", | |
| " Iterations: 5\n", | |
| " Function evaluations: 633\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 2427.339065\n", | |
| " Iterations: 5\n", | |
| " Function evaluations: 649\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 2427.345914\n", | |
| " Iterations: 6\n", | |
| " Function evaluations: 787\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 2427.340037\n", | |
| " Iterations: 8\n", | |
| " Function evaluations: 1026\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 1313.680434\n", | |
| " Iterations: 5\n", | |
| " Function evaluations: 605\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 1313.637018\n", | |
| " Iterations: 5\n", | |
| " Function evaluations: 714\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 1313.686497\n", | |
| " Iterations: 5\n", | |
| " Function evaluations: 629\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 278.098029\n", | |
| " Iterations: 5\n", | |
| " Function evaluations: 729\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 278.100293\n", | |
| " Iterations: 5\n", | |
| " Function evaluations: 652\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 278.097073\n", | |
| " Iterations: 7\n", | |
| " Function evaluations: 980\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 320.849859\n", | |
| " Iterations: 7\n", | |
| " Function evaluations: 1079\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 320.846816\n", | |
| " Iterations: 6\n", | |
| " Function evaluations: 951\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 320.864983\n", | |
| " Iterations: 7\n", | |
| " Function evaluations: 1055\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 1000.156624\n", | |
| " Iterations: 6\n", | |
| " Function evaluations: 1023\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 1000.158129\n", | |
| " Iterations: 7\n", | |
| " Function evaluations: 1062\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 1000.169389\n", | |
| " Iterations: 6\n", | |
| " Function evaluations: 870\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 199.859129\n", | |
| " Iterations: 5\n", | |
| " Function evaluations: 720\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 199.859039\n", | |
| " Iterations: 5\n", | |
| " Function evaluations: 741\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 199.859374\n", | |
| " Iterations: 9\n", | |
| " Function evaluations: 1292\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 386.737534\n", | |
| " Iterations: 4\n", | |
| " Function evaluations: 594\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 386.758518\n", | |
| " Iterations: 5\n", | |
| " Function evaluations: 860\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 386.742735\n", | |
| " Iterations: 5\n", | |
| " Function evaluations: 876\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 1624.545119\n", | |
| " Iterations: 7\n", | |
| " Function evaluations: 922\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 1624.547256\n", | |
| " Iterations: 6\n", | |
| " Function evaluations: 832\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 1624.545911\n", | |
| " Iterations: 6\n", | |
| " Function evaluations: 804\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 213.837584\n", | |
| " Iterations: 5\n", | |
| " Function evaluations: 707\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 213.836042\n", | |
| " Iterations: 5\n", | |
| " Function evaluations: 686\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 213.835930\n", | |
| " Iterations: 5\n", | |
| " Function evaluations: 759\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 2683.394176\n", | |
| " Iterations: 7\n", | |
| " Function evaluations: 887\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 2683.410386\n", | |
| " Iterations: 6\n", | |
| " Function evaluations: 790\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 2683.391127\n", | |
| " Iterations: 7\n", | |
| " Function evaluations: 907\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 127.040580\n", | |
| " Iterations: 7\n", | |
| " Function evaluations: 988\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 127.042291\n", | |
| " Iterations: 6\n", | |
| " Function evaluations: 771\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 127.041849\n", | |
| " Iterations: 6\n", | |
| " Function evaluations: 778\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 216.500388\n", | |
| " Iterations: 6\n", | |
| " Function evaluations: 872\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 216.500354\n", | |
| " Iterations: 6\n", | |
| " Function evaluations: 971\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 216.501872\n", | |
| " Iterations: 5\n", | |
| " Function evaluations: 702\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 2370.088517\n", | |
| " Iterations: 5\n", | |
| " Function evaluations: 641\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 2370.392141\n", | |
| " Iterations: 8\n", | |
| " Function evaluations: 980\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 2370.063174\n", | |
| " Iterations: 5\n", | |
| " Function evaluations: 689\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 189.748436\n", | |
| " Iterations: 6\n", | |
| " Function evaluations: 857\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 189.747616\n", | |
| " Iterations: 5\n", | |
| " Function evaluations: 694\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 189.744398\n", | |
| " Iterations: 6\n", | |
| " Function evaluations: 812\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 200.771159\n", | |
| " Iterations: 6\n", | |
| " Function evaluations: 875\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 200.764362\n", | |
| " Iterations: 5\n", | |
| " Function evaluations: 706\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 200.763654\n", | |
| " Iterations: 6\n", | |
| " Function evaluations: 871\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 223.067921\n", | |
| " Iterations: 6\n", | |
| " Function evaluations: 791\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 223.070184\n", | |
| " Iterations: 8\n", | |
| " Function evaluations: 1064\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 223.067611\n", | |
| " Iterations: 6\n", | |
| " Function evaluations: 840\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 493.065396\n", | |
| " Iterations: 6\n", | |
| " Function evaluations: 951\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 493.065440\n", | |
| " Iterations: 6\n", | |
| " Function evaluations: 927\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 493.065409\n", | |
| " Iterations: 6\n", | |
| " Function evaluations: 926\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 323.090980\n", | |
| " Iterations: 7\n", | |
| " Function evaluations: 977\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 323.086336\n", | |
| " Iterations: 7\n", | |
| " Function evaluations: 949\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 323.085206\n", | |
| " Iterations: 9\n", | |
| " Function evaluations: 1242\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 1234.151274\n", | |
| " Iterations: 6\n", | |
| " Function evaluations: 817\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 1234.151297\n", | |
| " Iterations: 6\n", | |
| " Function evaluations: 890\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 1234.341625\n", | |
| " Iterations: 6\n", | |
| " Function evaluations: 795\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 331.674185\n", | |
| " Iterations: 6\n", | |
| " Function evaluations: 837\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 331.674757\n", | |
| " Iterations: 6\n", | |
| " Function evaluations: 832\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 331.675513\n", | |
| " Iterations: 6\n", | |
| " Function evaluations: 832\n" | |
| ] | |
| } | |
| ], | |
| "prompt_number": 38 | |
| }, | |
| { | |
| "cell_type": "code", | |
| "collapsed": false, | |
| "input": [ | |
| "m_opts_sy30 = []\n", | |
| "for subj_idx, subj_data in sy30.groupby('subj_idx'):\n", | |
| " m_opt_sy30 = hddm.HDDM(subj_data, depends_on={'v': ['word_freq', 'reps']})\n", | |
| " m_opts_sy30.append(m_opt_sy30.optimize('chisquare'))" | |
| ], | |
| "language": "python", | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "Optimization terminated successfully.\n", | |
| " Current function value: 110.386449\n", | |
| " Iterations: 7\n", | |
| " Function evaluations: 805\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 110.386917\n", | |
| " Iterations: 7\n", | |
| " Function evaluations: 805\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 110.386379\n", | |
| " Iterations: 7\n", | |
| " Function evaluations: 800\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 125.784646\n", | |
| " Iterations: 6\n", | |
| " Function evaluations: 654\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 125.786652\n", | |
| " Iterations: 5\n", | |
| " Function evaluations: 519\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 125.784905\n", | |
| " Iterations: 6\n", | |
| " Function evaluations: 627\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 219.213180\n", | |
| " Iterations: 5\n", | |
| " Function evaluations: 522\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 219.213030\n", | |
| " Iterations: 5\n", | |
| " Function evaluations: 529\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 219.212097\n", | |
| " Iterations: 7\n", | |
| " Function evaluations: 731\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 116.702155\n", | |
| " Iterations: 6\n", | |
| " Function evaluations: 651\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 116.705521\n", | |
| " Iterations: 8\n", | |
| " Function evaluations: 815\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 116.702211\n", | |
| " Iterations: 6\n", | |
| " Function evaluations: 668\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 411.181335\n", | |
| " Iterations: 5\n", | |
| " Function evaluations: 540\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 411.185284\n", | |
| " Iterations: 5\n", | |
| " Function evaluations: 552\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 411.178794\n", | |
| " Iterations: 6\n", | |
| " Function evaluations: 688\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 158.162496\n", | |
| " Iterations: 5\n", | |
| " Function evaluations: 535\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 158.161311\n", | |
| " Iterations: 6\n", | |
| " Function evaluations: 696\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 158.163409\n", | |
| " Iterations: 6\n", | |
| " Function evaluations: 633\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 342.745176\n", | |
| " Iterations: 4\n", | |
| " Function evaluations: 503\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 342.745244\n", | |
| " Iterations: 4\n", | |
| " Function evaluations: 504\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 342.744871\n", | |
| " Iterations: 5\n", | |
| " Function evaluations: 673\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 149.685645\n", | |
| " Iterations: 6\n", | |
| " Function evaluations: 629\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 149.684362\n", | |
| " Iterations: 9\n", | |
| " Function evaluations: 1108\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 149.684368\n", | |
| " Iterations: 5\n", | |
| " Function evaluations: 689\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 494.174044\n", | |
| " Iterations: 6\n", | |
| " Function evaluations: 680\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 494.173350\n", | |
| " Iterations: 8\n", | |
| " Function evaluations: 976\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 494.173524\n", | |
| " Iterations: 6\n", | |
| " Function evaluations: 640\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 968.767391\n", | |
| " Iterations: 6\n", | |
| " Function evaluations: 600\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 968.764921\n", | |
| " Iterations: 5\n", | |
| " Function evaluations: 542\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 968.768160\n", | |
| " Iterations: 6\n", | |
| " Function evaluations: 653\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 152.646398\n", | |
| " Iterations: 5\n", | |
| " Function evaluations: 552\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 152.646408\n", | |
| " Iterations: 5\n", | |
| " Function evaluations: 553\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 152.646020\n", | |
| " Iterations: 5\n", | |
| " Function evaluations: 751\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 159.205783\n", | |
| " Iterations: 5\n", | |
| " Function evaluations: 542\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 159.205775\n", | |
| " Iterations: 5\n", | |
| " Function evaluations: 542\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 159.205517\n", | |
| " Iterations: 5\n", | |
| " Function evaluations: 567\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 201.714292\n", | |
| " Iterations: 5\n", | |
| " Function evaluations: 565\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 201.715830\n", | |
| " Iterations: 9\n", | |
| " Function evaluations: 956\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 201.714919\n", | |
| " Iterations: 5\n", | |
| " Function evaluations: 543\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 197.077709\n", | |
| " Iterations: 5\n", | |
| " Function evaluations: 564\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 197.077500\n", | |
| " Iterations: 7\n", | |
| " Function evaluations: 859\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 197.077372\n", | |
| " Iterations: 4\n", | |
| " Function evaluations: 489\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 158.174927\n", | |
| " Iterations: 5\n", | |
| " Function evaluations: 547\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 158.173886\n", | |
| " Iterations: 6\n", | |
| " Function evaluations: 686\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 158.174715\n", | |
| " Iterations: 5\n", | |
| " Function evaluations: 545\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 177.478004\n", | |
| " Iterations: 6\n", | |
| " Function evaluations: 639\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 177.479791\n", | |
| " Iterations: 6\n", | |
| " Function evaluations: 652\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 177.477582\n", | |
| " Iterations: 6\n", | |
| " Function evaluations: 644\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 290.610053\n", | |
| " Iterations: 5\n", | |
| " Function evaluations: 613\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 290.609945\n", | |
| " Iterations: 5\n", | |
| " Function evaluations: 626\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 290.610581\n", | |
| " Iterations: 4\n", | |
| " Function evaluations: 487\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 211.823863\n", | |
| " Iterations: 6\n", | |
| " Function evaluations: 626\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 211.822650\n", | |
| " Iterations: 6\n", | |
| " Function evaluations: 648\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 211.822497\n", | |
| " Iterations: 6\n", | |
| " Function evaluations: 677\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 140.713840\n", | |
| " Iterations: 6\n", | |
| " Function evaluations: 625\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 140.712762\n", | |
| " Iterations: 6\n", | |
| " Function evaluations: 605\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 140.712383\n", | |
| " Iterations: 6\n", | |
| " Function evaluations: 749\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 186.586020\n", | |
| " Iterations: 8\n", | |
| " Function evaluations: 861\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 186.584836\n", | |
| " Iterations: 8\n", | |
| " Function evaluations: 861\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 186.582598\n", | |
| " Iterations: 8\n", | |
| " Function evaluations: 896\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 278.376649\n", | |
| " Iterations: 5\n", | |
| " Function evaluations: 616\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 278.376754\n", | |
| " Iterations: 5\n", | |
| " Function evaluations: 630\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 278.377277\n", | |
| " Iterations: 5\n", | |
| " Function evaluations: 634\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 534.034804\n", | |
| " Iterations: 8\n", | |
| " Function evaluations: 885\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 534.038076\n", | |
| " Iterations: 7\n", | |
| " Function evaluations: 809\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 534.036558\n", | |
| " Iterations: 9\n", | |
| " Function evaluations: 968\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 400.819186\n", | |
| " Iterations: 6\n", | |
| " Function evaluations: 605\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 400.819807\n", | |
| " Iterations: 4\n", | |
| " Function evaluations: 472\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 400.816985\n", | |
| " Iterations: 8\n", | |
| " Function evaluations: 961\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 278.388850\n", | |
| " Iterations: 7\n", | |
| " Function evaluations: 719\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 278.387966\n", | |
| " Iterations: 7\n", | |
| " Function evaluations: 739\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 278.384148\n", | |
| " Iterations: 6\n", | |
| " Function evaluations: 689\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 137.393712\n", | |
| " Iterations: 8\n", | |
| " Function evaluations: 1023\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 137.394184\n", | |
| " Iterations: 9\n", | |
| " Function evaluations: 988\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 137.395336\n", | |
| " Iterations: 7\n", | |
| " Function evaluations: 830\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 204.149198\n", | |
| " Iterations: 5\n", | |
| " Function evaluations: 578\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 204.149063\n", | |
| " Iterations: 5\n", | |
| " Function evaluations: 574\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 204.149224\n", | |
| " Iterations: 5\n", | |
| " Function evaluations: 592\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 224.990293\n", | |
| " Iterations: 8\n", | |
| " Function evaluations: 857\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 224.990431\n", | |
| " Iterations: 6\n", | |
| " Function evaluations: 675\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 224.990112\n", | |
| " Iterations: 6\n", | |
| " Function evaluations: 674\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 244.329441\n", | |
| " Iterations: 6\n", | |
| " Function evaluations: 609\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 244.329339\n", | |
| " Iterations: 6\n", | |
| " Function evaluations: 607\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 244.329092\n", | |
| " Iterations: 6\n", | |
| " Function evaluations: 613\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 90.217646\n", | |
| " Iterations: 4\n", | |
| " Function evaluations: 482\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 90.217628\n", | |
| " Iterations: 4\n", | |
| " Function evaluations: 552\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 90.217606\n", | |
| " Iterations: 4\n", | |
| " Function evaluations: 519\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 263.068967\n", | |
| " Iterations: 6\n", | |
| " Function evaluations: 661\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 263.069807\n", | |
| " Iterations: 5\n", | |
| " Function evaluations: 568\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 263.069864\n", | |
| " Iterations: 6\n", | |
| " Function evaluations: 693\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 290.862303\n", | |
| " Iterations: 6\n", | |
| " Function evaluations: 639\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 290.865967\n", | |
| " Iterations: 7\n", | |
| " Function evaluations: 865\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 290.858520\n", | |
| " Iterations: 6\n", | |
| " Function evaluations: 662\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 128.968780\n", | |
| " Iterations: 6\n", | |
| " Function evaluations: 673\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 128.969028\n", | |
| " Iterations: 6\n", | |
| " Function evaluations: 641\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 128.968178\n", | |
| " Iterations: 6\n", | |
| " Function evaluations: 677\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 269.904813\n", | |
| " Iterations: 6\n", | |
| " Function evaluations: 662\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 269.900048\n", | |
| " Iterations: 6\n", | |
| " Function evaluations: 699\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 269.902870\n", | |
| " Iterations: 5\n", | |
| " Function evaluations: 584\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 931.948291\n", | |
| " Iterations: 7\n", | |
| " Function evaluations: 733\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 931.948242\n", | |
| " Iterations: 7\n", | |
| " Function evaluations: 753\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 931.950587\n", | |
| " Iterations: 5\n", | |
| " Function evaluations: 516\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 181.238445\n", | |
| " Iterations: 6\n", | |
| " Function evaluations: 641\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 181.238112\n", | |
| " Iterations: 6\n", | |
| " Function evaluations: 673\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 181.238396\n", | |
| " Iterations: 6\n", | |
| " Function evaluations: 679\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 287.452508\n", | |
| " Iterations: 7\n", | |
| " Function evaluations: 743\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 287.447852\n", | |
| " Iterations: 6\n", | |
| " Function evaluations: 663\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 287.452053\n", | |
| " Iterations: 4\n", | |
| " Function evaluations: 449\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 472.675112\n", | |
| " Iterations: 7\n", | |
| " Function evaluations: 768\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 472.676644\n", | |
| " Iterations: 7\n", | |
| " Function evaluations: 759\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 472.672657\n", | |
| " Iterations: 6\n", | |
| " Function evaluations: 738\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 210.451648\n", | |
| " Iterations: 6\n", | |
| " Function evaluations: 629\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 210.452374\n", | |
| " Iterations: 5\n", | |
| " Function evaluations: 541\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 210.451224\n", | |
| " Iterations: 5\n", | |
| " Function evaluations: 544\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 171.433951\n", | |
| " Iterations: 7\n", | |
| " Function evaluations: 744\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 171.436601\n", | |
| " Iterations: 6\n", | |
| " Function evaluations: 654\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 171.435466\n", | |
| " Iterations: 6\n", | |
| " Function evaluations: 627\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 95.614462\n", | |
| " Iterations: 6\n", | |
| " Function evaluations: 724\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 95.614146\n", | |
| " Iterations: 11\n", | |
| " Function evaluations: 1252\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 95.614174\n", | |
| " Iterations: 7\n", | |
| " Function evaluations: 786\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 241.424647\n", | |
| " Iterations: 9\n", | |
| " Function evaluations: 930\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 241.420708\n", | |
| " Iterations: 8\n", | |
| " Function evaluations: 840\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 241.419958\n", | |
| " Iterations: 5\n", | |
| " Function evaluations: 542\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 224.534322\n", | |
| " Iterations: 5\n", | |
| " Function evaluations: 522\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 224.534140\n", | |
| " Iterations: 5\n", | |
| " Function evaluations: 540\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 224.534380\n", | |
| " Iterations: 5\n", | |
| " Function evaluations: 549\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 221.252762\n", | |
| " Iterations: 5\n", | |
| " Function evaluations: 510\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 221.251720\n", | |
| " Iterations: 5\n", | |
| " Function evaluations: 570\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 221.252217\n", | |
| " Iterations: 5\n", | |
| " Function evaluations: 514\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 139.367180\n", | |
| " Iterations: 5\n", | |
| " Function evaluations: 536\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 139.366409\n", | |
| " Iterations: 6\n", | |
| " Function evaluations: 697\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 139.366349\n", | |
| " Iterations: 6\n", | |
| " Function evaluations: 748\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 214.414441\n", | |
| " Iterations: 6\n", | |
| " Function evaluations: 648\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 214.414010\n", | |
| " Iterations: 5\n", | |
| " Function evaluations: 553\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 214.412351\n", | |
| " Iterations: 6\n", | |
| " Function evaluations: 684\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 266.567616\n", | |
| " Iterations: 6\n", | |
| " Function evaluations: 659\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 266.566483\n", | |
| " Iterations: 6\n", | |
| " Function evaluations: 717\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 266.567396\n", | |
| " Iterations: 8\n", | |
| " Function evaluations: 910\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 211.700315\n", | |
| " Iterations: 8\n", | |
| " Function evaluations: 830\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 211.695805\n", | |
| " Iterations: 7\n", | |
| " Function evaluations: 773\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 211.694903\n", | |
| " Iterations: 7\n", | |
| " Function evaluations: 784\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 268.574449\n", | |
| " Iterations: 6\n", | |
| " Function evaluations: 633\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 268.573742\n", | |
| " Iterations: 6\n", | |
| " Function evaluations: 633\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 105941163.310379\n", | |
| " Iterations: 1\n", | |
| " Function evaluations: 78\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 1741.777165\n", | |
| " Iterations: 6\n", | |
| " Function evaluations: 743\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 1741.776098\n", | |
| " Iterations: 6\n", | |
| " Function evaluations: 726\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 1741.869733\n", | |
| " Iterations: 6\n", | |
| " Function evaluations: 690\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 300.038261\n", | |
| " Iterations: 7\n", | |
| " Function evaluations: 763\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 300.037155\n", | |
| " Iterations: 8\n", | |
| " Function evaluations: 940\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 300.037371\n", | |
| " Iterations: 5\n", | |
| " Function evaluations: 563\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 139.815012\n", | |
| " Iterations: 6\n", | |
| " Function evaluations: 659\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 139.814625\n", | |
| " Iterations: 6\n", | |
| " Function evaluations: 639\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 139.813733\n", | |
| " Iterations: 6\n", | |
| " Function evaluations: 649\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 385.706868\n", | |
| " Iterations: 5\n", | |
| " Function evaluations: 551\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 385.701951\n", | |
| " Iterations: 5\n", | |
| " Function evaluations: 591\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 385.707685\n", | |
| " Iterations: 5\n", | |
| " Function evaluations: 561\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 232.702955\n", | |
| " Iterations: 7\n", | |
| " Function evaluations: 800\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 232.701634\n", | |
| " Iterations: 6\n", | |
| " Function evaluations: 678\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 232.701159\n", | |
| " Iterations: 7\n", | |
| " Function evaluations: 760\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 201.293266\n", | |
| " Iterations: 9\n", | |
| " Function evaluations: 997\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 201.291251\n", | |
| " Iterations: 4\n", | |
| " Function evaluations: 499\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 201.292887\n", | |
| " Iterations: 8\n", | |
| " Function evaluations: 873\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 216.596505\n", | |
| " Iterations: 8\n", | |
| " Function evaluations: 875\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 216.595824\n", | |
| " Iterations: 7\n", | |
| " Function evaluations: 759\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 216.594055\n", | |
| " Iterations: 6\n", | |
| " Function evaluations: 662\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 218.365633\n", | |
| " Iterations: 6\n", | |
| " Function evaluations: 642\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 218.365891\n", | |
| " Iterations: 6\n", | |
| " Function evaluations: 677\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 218.365584\n", | |
| " Iterations: 5\n", | |
| " Function evaluations: 530\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 230.721374\n", | |
| " Iterations: 7\n", | |
| " Function evaluations: 750\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 230.720455\n", | |
| " Iterations: 7\n", | |
| " Function evaluations: 764\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 230.719972\n", | |
| " Iterations: 7\n", | |
| " Function evaluations: 763\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 307.924676\n", | |
| " Iterations: 6\n", | |
| " Function evaluations: 710\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 307.927828\n", | |
| " Iterations: 6\n", | |
| " Function evaluations: 666\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 307.924719\n", | |
| " Iterations: 6\n", | |
| " Function evaluations: 759\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 91.806908\n", | |
| " Iterations: 7\n", | |
| " Function evaluations: 780\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 91.807015\n", | |
| " Iterations: 7\n", | |
| " Function evaluations: 778\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 91.807728\n", | |
| " Iterations: 6\n", | |
| " Function evaluations: 633\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 226.152604\n", | |
| " Iterations: 6\n", | |
| " Function evaluations: 650\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 226.152051\n", | |
| " Iterations: 8\n", | |
| " Function evaluations: 939\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 226.152277\n", | |
| " Iterations: 6\n", | |
| " Function evaluations: 662\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 155.596119\n", | |
| " Iterations: 7\n", | |
| " Function evaluations: 809\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 155.597527\n", | |
| " Iterations: 6\n", | |
| " Function evaluations: 644\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 155.597365\n", | |
| " Iterations: 8\n", | |
| " Function evaluations: 886\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 250.982898\n", | |
| " Iterations: 5\n", | |
| " Function evaluations: 520\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 250.980299\n", | |
| " Iterations: 5\n", | |
| " Function evaluations: 550\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 250.981614\n", | |
| " Iterations: 5\n", | |
| " Function evaluations: 534\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 291.350959\n", | |
| " Iterations: 6\n", | |
| " Function evaluations: 767\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 291.350910\n", | |
| " Iterations: 7\n", | |
| " Function evaluations: 827\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 291.350974\n", | |
| " Iterations: 6\n", | |
| " Function evaluations: 737\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 265.675104\n", | |
| " Iterations: 6\n", | |
| " Function evaluations: 644\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 265.671689\n", | |
| " Iterations: 6\n", | |
| " Function evaluations: 758\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 265.686258\n", | |
| " Iterations: 9\n", | |
| " Function evaluations: 937\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 294.710565\n", | |
| " Iterations: 8\n", | |
| " Function evaluations: 852\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 294.717687\n", | |
| " Iterations: 7\n", | |
| " Function evaluations: 760\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 294.714692\n", | |
| " Iterations: 7\n", | |
| " Function evaluations: 730\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 222.473574\n", | |
| " Iterations: 5\n", | |
| " Function evaluations: 524\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 222.472218\n", | |
| " Iterations: 7\n", | |
| " Function evaluations: 801\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 222.472905\n", | |
| " Iterations: 5\n", | |
| " Function evaluations: 512\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 225.090692\n", | |
| " Iterations: 5\n", | |
| " Function evaluations: 553\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 225.090127\n", | |
| " Iterations: 7\n", | |
| " Function evaluations: 825\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 225.090430\n", | |
| " Iterations: 5\n", | |
| " Function evaluations: 613\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 1764.433704\n", | |
| " Iterations: 6\n", | |
| " Function evaluations: 604\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 1764.413972\n", | |
| " Iterations: 5\n", | |
| " Function evaluations: 517\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 1764.398580\n", | |
| " Iterations: 8\n", | |
| " Function evaluations: 842\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 280.639745\n", | |
| " Iterations: 7\n", | |
| " Function evaluations: 843\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 280.639832\n", | |
| " Iterations: 7\n", | |
| " Function evaluations: 855\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 280.639785\n", | |
| " Iterations: 7\n", | |
| " Function evaluations: 919\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 277.978008\n", | |
| " Iterations: 6\n", | |
| " Function evaluations: 623\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 277.974685\n", | |
| " Iterations: 6\n", | |
| " Function evaluations: 768\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 277.976546\n", | |
| " Iterations: 6\n", | |
| " Function evaluations: 633\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 754.368471\n", | |
| " Iterations: 5\n", | |
| " Function evaluations: 658\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 754.372807\n", | |
| " Iterations: 5\n", | |
| " Function evaluations: 588\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 754.366108\n", | |
| " Iterations: 5\n", | |
| " Function evaluations: 670\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 273.318582\n", | |
| " Iterations: 7\n", | |
| " Function evaluations: 795\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 273.318626\n", | |
| " Iterations: 7\n", | |
| " Function evaluations: 787\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 273.320466\n", | |
| " Iterations: 5\n", | |
| " Function evaluations: 539\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 328.830093\n", | |
| " Iterations: 7\n", | |
| " Function evaluations: 856\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 328.830086\n", | |
| " Iterations: 7\n", | |
| " Function evaluations: 809\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 328.837007\n", | |
| " Iterations: 6\n", | |
| " Function evaluations: 622\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 107.200036\n", | |
| " Iterations: 4\n", | |
| " Function evaluations: 457\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 107.200049\n", | |
| " Iterations: 4\n", | |
| " Function evaluations: 453\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 107.200041\n", | |
| " Iterations: 4\n", | |
| " Function evaluations: 462\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 211.405325\n", | |
| " Iterations: 5\n", | |
| " Function evaluations: 562\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 211.405284\n", | |
| " Iterations: 5\n", | |
| " Function evaluations: 568\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 211.405302\n", | |
| " Iterations: 5\n", | |
| " Function evaluations: 593\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 356.172041\n", | |
| " Iterations: 7\n", | |
| " Function evaluations: 787\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 356.191366\n", | |
| " Iterations: 5\n", | |
| " Function evaluations: 513\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 356.179030\n", | |
| " Iterations: 8\n", | |
| " Function evaluations: 842\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 135.372000\n", | |
| " Iterations: 5\n", | |
| " Function evaluations: 554\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 135.371524\n", | |
| " Iterations: 6\n", | |
| " Function evaluations: 721\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 135.371504\n", | |
| " Iterations: 6\n", | |
| " Function evaluations: 764\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 1441.478906\n", | |
| " Iterations: 6\n", | |
| " Function evaluations: 648\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 1441.474541\n", | |
| " Iterations: 7\n", | |
| " Function evaluations: 849\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 1441.487601\n", | |
| " Iterations: 9\n", | |
| " Function evaluations: 926\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 173.680470\n", | |
| " Iterations: 6\n", | |
| " Function evaluations: 624\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 173.681416\n", | |
| " Iterations: 4\n", | |
| " Function evaluations: 443\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 173.682477\n", | |
| " Iterations: 6\n", | |
| " Function evaluations: 641\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 200.028859\n", | |
| " Iterations: 7\n", | |
| " Function evaluations: 804\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 200.028162\n", | |
| " Iterations: 3\n", | |
| " Function evaluations: 365\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 200.028314\n", | |
| " Iterations: 5\n", | |
| " Function evaluations: 593\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 363.668344\n", | |
| " Iterations: 7\n", | |
| " Function evaluations: 884\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 363.668309\n", | |
| " Iterations: 7\n", | |
| " Function evaluations: 837\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 363.671038\n", | |
| " Iterations: 6\n", | |
| " Function evaluations: 676\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 128.521502\n", | |
| " Iterations: 5\n", | |
| " Function evaluations: 512\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 128.521421\n", | |
| " Iterations: 5\n", | |
| " Function evaluations: 560\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 128.521215\n", | |
| " Iterations: 5\n", | |
| " Function evaluations: 518\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 215.764853\n", | |
| " Iterations: 6\n", | |
| " Function evaluations: 643\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 215.763877\n", | |
| " Iterations: 6\n", | |
| " Function evaluations: 635\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 215.764414\n", | |
| " Iterations: 6\n", | |
| " Function evaluations: 658\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 194.803653\n", | |
| " Iterations: 5\n", | |
| " Function evaluations: 549\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 194.803439\n", | |
| " Iterations: 9\n", | |
| " Function evaluations: 1045\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 194.803610\n", | |
| " Iterations: 5\n", | |
| " Function evaluations: 591\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 684.271810\n", | |
| " Iterations: 6\n", | |
| " Function evaluations: 705\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 684.270330\n", | |
| " Iterations: 8\n", | |
| " Function evaluations: 863\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 684.267996\n", | |
| " Iterations: 5\n", | |
| " Function evaluations: 654\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 133.102551\n", | |
| " Iterations: 6\n", | |
| " Function evaluations: 680\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 133.102422\n", | |
| " Iterations: 5\n", | |
| " Function evaluations: 558\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 133.102560\n", | |
| " Iterations: 5\n", | |
| " Function evaluations: 563\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 449.717481\n", | |
| " Iterations: 7\n", | |
| " Function evaluations: 862\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 449.710569\n", | |
| " Iterations: 8\n", | |
| " Function evaluations: 866\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 449.698625\n", | |
| " Iterations: 4\n", | |
| " Function evaluations: 516\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 155.080658\n", | |
| " Iterations: 7\n", | |
| " Function evaluations: 817\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 155.081180\n", | |
| " Iterations: 5\n", | |
| " Function evaluations: 600\n", | |
| "Optimization terminated successfully." | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n", | |
| " Current function value: 155.082434\n", | |
| " Iterations: 7\n", | |
| " Function evaluations: 728\n" | |
| ] | |
| } | |
| ], | |
| "prompt_number": 6 | |
| }, | |
| { | |
| "cell_type": "code", | |
| "collapsed": false, | |
| "input": [ | |
| "opts_intens = pd.DataFrame(m_opts_dt16)\n", | |
| "opts_recog = pd.DataFrame(m_opts_sy30)" | |
| ], | |
| "language": "python", | |
| "metadata": {}, | |
| "outputs": [], | |
| "prompt_number": 46 | |
| }, | |
| { | |
| "cell_type": "markdown", | |
| "metadata": {}, | |
| "source": [ | |
| "Run kmeans clustering on the recovered parameter values." | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "collapsed": false, | |
| "input": [ | |
| "opts_recog_scale = sklearn.preprocessing.scale(opts_recog)\n", | |
| "kmeans_recog = KMeans(n_clusters=2)\n", | |
| "kmeans_recog.fit(opts_recog_scale)" | |
| ], | |
| "language": "python", | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "output_type": "pyout", | |
| "prompt_number": 96, | |
| "text": [ | |
| "KMeans(copy_x=True, init='k-means++', k=None, max_iter=300, n_clusters=2,\n", | |
| " n_init=10, n_jobs=1, precompute_distances=True, random_state=None,\n", | |
| " tol=0.0001, verbose=0)" | |
| ] | |
| } | |
| ], | |
| "prompt_number": 96 | |
| }, | |
| { | |
| "cell_type": "markdown", | |
| "metadata": {}, | |
| "source": [ | |
| "Scatter plot all pairwise with the clustering obtained from kmeans. Seems like higher threshold goes together with lower drift-rate which might make sense for older people." | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "collapsed": false, | |
| "input": [ | |
| "clusters_recog = kmeans_recog.predict(opts_recog_scale)\n", | |
| "colors = np.empty_like(clusters_recog, dtype='S10')\n", | |
| "colors[clusters_recog == 1] = 'b'\n", | |
| "colors[clusters_recog == 0] = 'r'\n", | |
| "_ = scatter_matrix(opts_recog, color=colors, figsize=(12,12))" | |
| ], | |
| "language": "python", | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "output_type": "display_data", | |
| "png": "iVBORw0KGgoAAAANSUhEUgAAAtQAAALUCAYAAAArLaXwAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsnXd4lGX2978zk5n0Se+EhECAUELvggEbiCgIlkVc17K2\n/eGrrtgLrh2wLrq69lXYtSFiQRQBlSqhBAKhhBTSe51Mn+f945uHmZBCyiQzCffnuuYiZGaePHPm\nLuec+xSFJEkSBAKBQCAQCAQCQadQuvoGBAKBQCAQCASC3oxQqAUCgUAgEAgEgi4gFGqBQCAQCAQC\ngaALCIVaIBAIBAKBQCDoAkKhFggEAoFAIBAIuoBQqAUCgUAgEAgEgi7gUoV6z549mDZtGqZPn477\n778fABAQEICZM2di1qxZqKqqcuXtCQQCgUAgEAgE58TDlX88Pj4eW7duhUajwZIlS5Ceno7k5GRs\n3brVlbclEAgEAoFAIBC0G5cq1BEREWd+VqvVUKlUyMjIwIwZMzBt2jS88MILTV6vUCh6+hYFAoFA\nIBAIBOcp7e1/6FKFWubQoUMoKytDUlISMjMzERgYiDvvvBPffvst5s2b1+S1orGj81AoFEKeTkTI\n03kIWToXIU/nIuTpPIQsnYuQp3PpiCPX5UmJlZWVWLp0KT744AMAQGBgIABg/vz5SE9Pd+WtCQQC\ngUAgEAgE58SlCrXFYsGSJUuwatUqhIeHo6GhAVarFQCwfft2DBo0yJW3JxAIBAKBQCAQnBOXKtRf\nfPEFUlNT8eCDD2LmzJk4dOgQJk6ciAsvvBAFBQVYtGiRK29PIBAIBAKBQCA4JwqpFwXbiNgg5yLk\n6VyEPJ2HkKVzEfJ0LkKezkPI0rkIeTqXjsjT5THUAoFAIBAIBAJBb0Yo1AKBQCAQCAQCQRcQCrVA\nIBAIBAKBQNAFhEItEAgEAoFAIBB0AaFQCwQCgUAgEAgEXUAo1AKBQCAQCAQCQRcQCrXA7cnPB955\nB9i6FThfqgHV1QGffgp8/jlgNLr6bvomJ04Ab70F7N3r6jvpXfz2G/D220BurqvvpO9SVQV8+CHw\nzTeAxeLqu+nbnDzJdWDPHlffSe/GbAa+/hr46COgpsbVd+MaPFx9AwLBuXjnHaCwENi5E0hIAOLi\nXH1H3c8PPwA//kgDIiICuPBCV99R38JmA157jf+mpgKJiUBgoKvvyv0pLAQ++ABQq4GsLGDFClff\nUd/kyy+B33/n+IyJAcaPd/Ud9U0kieuA1WpfB4KDXX1XvZN9+4AvvgBUKv7/L39x6e24BJd6qPfs\n2YNp06Zh+vTpuP/++wEAK1euxPTp07FkyRJYesA012qDoVAoWnlo2nhOAa1WzLyeICAAMBi4iXt7\nu/puegY/P7s33sfHtffSF1EoAH9/QKcDvLw4tgTnxtMT0GiAhgZhgHQnWi2VPKVSzP/uJiCA64A8\ntgWdw8eHyrTVyrX1fMSlnRJLSkoQFBQEjUaDJUuW4Pbbb8dLL72E77//HitWrEBCQkKT9uPd0QFI\noVAAaO2abT3H53tzR6Le0lGprg5ISwOio+mhdlecKU+LBdi/nwv8qFFUAM8nemJsVlQAR44AAwfS\nC9iXcaY8c3KAvDyOS63WKZfsdXT3+DSZ6PHz9weGD+/b89/V+1BlJZCezr2lXz+X3YbTcJU8JQk4\nfJjG9rhxfcdJ0RF5uk3r8ZtvvhkTJ05EfX09li1bhv3792PNmjV4+eWXz7xGKNTOxdULWV9DyNN5\nCFk6FyFP5yLk6TyELJ2LkKdz6Yg83SKG+tChQygrK0NgYCCUSkahaLVaVFdXN3vt8uXLz/yckpKC\nlJSUHrpLgUAgEAgEAoGgOS5XqCsrK7F06VJ88cUXSE1NRX5+PgCgtrYWgS0E6Tkq1AKBQCAQCAQC\ngatxaVKixWLBkiVLsGrVKoSHh2P8+PH49ddfAQCbN2/GlClTXHl7AoFAIBAIBALBOXGpQi17pR98\n8EHMnDkTWVlZmDFjBqZPn45Dhw5h/vz5rrw9gUAgEAgEAoHgnLhNUmJ7EEmJzkUkLzgXIU/nIWTp\nXIQ8nYuQp/MQsnQuQp7OpSPyFJ0SBQKBQCAQCASCLiAUaoFAIBAIBAKBoAsIhVogEAgEAoFAIOgC\nQqEWdIm6OmDNGuDrr9ndS9C7aGgA/vc/4PPP2d5d0HFOnwbefRfYscPVd9L3KC4G3n8f2LyZndgE\nXWPHDo7V06ddfSfuj8kEfPUV97f6elffTe8jMxN45x1g715X30nP4fI61ILezbffAhs3AjYbEBYG\nXHCBq+9I0BE2b+Z3CAABAcBll7n2fnojb77JNuY7dwIDBgDR0a6+o77Dhx8CJ08Cv/4KxMUBiYmu\nvqPeS2Eh8N57gEpFZeell1x9R+7Nrl3AunVs++7hAVx3navvqPcgScBrrwFmM7BnDzBoEBAU5Oq7\n6n6Eh1rQJfz8qEwrFICPj6vvRtBRfH35rySJ76+zBAQAej03XU9PV99N38LfHzAaqQR6ebn6bno3\nnp4co3o9x6ygbeT10GbjPifoGH5+gE7HcadWu/puegZRNk+UzevSNcxmIDWVm93o0VSsz1d6Y7ki\nqxXYtw9QKoGxY/mvO9CbZFlTAxw8CPTvTw+1O9Kb5OmITsfxGREBDBni6rux01vlmZUF5OVxrXYX\npdpdZSlJwIEDDP0YP57GSG/AXeRZUQEcPgwMHAjExrr6bjpPR+QpFGqhULv6NvoMQp7OQ8jSuQh5\nOhchT+chZOlchDydi6hDLRAIBAKBQCAQ9BAuPcQoKirC3LlzkZGRAZ1OB6VSiYCAAIwdOxYKhQJf\nffUVgs6HSHYBysqAjAwmHUVFtfyajRuBH34AZs4E5swBNm1iiMns2edn7Koss/79ge++A06dAm6+\nGUhO5vPV1cCPPwLh4UBKivuEc7gbBgPDCoKCgGHDun49nQ546y2gtBS4+GKgpASYNo1Hn32FkhLg\n+HFg8GAgMpK/O3UKePttjre777bH57cHi4UJsvX1nM8iZrU5J09S7mPGdEy2Z5OXx/Hp5wdMnQoU\nFHBNjYlx3r26K/X13Ef8/YFLLgFyctoes85eG/oCkgR89hnw8cfA5MnAY481DYex2RgCZ7EA48Yx\n/+F8waUKdXBwMLZs2YIFCxac+V1ycjK2bt3qwrsS9DRWK/Dii9wsgoKAlSubJyAZjZzEERHAhg2c\nrOvXU6H29gYuvdQ19+4qrFZm6RcX25NCg4OBL76wK9Rr1wK7d3MBDA8HRoxw7T27K//7H/DTT0yc\nefzxrleSSE8H0tIAjQZYvhwYPpzfwxtv9J44zLYwmzlfy8qA0FBgxQp+1g0bgNpajsn0dGDSpPZf\nc98+4JNPOI6NRuCGG7rv/nsj+fmUucFAJWbp0s5f66efaOydOAFs304HRno6r9/XWb+eTgZJ4nq5\nYwdLvxYVAUeOABMnNn29vDZoNFwbBg1yzX27E/X1NMjKy2lUz5wJzJhhf37PHmD1av785z+fX5Wj\nXOqz8vT0RGBgYJPfZWRkYMaMGXjkkUdcdFeCnsZm4yT182NdZIul+Ws0GmDoUG7WcXH0MABcGDWa\nnr1fd0CS7DJTKvlvbS0wcqT9NRoNZalQnD9Z1p2hro7ysdlYAaGrxMTQ02UyASEh/Fej6TsJuzYb\nvfB+fhyDVit/P2IElWFf3457O+XxabOdn6dN58JgoCGj0XCed4WkJH5n3t5cR83m86eCikbDMQZw\nzA0fzjnv59fymK2t5eusVu5NAlY/iYyk3Pz9OY4c0evtNeN1up6/P1fiFkmJM2fOxC+//AKlUonq\n6moEBgbizjvvxNy5czFv3rwzr1MoFHjqqafO/D8lJQUpKSld+tsiKdE97v/oUdaanTyZR5otYTLx\neDIqip6+nTupTE6Z4h7HSj0tz4wMYNs2yiwhgSEesbH20I6GBnpgQkIo096k0PWkLMvL6V2NiGAo\nkTNCYyoruZlYrcCxY8CoUa2HMvUEzpZnejrw+++sOy8bcZJET6qvL71/HcFmYwMInY7hMe6uVPf0\nXJckhsTk5gJz53Z9LBUUUMaVlUB2NqtYhIQ45147Sk/K0mjkmujra/dGtzVmu2Nt6G56Qp41NcD3\n33O/mTatqVyMRuCbb2iozZ/ftfAkd6DXVflwVKhlfvzxRxw4cKCJp1pU+XAurlSo9XouVps3c8LN\nn+98T7McCtFTimRH5VldzcYBWi1w1VXd60WuqeH1e0utaWeMTZOJR7w6HXD11c4tEyZJlKmPT9Nx\na7W6h3F3Nu2Rp9XKWPyyMmDBgq4rWJLEOVhbSw9gXzol6cr4LCnhuOzXzzVKmsnEOREY2HxtlL+z\nnhzDPbkPSRKb2vz0E0Pjpk3jOhwQ4J7ztjP0tDyrqriHeXg0Xf/276fTKyWld4cbdkSebhPRJ0kS\nGhoa4OnpCZVKhe3bt2PUqFGuvi1BN1BcDDz3HHDoEBWS4GB2l3Nml8XTp4FVqzjJH3jAPbvXrV9P\nD7PFws118uTu+Ttbt1LeRUXAX/4C3H9/39k82uKPP+gpUSqp9DozLnfTJsZXhoczttLPD/jgA8ak\nzp0LXHON8/5WT3HoEGPwVSp6l+66q/PXqqxkbPWBA5zjw4Yxeam3GHTdySef8ERuxw7WLe/JZLf6\neuCZZ6jUL1oEXHGF/TmjEXj1VSY//uUvwPTpPXdfPYFeD7z8MuftwIFcH3bt4mnLiBHA3/9+fqyL\nzuQ//wG2bGHeyaBBjE+fNg24/np2kNVomE8i/9zXcekBhsViwcUXX4y0tDTMnj0b6enpmDhxIi68\n8EIUFBRg0aJFrrw9QTeRmUmvgI8PvWEKhfOy+quqGG+4cyc3j4oKNp5xRwIC7BZ9R47FzGZ+rvY6\nIbZvpzKtVAK//caEpPMBX1+OLZutY97p2tpzx/5t384E2pISGm9VVQyBiImhl9ds7tq9uwIfH45F\ni6V1eRmNVJbPNfaOHmVYQVERY9Tz8/l/AWUrd390poFRX09Zt0VeHh0aISEcr47k5DA8KTAQ+PZb\n592Xu3DqFI0FrZY/azQ0+Pr3Z0JidXXz90gS11qTqefv192RJO4nMTFMTly3jj9v385xKOdYeHqe\nP/JzqYfaw8MDmzdvbvK7ffv2uehuBD1FUhJjAL28gJtuoofGMZmus/z8M7BmDTeLRYu4YanVbXuA\nJImbiE7H7mE9WYVh3jwuQN7e7T8SM5mAF15g3OPMmZTfuZg9mx7V4mJ66l0VK9nTjB4NPPggDayx\nY9v3nvR04LXXOG4eegiIj2/6vM1GT25iImP+ExL4kJNmjx1jdYveWM1jyBDg4YcZytKSvOrqgGef\npRGxcCHHryMNDZRNVBRlotXyZ7Wasunfv2c+h7tz442c7yEhzcdXZ8nM5EmJXs/vqLX1ND6eYzcr\ni15oR2JiGCtcUsKQn75GbCwQFkZjd8wY4LrrGPqxbh3X0pYq9K5bR+MiJkacsJyNQgFceSXw9df2\nTpK7d3Pel5cDjzzCE8Jff+XPjz1mL7HZV3GLGOr2ImKonYsrY6htNj48PKjwlJXZkw07y9NP03tW\nXc2whgEDOOnliiAtcfQoy89ZrdxEFi7s/N/vDnmWlFBZkxf7ggLg0UepGJeXA+++277rrF0LfPUV\nN4THHqOC485059iUJHpO/fy4+Dvy8cf03JnNwJ/+RGPEkW3bgPfe47i6/XaGKclxqBYLPdUhIe6X\nvOQMeR47RmMuNJQe1n/8o2ki1+uvM7HQ25shRr6+lKOvL+d1b0qKPRc9tXbKuSbR0W2HI7z9NkPc\nJIlx2XLZspaQJI7VlmLajUYaTiEh7pt70hUMBjpPgoMph0ce4elJSAgNEouF+5D82e+9l3IqLQWe\nfLJ31JLv6X3dbOb8liTg008Z9mE2U3apqfRe19UxhGzq1B67Lafh0k6JlZWV2LNnD3777bczD1ej\n1QZDoVC0+OgaHq1eV6vtYJr7eYZSyUloMgHPP8/F7K23+JzBQMVRLm/UXubM4WI5YADjubTatpVp\ngBPdYuFmVVnZuc/SXezaRY/hQw/xOBagB2ncOHqYLr64/deSE8NstnMfC/d1vv+eRsmjj9KQc2TG\nDJ6chITQwy2PRbk0XFUV/5VLxzkuIR4e9IC5mzLtLCIj+Th+nOPvoYfoGZUpL6cybTLxqNfXl+ED\nanXfUqZ7CoOBRsvjjwPvv9/0ubKypiEKCQmUs0ZDg6ct2iqj6enJ9/fF78tgYPiGnIxptXI+BwRw\n7D7xBNeEH36wv2fePD43fDg93IKm6PU0NiSJ657Vyn103z72kxg2jL+LieHJdF/HqQeT7777Lt54\n4w3k5+dj9OjR2L17N6ZMmYItW7Y48890mLq6KrTthe4sllavW1fXB1ekbqCmhqWgoqIYz1ZfT+9W\nYSGTYm67rfl7zGbGwoWHN908Jk6ksqlUtn9DUCioBEVHsxKEKzlxggvR5Mk0CtLTqaQ1NFChjo/n\n/8eO5eu2bqXFLy/0BQVU8hITm39+OR0hOJiK4vmIwcAj3q++orJXU0OZhYXZXzNgAD2tCgUVw3/8\ng6+Rx+Ill1CRUamaNjOwWPj9hYU1vV5fwWCgh+7gQSokERH8XXa2vdnFX//KRNvQUMrOZuu7xkVP\ncOQIExcTEjjfZf74A/jXv6g8P/wwx+xFFzHUo7i45YTYmhp6YhMSmtcNPh8wGimfvDyWWb3zThoV\nS5cCv/zCdXHzZjphDh5kYjFAuV54Iee7QkEFfPNm7lfTpvF3p09zvA8c2DcNkdZoaOCpcEmJPfxw\n/nzK02zmOCsvp5y0WvcvhekMnKpQv/7669i7dy+mTJmCrVu34tixY6JBi6AJskUbE0PlMDSUntad\nO5kZXF1NZToigptISwr1Rx/xWN7fnxnrjsfOHcnSLi7mxgTQe+vK2OKGBmagWyz8bG+8we6Px45R\nVo4Fb9LS6EWtr6cxEhtLT+Hzz/P9ixc3D1UIDWWIQn4+FaG+VMKsvWzcCHz5JTfF+noaLkOGNH+d\nPIbKy6lMR0QwlOG22zhObr65+Xs++YQGjp8flfC2vIQ1NTwliInpPRtwRQU/n1xres4c3r9jrHX/\n/pzL//gHZb1wITdYQef47DN693bvbtrF8PBhrp06HQ2aAQM4ZlsLVzMYuE6WlfGEYdmyc3uxeyty\nAuHZdborKzluIyMZhiBJnHsjR/Kh11MxzMtrPmYdwxD/8x++X6GgQ8dsZqiNzcb1oTdXRjGb7Xtv\nexr9lJZyDw0Lo0xuuomhic88A/zzn1zjPvyQe9PQodzjFi/u/s/hSpyqUHt5ecG70fw1GAwYOnQo\njh8/7sw/IejFyHGXhYXAhAnA//0fF6Ybb+QD4AYybRo9iQoF8M47wC23NFUAT52iMl1Xx4Wyo00k\nZJRKPuQYMFeiUPBeLBZ7xY+4OCrZZzN7Nr2h0dH25KPSUsrX09MeHnI2n39ORScoiC2xAwO5EaxZ\nw5qh113XfaX73AFZUQ4KAu6+m+OsLWQv1L59VCCffZZj5e67uek4kplpz2qvqGhdYSkp4Ryor6cn\n0bFsmTsTGUmF+cQJGiFPP938M1ZXczP94w+O3aystq958iRzAGJigDvuOH+69bUXtZpez6Skpora\nRRfRex0Zee7Tpl9/Bf77XzaBioxkkl1FBWOHe0M8cEfIymKMv9lM54FjvG5EBGW4Zw/XubMNWW9v\nGhrnQqWyV7hZt46KZF0d14rTp533WXoaSWIydno6T0KfeOLce2K/fjwR/vxz/pyRwbE6YADwyit0\nXnz4Ia/d0OD6PbYncOpHjI2NRVVVFebPn49LLrkEQUFBiHdWGrOg11NVZbeADx60ewkcUam4GObm\nMu53xw4euTkm0d10EzeJadM4eTtLeDhrj2ZluV6R9PZmRYr0dGagt7X4DBzIsARHRo+mPKqqmHnd\nEgcOUImurKRiFxhID+zmzfTO/+c/rpdDdzJ7No0Vtbp9n1MeiwDjro8f5/eydStPUxy58UaOyalT\n7SEQLVFQwHGt1bIiRm9RqFUqngzt3s2QopYMhuJivi4+nobhuaqerltHZSQ1lcpOeyuxnC/8v/9H\nBXDw4KanZ/HxVFjOhc3GJNuQEI75qiquowYDje6+plDn5tLT7OVF5c5RoVYqgVtv5aMr3HQT9xyr\nlQpjeDhPspKSeKLYWzGb7UZabi7nZUtVTxzx8GDTltRUOhO+/JKKuMysWdxbExIYEnL55d36EdwC\npyrUX3/9NQBg+fLlSElJQW1tLWafffYsOG8JD+eR8O7dPPpp67g7NpaNMgID+ThDSQniqosxIXko\ntGGeXT4yHzasZxsrtMWAAW0bCGYz49MkiV4qx0L5Pj70nJ7BZGK8SFjYmfPP666jUjRpEj2IX3xB\nz6qXF71WkyZ1y8dyGzQayq2jWK2sClJczA1HVkQKC3ksHx3N4/annz73tZICC3FxeDkOmZOwYEHv\nirsJC2teKs+RgQPpvc7NtZeEPJvCQhrJ8rw7epSbsSvbsrdKTg7jKpKSXBIMHh7etrxbIzubIUrj\nxrE8X1oalaOEBCrVsbEtGC9ZWdS0hw7ttYHvY8Zw/NXVMdehK0gSwxBLS6kYynXZ/f0ZX11Xx7U4\nLY3f05/+1EbuRFUVJ8WgQc5ruOBkNBruD999R8W3yZ7bBpGR/Eg6HRM3Acrmv//l/n733XRibN/O\n09GLLmpeWakJdXU8go6Pb/9NuBHd5oRPSUnprksLeilKZdPwjrawWnnELCd9REaCC9PTT6PwYD0q\nTBPw2dClCAg4f5Lstm2jF1k2IubMaePFn3zCN/j4MMYgIgJjx9o30iNHWF9Vo+EGu2QJlWxBc/bs\nYTcwf3+WyZswgb9fu5aesP37qYecs7FrcTG8X1yOmwwGumySWgjG7sXIVSaGDGGcb0ZG0/rqkkTP\nakUF66KvWMGQJa2282Fb3caJE4wfsFh4HCFnqbk5JhOrKxgMHLMrVlDp+9e/eDISENDUiwjAXjvU\nZuPi3EtdrYGBLXy2TnLsGMMN5RKbTZwV4Fpw443cm/z96ah48skWLmQ0Mg6qvJzekuXL3TZxYs6c\nc+wpLRAeziIC1dX2/WPLFjZ8AWgoDxgA/PvflGVZmf3Urxk2Gwdsbi4v/Pzzva69Yu80RQV9nshI\nxgPX1LBw/KlT4H90Oli9/RDakAeAa1N9PY/jDQa+12w+dzc3vb7jZfl6mtpafi65y5TsOHIMlTGZ\nuOdLEu2NMx2p8vIAHx9Iej12fF+Nl19uWuIsIIAKkMFAw2XgwPMjxq01JIljRpa5Xk+jzmCgrBUK\nhuWEhAAbNjDe0MOD+6Va3U5nitzG09ubGVK9GJuN48mx7KDVSgVj/37OyZZKViqV9vGrUNAR5XbK\nNGDPblOrXfZdVVZSr5dLNraFwcDXyeXgTCbKurKSJwLl5RzbLZ4ElJfba4cWFjr9c7gLe/cygTA1\nleNXr2/+Gp2OY1deX1sKS5SJibFXtGn1hKWhAQ2FVahWBkHKL2jfl9nLCAqi0izvT3INc4WCczs/\nn8b16dMcpw0NLV9HX29FdUYRzH5BnH8tfUFujksbuxQVFWHu3LnIyMiATqeDUqnEypUrsWHDBsTF\nxeGjjz6Ch8Mu39mC5Z1v3nLuxi5tvdfdm764srHLubBamZj47rs8SgsIAFa8JAHr18N08Ch2Ri2E\nx4ihGD8eeOopHscPHcpi8i++SCN39uzmsa4AOyquXcvN/MEHnVdGypnybGigt6WsjF7le++lofDb\nb9wMUlKo0Lz2Gu9/zBjG9kZFsXGLX2kW8L//oSJoIB7YtQiePir4+DSNvczN5bo1YoT7OQJ6emx+\n9BGPcPPy6LGPjeWGUFRk70ZpMHATXbGCxl50NHDVVdw02pUqYrUyziY7mwOzKwkAHcTZ8ly/noau\npyfnX1QUnW+ffEIFIyAAuO8+ltJzpLiYIV9JSS1XWHEbDAZm61ZX8/jmrCzU7h6flZWc//X1DDlo\nqyPqrl1sNhQRAVx7LcdnWRkTDw8c4GlUbS3Lgs6f30K3v4YGduSor6fbtYfrPvbEXNfrmQTv7U2l\nOSGB6+fChfack8xMevclibk11dWU44UXtt7PIC+PYSEjRrRcFi4nB/jy7l8woHAHom6Zg6n3TOi2\nzyjj6n1dknjooVBw3P3tb/SFabVMXoyN5djs18/+HpuNB6n4Yw+m6zbhwiemw+PimS77DI50RJ4u\n9UkFBwdjy5YtWNDY57S0tBTbtm3D77//jhUrVmD9+vVYdK7MFoHLKC7m0W1cHBU8Z6JSsa70+vVc\nAIcMAWfoggXQLFgA+c9VVDDBLjQUyDwpoahIgZwcerh/+61lhfrHH2lFZ2cDeaclDB4MtzuG273b\nnpB07Bh/p1Y3jQHesYOLV0UFk+ZiY5n0VlAADBmSADz6KFTVgGofQ9MSBki0/xo/a1xcK2Eebbll\n+iCSxLESEcG4ySFDuCH4+vLk8ZdfGhd78LvIz6c3ZsQIIDm5Fc9+axm3LQ1IN5V3SQkTVgcMYO1e\nx1s8cYKx9w0NfJ23N71Qvr5UQoYP5/i85ZampSwjIztYSk/eyBSKpj93N15eXc9g6wJlZZyzWi1P\nTBzJzWX1juRkhrv9/DPjWPPzOVaVSq4FZWUc0wcOUCGcOrWV1tk+PvZz+K4oYt00jiWJpUTz84HL\nLutceVMPD54ilZVxrJ44QeN440a7Qn34ME+clEqGyVx7TcufRz4B8PZuNL77yTJr/triYuBg8EU4\nFn0RRisBd24U6CjnSy/tfGlFBSQMHwZAocBzz9GDXVUF2KwS/HyB2lrFGfk3NHD4GY0c18FJk/BJ\nxSRMmgy4Z7R527hUofb09IRno1knSRJSU1PPxF5ffPHFWLNmTTOFevny5Wd+TklJEbHaLuSVV9hV\nymSip7SjWbzZ2dyEx4xp+cgsJIRxaQUFTWMxHQkOBhZeYYRi9T8xTnsSocW3Ijl5ItLT6a1piYsu\nYqmfxPAaxH/0ClBTxgr/btLKqbaWHnRPT1ZDefPNps9Lkv3Y0mzmRpGSwoSSoUObKsm7dvF68R75\nWJrzCrBGSwVMAAAgAElEQVRMSfdLSwKXJHvv7auuar1cSB+jrIyL+5Ej3Eh8fRkyu3MnlUXHxLCt\nW+l9LS1liHpuLptrhIc7XHDPHroMExOBe+5pvR6cJNGl++uvlPVVV3Xnx+ww//43c9UkifJxHFeL\nFjFpODqayrNazSozBQX8uKdOcf51pC58MwoKWDdSqWTW19q1vODf/968bmEfY+BAhtmfOAHccIP9\n98eP81TN35/DZuVKzv2PPqJjWQ65kY2gyEgua0FB7ThF2bePX3pCAkuMtLeOoc3GG9i+HViwoHOZ\nlG1w8iSnk3xi9Pe/d/waajW7IGZmchy/9x6ve+WVXB937eK8Dwjgx7nQsAn46xf06tx225l4hvp6\nhtYXFrIe/Yy4XG6E3t68sbO8+8nJvER5ufsvp86QM0pKOGetVuC++3Dhhf2waxcwPSwDjwf8EydO\nhmHXlPsxfHgAPv6Y6+n48fRi33ADT6Wvv95tczfPiVtFTdbU1EDbmAKq1WpR7dhbtRFHhVrgWurq\naGF6elKH6IhCXV/PPBi9nl6wVataTi6PiWm5WoCMQgHMG54FxB2mdv3t17j/+YmwWFpvXnL55SzT\n5Z12FKVPZaHM6I9+azch5Bn3UKjltuwxMfRAnV3i7cgRls2TJG66l13GBMPZs3ms6/i5f/qJG0j/\nPTtgNlXBWy+xUHBLyltlJbXE6GjWNLv88j4fWC0nyhUWUul4/nl7uajLL+f43LMHePVVboienvSo\nmM38uayMSk4ThXr9eu4IR47QamzNUKuqoksxJobxE5df7lYdd7y8aCxrNM1vKyGBdblra2kTaDT0\nRn/1lT0mussVU3fubHRt2ezhF1Yrx6+TlTZ3w8OjeQOhigqGc5w6xTVi8mR7x86xY6kELVtGJVqt\nZm4EwGof7eKbb/ilHz1KzbM1L8bZVFRQu4+Jsa8bXbKkmqJW2/sFdKXbXkiI3bv9yCPcu/z82ITk\njz8o8yeeAOLjJKju/IIu2p07OdYaHRDZ2QzzqK7mWjFi9jYE63RcOw8caJbQ6eNDm7o34CjnTocA\n7t1LpVqlArZvR3Dy9aisBGYV/oh6FTBnaDbm/CkDlqDJ2LqVYzQ1lfK8+GI+ejNus1sqFAoEBAQg\nvzEBpLa2FoG9sGzK+cSyZVxgyso6Hg5qs3FvVKu5Fn3zDa35TtVGjY7m4ldRAVx5JRSKc+sl/v7A\n/pp4ZB30RiiKsTNyIe7qxJ/uDvz86PU8dozee4A62ocfsrSdXBJKNkC++YbOJbOZTlG5kofJKCFK\nUYKtewMQmzQCPsafAbWidQUvIICa0qlTdBs4cVN0Z+TEQoCxfh99RFneeitDaT/9lHrGv/7F0I+4\nOHqof/mF31ViIu2Q7GwaNVGTJ1NBDg3l2HSktpYbTnw8zN5anFYlwmffSYRdOrZJvog7cPvtNCb6\n9Wv+MQAaI6+/zrBwo5GGRWQkZSM3JZFfl5rKjz1jRhtls2w2CjEggLIbPpwxZR4etBzXr7eXETkP\nsVopy+Rkjs877mAlCrWaxkxkJG04nY4V2ioqHMIj5MTKfv0gSQwpq6pifLDcSAoTJtAiCgpq24tx\nNoGB/LKzsuiOdfK6MWAAvaUlJa3Xj8/Lo2c+ObntvchmowOnsJA14P39OXYNBtoQa9cCy5YpoBo1\niuUqkpKaZM3Gx9ttjsREYN2pUbhN+o2ac1sF6HsBXl7cO7Ta1rtuNkGSeCTi6dlYhgsoDRqCqhwN\ntL42RA4bjtRUGnq7LeMx9NQhGE3+CDLFYbCaY+/XX/k3+4qq5zYruCRJGD9+PN566y0sW7YMmzdv\nxpQpU1x9W4I2GDCA62hUFGNQ581rf3ybVstEu/37uW598w1jm19+uRPHPQEBLE1UWwtERMBq5XVV\nKnp4Wyurui09FP5SADTGWvQr2A1Is9wmljU+3u7hq66mh7SkhHF+AwbQ6+Tvz2P1H37gBqtWN1VW\nDqzajElff4rhCj8E3f4APC5fxc8nF1U9Gw8PavLl5TxSdxNZdCcKBXD//Ry/I0ZQIdm3j2Nn82Y6\nnDw9qaQMGMB9U45jnz+frysosJclO3oUWLniSp63+/s3zXjV6Zi5V1EBTJiAX4f+Hz5ueAj+3mVY\nMDwCl7iZvAMC2q6gVlBAuZ06xaFz8CATYjMyaI/Jik1mJrB6NRXCnBwmh7XI11+zhIqPDzMdhw3j\n0RXAHXfaNE7mvrL7dpDwcMouI4NhHtu3c7xarcy1CA6meOTqRWe8ufv3A2+8wZ/vvRfpqtF46y2+\nrqzMIeHxiiuoEPv7txJs3QpqNV2+FRXdltAotwhvCYuFnvu6Og6fP/2JfoGEhOavPXaMBrJCwXX1\n3ntpjBw+zHjoY8eAI3sbMC47m4M6OLiJW9zfn6EjBgPlJyWPBhat4kLQZoFl90aSuPeWl/PrXLCA\n+83x4wwjbHICJ/Pbb/TyqFTcNxIT8fYviSjutxKw2rDMPxjDhtHwyKqcjrc1SRg0wgseP/hhRQpP\nYK65hgZdLy193gyXKtQWiwWzZ89GWloaZs+ejeeeew4zZszA9OnTERcXh/vvv9+VtydoB4GB9OrJ\nHeg6wvCGvRiqycER1UyU2kKblbEzmehYiYri5m0y0WFQXc2QkX79HHQ+H58zm8DWrZznQNstpkcN\n0kHpX4bSwDicqB2IjXfacOvtqvYfkfYQPj7cp3JzKeP//IeGS0QE5b5wIZ0jAQH8t7ycSs6u383Y\nXHELhqpP4dqyIiCwHccIGk1Td6QkMcCwqIjlBs7VPsvNMZk4lqKi7CGisbH2OFVJ4gZdU0OZ+/pS\n4TCbmx+dy7qyhwc7XJaV8dR39GgFFi8Ob2qPmEw8Dj906ExHE9tgwKpUo9onGr2xmJanJz+7XIKs\nqIg/z59vN6wlid5Dg4FDq82qYcePc7DrdKjMKIEJkYiMbFSeS0vpzkpI6EAMQ99j5EhOweBgHpfb\nbAxdkBPujEa+Tq12cBTn5KBIp8WrRy+D4mkfXNpo0Mgl9s4gSdQoKyt59t5aaYuWUKvPeCldgdVK\npSw9nXHAfn4MyThbEfTysoc1+PrSCPz3v/k72f6N8KqhDGJjGVjsQFER7YabbuJ7po7RA79v54Vn\nzgQ8PGCxcN+S14/egixDSeI4euEFftbQUBoszfb3zEy+wWAACgpw2JCITZsAnS4Qo0ba4L9vG+JV\n1Xj20UtxIt8HGzaE4ngBMHMw365QdGyI9QZcqlB7eHhg8+bNTX43ceJEPPjggy66I0FHkL17hw5x\nn3M00E+epOd5woSmXbksFq7ZIYZ8hL7+JmCT8FC/k/hp3KMYPdrunZYk4LWVZhz55iQ89dXQxw8D\nAgNxxRU8Xtfr6Ym47LLm91VXZ/9Zp2v9/mctCEBh2dXw/eUYvq+5EEFeKnz9tfvt1xoNywe+/DKP\najMzqXfU13MRPH6ci92gQVS677qLyUwW/cUYrU3DPtMkXDmkgzE5R44A77/PP5SdzYXz9GnWQuul\nSBKTZ48epTLy5JPNQ8QHDqSiaDIxHPCPP+gR7NePokhL4+uuvNK+WUdE0IsjN8744Qc+32Sz2LKF\nJQX0ep43P/ggUkY3KjQGA2al/QvYXMA4i8GDe0IcXSYsjMmbBw5QEamqYjxqWBg91b6+7B65fz+f\nnzixhXbkVitjbNLSmNhQV4eisJFY/vFQmBT0yI4bB+Ctt+jeVijYSaKlGJQ+jiRRvnJ3vscfZ1TM\n3r1UCrOzufbFx1MXtFga3zhjBrZ/IaHUMxbw7I/KSp6yWCz0EJ7h8GFeKC+PRwrLljGGyc3x8GCi\n5p49nLtmMz+b3JfAkYQE4IEHuGeNGMEIFw8PwGqx4daQ9Zik3wY/y5+QmTgH9b+mIuS2v8C/mnO/\nupoHTIcP87uYPBkYX/gzPH/4jL/w8QGmTcN779EHER7O8d8RZ7+rUCgYVrNjB+Xi78/9xdeX/9ps\n4Fz98EMK74Yb2AVG7mwzbhy+eZ0GX3Y2cP2Y4wj5+l006IDj9TV4s/4m1NXR6KuoYLiH3CCrJaxW\n6gkBAU3L67k7bhPyIeidhITQMHfEamWIgpw/9Mor9iiDtWuZKGetDcTiIwEIU1ZiUIwK11zDuVlT\n0xjfvB/YvUWHQXWnkF7TD36WXHhPDMTx4/aJnp7eskJ96aX02nh4MGazNRRKBWLuvBI+112J4Ke5\nYJ6zaIxOx1UnJISWQjcc05eXMxxx8GD76XZQEDvxnT5NBTsqit73778HHnqI6/k//sHbys+ngm02\nqpChj0dkkAkbvjJhxrBye4Hlc/HVV9Qqs7P5RQYE9MpzObOZG2BgIBfmjAxudLm5HEdnRw/U1VE8\n0dF8TUMDFebffmN+UmYmPX+ffELlJjmZ38fy+2vw5LIGWNS+GDFC29wzJbsL4+JY6zc8HBqrHnPm\neAP7jgDr9tOaXL+e2oGbYrXaP4rJZE+arazk1PD35wlRRQUVuy1bOK/M5sZmD7DhyUt2Q6FvoAJd\nVEThhoSwuswbb2D/90BD44n7yZONCrVKxV3dw6N941d2E0ZEOK/QfCcpKKANNXx455Ur+eTk8GF+\nB+vXU3QKBaf03r0crz4+FNE99zQadAYDcPAgkuYOxI8+I6FQKJCXR8+sRsP184zhp1Ta5TZkCPDZ\nZzyV0mg4EUpLOYncLNYfsIfITZ1Kg3bIEMqlJUwmhub/+CO/k9xcIEhdjzFlm+EX7YWqD9fjBetL\nMIRdh9w3gIRvrEhu2IVJU1XQ6yaivl4Fb2+gstyKshwd/C0WyqRxfUxLo1e3tJTzojco1AC/2uuu\ns///nnsYVjRjRmPUS/ZpztHgYG7kr79Oi6GRoUM5rhITgQljLMj9RoncLBuOSCqYI4CKcgmoq4Xh\nRDW++iQUEya07r5ft47hOw0NrGV/6aW9Y/txv5kh6PUoldQNiorotXY8KtqxgwlKRp0G/cKvQr/A\nOpSOmAHdZ1zgtFoqtevXA3UmT1SWmnGT6j3EaVXYM/o1LFioxBdrTJCOn8CC6ZEAmhfL9PVtWmrq\nXAQF0elVW9uOU8u1a+kiV6nohnNygpTRyHupqKBS9/zz9oXkkktY19TDgzqZnx+LH5jNNESeeYa3\nI9dJvWH4QYzJWIMwYwmCd9mAJzQMdB850t5ScdCglhWOkSP5JURHM6DOYKAC1Mv4/HM6hjUaeqSv\nu45GyBVXtBxKHhXFuPT9+xm6UFTEcoShofRsl5VxfB0/zrDB1avp9Rr5+7/w+YBjKDUHIfxPD0Cp\nPCupKymJFtLQobzQ//7HHezJJyljf3/uHu2trNDDSBLw3//SGJ41i+Nv7VrGmQcFcSoAdGBFRVFe\np09Tn83O5nMWC5CXWgLbHy9A5etFTXv2bL64vPyM9Tt5MtcIs5meLAC0HnfupNYUFUXtPSuLRw0t\nfZFvvcVg+OhouhW7Uh6iC1RWcl7qdEww7kwUY20ty+OVlDApec0a2h87d/LjKRSM0Ni0idP61lsd\nTgXXrwe+/RYjFAqsuPVBKEYl4/33KQ6DXkLF/tOItUoUtp8fy4e+9RYvmpRkb6f69NNcfCZOZI0z\nNyU2lsmabVFU1NhV0mbGAFUh/vxIEPwDlPBb6Q2Ul0M9YSasqTQMjRV18M44jvmGt2HZK2Hy7Pvg\nP308GhokXFD3E+KO/GDPCp04EQD7AMm2SG8+SElO5uMMYWEceLKL2YGKCspLqaQY9hlH4Km8Vegf\nWIlizzjE9QfGeh2FtGcPQqxVWHSsHMAL9gtkZ3OB8PcHKiqQlzsU9fUqpKXRceHh0TsqgAiFWuB0\nFAo62Y4c4RH6GQvdYoFGX4cgTzVQXoCR5VthjBiD0TOD8Pbb3Berq7lPAkBUqBk3D9gKL28PRHnX\nYNKdJii8vfB37buAbQ/wsT8w+Dm6GQ0GzurIyI5nmTc0wFffAN/IkHN7v8xme6DZmTNV52Ey2btK\nVVTY49oAfsylS/lzfT0dSddey8XbbOZmcuoUj3N9fIDnB6RChxzoq/TQBqoA7QBusOvW0Y2SmMjV\n79FH7Teg09kDYceN45fi7c1NQ6FoXonBzSktpTIty3X27LZPsRUKVv0KC2PI7qxZdMR89hmNm8GD\nqfv5+fG6+fmNyU9mM9RqIMajEigtACKC7YaKXk8LLz+fMpM76shHMhERrHWrUp21g7kPej0VtthY\nVjeZP5+3L08Bb2/aAkOGMN6yuJhjNSeHH0ulAqorrbhd+zby0yrwk3kmBkcrMGOuBxRPP02hNroU\nQ0KYk9iEkBB7qbyqKmrwdXWU3XPPNVWYJYnjOyKCruHqapfVra6vp+x8fSmTznD8OL2oWi2Hy1tv\nMZnO15fFOMaP5xqxbBltjfHj7e+tqVVApw9ClFcVQvxNQDCNyk8/BWJqMjD8i5XA28Wc3/7+VAzf\nf583GxPDCVFVRW0+PJyWZkUFrSh5YWptTZAkTjwXGTOtMX06cCpTQtX6HZi08xtEFSk5uRvHoV9s\nLG7bBezdWIYR6j2oqdZApbFArVRiiPUoPAYMQmyiDy5b9xmUkdGU1ahRHGdBQZg2Tdly3o4kUZsP\nCOhdwdUyfn48BnWYqygvB6qqUFzXH8XFnmywlgns2qXAgEkRSE2NwPzZNCo9vz6M+uwXkGOIhKl6\nOEtyqiUuKB9+yIliMAChobh2zDwcCb4GEREUV3m5az96exEKtaBbCA1tZsQCH3yAuQU1qKudiJCQ\nWlwxoRqBY3Kg7M9F/uOP6Z1atIhemJ9+8sfDpX/HVMtviBgajAXFXqwckJ1tD/KqruaCvXQpd/gr\nruhY4c9ffuFOZLMBd97JR1ssXkxtKzycyWVOxt+futX27fRIt5ToWVNDp1tlJW9hzBg6PSsr6eRT\nqYDrF5qBdTnwNVTCd2wSPaN79/JJg4GLl1pNWcodznJy2LfdYuGOPWIEtcqPPrL3af/hh6aVGFyY\niNQerr+e+35UFI9320NNDat2aDQ8Yn/zTW7CF1xAJzJAD2p9vcM177gD+PJLHsGsXEkt+8knuXHq\ndNTs/fy422g09kDYzZupja5fz8Sm5ctbbrrjYry96fWUS5NZLJxuWVmUjVyJUavlniuXxBw3juMy\nMxP4y7VGJK84jN31fhis340fvkzCINtriFl5b8tFq3NymAwwapRdIS4qYoD68eM8XfHw4Fh2VNoU\nChowX3/Ns+IWSxT0DLGxHINHjvCgpzPEx1N/ranh+jhyJNfKd97h83v3cmjJ3jy5hnBxMfCPvQvQ\nUDUZiy8pw6WNNTj797Ph0YtTOeaUVl7Yy4uyLivjGbtjcHVEBK30PXv4uvvuo9a+dCllvX49H/Ka\nEBXFAfDWW5woc+e23mXLBWi1wLAkGz5drcaL5QvxpPpLROl0DGXw8wMqKjDtx9fwN5Uav9rGYHh8\nPfxC+sPs54vd+9Q4tSMd24cnY/ic69H/0He0wD/+mPEOjnI5my++4PoZHEw5tVZtyZ3x87MnOhUV\n0RmTmop0aRHK8TdkZYVi9WpuK5t/tuHaaYV4/NJseKkmA3Mvx8l396LoRD1+DrkP16YCU6s3Mj40\nK4tjxmAAJk1Cv5oj+Oc/r8Fnn/HUtheE8gMQCnU34gFFG95Of/8g1NZW9uD9uAEZGbhsuA0Tgk/B\nN3kgvJSRwLVcuEeNYqy1zFVXAWlpCuj18fimOB7TBgCL5ciEW27hWX5SEpNoDAb237VYmFBzxx3t\n94qsW8f3e3jwPPuOO9r2UgcGnpXJ43ymTuWjNYqLqaQEBdEj7eMDjIyrxXTLVtydVADFbbfynLiw\nkDtwSQkX/QMHaOoXFVETHziQJULkz3vsmF3R3r+fCrW8AWRnU8E5dsyeEVlS4vYKdVQUm751BLWa\nH7Gmhke2SiX/XbGCCvWyZdQRiosdhkpQEGWzbx+1Ty8vnsmvW8c3XX45le34eG66GzbQ+tm0iW5v\nb28q3sXFbqlQKxoTBCsrORxOnKDzccoUKnCOh0JKpd15qVYzWoP4AJGRiDD+ggarGoOUmfAqK+WY\nPDvzSO78pNNxXq5cyZtIS+NNREZSVi+91HIZvVmz+HAxCgVzt+bM6fw1wsJo5+r19pLI/frR62cy\n0c6VqzE4hjfn5QF1Bg38k+KQpo7DpfJ3dOAAj130elrw8+dzraiv57hduZJKk3zTSiVjfObP5yCQ\nu3Ho9Tx1WbPGfmpXUsLxW1HB18TGcg1ZtMitgmDTDqvgnTwI9SeLkDf1OkQ5Vi967TUo/rsWd4X4\n4prQXxE4bzrU9y4D3n4bio9/hk53AYqMg6jl3T6ba+3SpZTLvn0cz59+Ss/+X/9q9+bu28d1oqKC\nY7c3KtSOlJTwYTQiTReH0fHZqBoYiuBg7l+XhexHwMdvQPOhBTDWAMOGQTFsGLZrxqA8ZAhPrn/Z\nx30oP5/z2tOT/954I3x8mjc3cnfcZ4T3OSwApFYfdXVVLry3zmOzMRnwxAmunx3iz3+GwssTIfOm\nwuvR+1F2+2P44OdY/PgjmpXM69+fumBiIp2ljz3moLsNG0ZPnl7PxUkubVRbSyt3+/b239Ps2XRZ\nSBIVZTerBeyIzUbd4n//48ZqsXC9fuQR4P/1/xq3xW+GYvcuKnahoVQoKivpHbJa7YVnFQou7IsX\nN021Hj2aR+teXnTHAgxor6jgJhkby2sFBnLFdJNW7c6iupqOpp9/ppJy++38Vx4Svr5Ubq65hsr2\nZZc5VBG02QCjETXxo7CvOgFVw6YxqHDnTj6ys1ls/ZZb+J1Mm8ZN5IIL6MIMDqZ22g2nHp2hvp77\nf1mZ/XcqFT+/SsU9cPx4Dqu27EuLhbbDRx9Rv0BpKfp7liJeXYCrtVsQMmt0ywaE1WpvjWcw2Beb\nCRN42iIHxctdjvoYNTUsj7l+PcXg7W1Xpuvq7HqbRsP5f/vt/NdRoR42jCcoGs1ZjSWNRntVitmz\nOchXrKDSe/w4F93PPuMgcMTPj+tBXh7l7uFBL4hazQ1h7Fj7mhAczJ/z8nhU6SRlOieHjuCuRtvN\nmwd4xkZg+OLRGHbrlKbrvtEIREdDoW9A2JVToH76ca6np07hAr9DuEv7KZJHSmcSROHv31QuJ07Q\nmCgsZAtbmYULOZbHjOl4J7RuwGKhfZqT08kLJCWxIkFgIBYNPQJrZAzGj+faoFAAYT46SBLwZf4k\nrPkpBKaXXsEowx7cp3kTj9xZhVGjQCNNrh4QGspFdsyYTnZ4cz0KSeqwWuQyFAoFOnO79BS39r7O\nPtf197pa9J2R5+bNVDrkMjujRnX+77/6Kie0zcZKFcOHSfxPe2OgN2xgNQpPT+70W7fSlXjffc2L\nT9fXU9HWavk3wsPpGZQk7l6enl2uBtDZ8dlefviB3lGTiRvlm286NDT76ivKw9ubxsbZnmNJYjLl\nJ5/weC0wkN69IUPoQd2+nR4TOQDT8TuoqeHm66y22I6lIlqhu2XZEu+9x4ITViuNuLbKOrWE9ehx\nPLbMhEKPWIQnBuKFEWugfvlFyjcujnUPR47kd6FU0gD09eVpgK8vTwS6yaDrqDyffZZ6QUAAvaOd\nDfnct486l0rF0JC/Fj9DQVutzOp07PJy8iQVugkTGGZw6BBlc+GFdgXEarUfDbuwkUZ3j8+PP+Za\na7Uygk3uEChJnN7Z2TTmXnyxg8tWTg7lWl1Nw/nyy6ko22x8PPssLx4dTQ91RETzxGu5qoXVyhp0\n5eUcKKtW2Yu7A3y+tpZrTRvjur2yzM7m7RmNVIgdK1I4hZwcGrkhIQxv6d+fY0+louAffhgoLMTh\nLG+sjnsZDSp/PPCAwx4oyyU7m3H9ZjMzFB2NvqIiTophw1ruPOME2ivPzz+nvq9WswRjp2/HaOTj\n7Pl4+DC2rT6Md9OnQtEvGo/pH0dSQBFPnZYsoUdCXlgKC+1OskWLeETtJnRkrouQD0GHKC21NwSo\nqOjatbRaKodqtQTvYweA1/5F5WPJkrbPSOXK81dcQc1Sq+XuMncuFz9ZE9LrGRPRrx/dur//zmDO\n8HBaw8uXU9HpJZ3XSkqo9zc0UP5NoloWLKCHWatt2q7y8GEq0FOn0ptw4ACDX/V6HjvK3qjNm6nk\nPfQQFTtZxl5ezj2a/OYbxrZOmsTwGjc6Bvb3t++JrSopksQxpFbbw2emTQN8fWEZOARlkUCAD53Q\npquvh3pYor1Uy9NP8/sZOJDlHoKCaAh99RXH7YMPtt4OrgeRJOoVWi3t0IaGTirUVVXwPl0KlTQQ\nVqsHy7Pd9BCDfmtrGVjc0MB/MzNZ5gfgPH3xxeZlBr76ihrAlCk8munD+PnZE5Idx6JjXltNDaex\ntze4OOzaRSdBa6ccej2NaLkTzCuv0DDZvJmy1WgYumA08ndvv91YE3J50xh32Q0ud8hLT6fS7ahM\ny887sRFUdTVvTaOhDJyCzcYNraKCSnBDA+fgww83fZ3cdOHZZ+FvKsag/G1IHzCPspckrrFKJR0Z\n6ek0VJKTm3pabTaeBFRWUladagvsPIqKuIyZTJRtp/H05IXkXByA++6qVfApigVskyA1GFCQOANJ\nURk8Anz4YTZX+Phj7sdySauaGrvxLIeUJCa6vPRlexEKtaBDzJnD9cDb2+416SyLF3MdDqk/jYT3\nnqeyl5DAc05HhVr2nhw4wMK2+flAdTWMYydDuuMuePk0KmVnBx6//joLDwcH05WbnU0vmMHAHUnO\nMHNTbDYa835+XKfmzaNBU13NTl1NimxYG5OL3nyTnpH776dX+dVXqSUeOEC3a2EhP3taGruc1Nfz\neVmxlWvuvfoqZTdiBK+XkkJFpqsfaP16fhe7dwNXX+2y6gstsWABo1q8NVb0RwGk+hAo/M7SJH/9\nlVUQKivtrb5WrwZiYuB58824447p+OUXOrZ8tSpusPLZfFUVjzPXraOh8+STVCxVKsq9rS5EPYQ8\n5uQa5xMmdLKYi04H3HcfknbuwrKAaah75jWMn6XlHDx1in8oMJBu8NWrqeydPk1lUD7P37PHfhNz\n5i8ADRMAACAASURBVFCZjolhCM3VVzdvc22zuZWB1hWuvJI6ho+P3aYwmzk1715Si42bFJh8tf+Z\nMBC89ho1JA8PKm3yE3IrRbkyh2wxms0cc48/zmQ5vZ4hYv/5D+PKamvprFCp2l4nIyJ6bA6PGEE9\ntaioqXf67HWy3WzdyhO74cM5+c1mewcXWdF2vKDNBtTWol/KINy4/7+o+NssJCb60pB55x2+v7iY\nxmH//pzrkyczTE4+3TOb7d59F59QX3ut/bC2vXa8Xs8p1sSZ88cfzGWKj7fvOw0NgM2GCVH5+PuQ\n32DOK8a4gnQgpzFMs6KCg3n3bg52gAuNvNiUlPD0IzWVIWH//jeTkN0ct1Ooc3JyMGnSJAwbNgye\nnp74UfZaCNyCoKCmp7RdwcuLa8rO/Z7Q2iIQ4+tLpVCud2yzAR98wHAEDw8qhRYLUFeH3EnX4qW3\nh8J60IgHHvdGYuJZF5ckbtxBQVRkAgO5mYeG8g/Pnu30GtLOxGKhA+nIERYquOEG3vpDD7Xw4sYW\ngLqNv+HbU8OgHpiAK37ZDs8rLrGHFxw7Zs8gk8u2BQezHteSJfZ+xiNHMhbw6FEqLO+/zwKg777L\ns82udClQKunN/f13eh3OaAOup6CADtK4OOCXFQdw6rAeV47YgqvXXtPUPXv6NMdVXh6VjaQke7mV\nTZsw8dnpcjla8umn3FxPn+bGsX49j5bDw/kHb7+drwsMdHmLTqsVeOMNTrOZMxmT21nMlXX4YVcY\n6vXzMc/6E7R+hwDNBVSSo6MZCBsQQMFLEnfoGTN4yjJjBsMSbruNE+HQIWqVU6cysXPIkKaeT6uV\nG+7evTwuvvzyrgvDxajVTe3Xqio6UCtz6zCnai1C9Z7QDhoLoDHeQE5CkSS7orZuHR9lZTTsUlKo\npOzbx4tLEmXr6UkFuqyMikxNDZ0Ovr7UuoYO7cmP3ipqNZ0wjlgstP3T0xlZsWRJBy64YQNP8w4f\nZojBzTfTiTB4MGtth4RQXvIJZkgIMHAglD/+hMLKWBx96mv0e/cqBMhjuLaWBmJtLRVGPz9+cXIp\nJqWS19u5k+PcxX23o6I61vg2I4Oy1mjoYD6TR/zdd/ysJ09ybRw5kkbK9dfjwG4j9nlfgJnZz8Mj\nI5UGilpNo6W+nvuMrFA7Ul5O54/Vytfu3CkU6s5y6aWX4pNPPnH1bQi6mfx86msqVQRytA/jmb9P\n5KYpT5yKCipf0dH0oiQmMsYyPByHcgOg8w+Hh8oTqalorlArFFRWNmxgyafvvqNCePIklbprrnFr\nb1Z5OZXpfv1Y2W/x4rO8LzodDQOViueg6enY5DEX31ZGA8pQBCECsyIj6ZXOzGRYB8DXRkYygaiy\nkkkhWm3TntCRkTyqzMzk5iLXSpbrcXWFW27h5hUU5FYd1955h+Pxhx8ARboKg4JN2HwsFleXlzdV\nqOfMYU29xERuDDNn8o1VVXZFzmKh98XHh7tWRgaVkkWLeDIgx1mOH8/N2k1S2aurqUz3789w+xtv\n7PxXtC8/Ap/53AxV6SlYE6LxZzlkYMIEekFDQuhtNpuBu+6i23HWLLvysm0bFT2djmNWrie5YEHz\nsVNSQk9XdDQVyDlz3Dq5uDNkZfF0KsBag1cOzMLI8CLsft8Tq+Y32hb33kvHQ1ISZWux0HjzbfSg\nJiRw7N18c1NHwq23sqrHwIE8cv/8c4Zk+frS2yi7xxsaOP/daM4C3CLS0+3r5A03dOCrnzKFEz4q\nimNn0CAeLb3xBp/PzaXCJ598NmaAHjyowMsVc6A8YYB5rR4333YRDWazme9RKikneX12DOuQWzr2\nQvbssaccHT3qoFBPmcJxExpqr2iiVKJ62lysbmztfsB4F1aH7Yeyfz/OVT8/jtGzE19lhgyhhfTl\nl/xeOprQ4iLca3Y0snXrVsyYMQNXX3017r333ibPLV++/MzPKSkpSDlnr2iBuyKX2zIYFPCTKhjO\nUVpKs9nDAwgKQm7YeFiP52LA8BFQZBzlhF29GqOVcdj0T29Yi0swMagOwODmf2DCBPtEDAykUnn5\n5R0rq+ciQkOp/6el8ZblTaKqCqj93/fot+sLqAYOoMvaywu4+mr4vJMDacQIKAK08DbnUxkZNYqP\nI0fsrawWLaLbuzU8PVlWpb6enq+sLG64zthMlcrmR/VugL8/dWB/fyB6WhgK/jBi4fhcIFtlzz4H\neO8vvcS2gUol5TpgAMM3QkORl1EP0+v/QoLhKBQ3/4Uus9GjeY2oKI5HX1/+buZMl37mswkKoo6f\nmmov4tARdDrqE/37A17eCiiHJcGqUMLXJ5PK3d13U+FbuZKPsDAat2ePB9mQNhjo7Xr2WftpRktj\nJzSUSkpODhWiPqZMA5x+0dFAaV4YEvtloMHkC/+4aHuecFRU03IrlZVAXh4sJ7NQrB0Mrdkb2pta\nqAW9eDFzUYDGAs3DaPDGxNgVv507mUgaGsq6w26Uc+K4TnbYjrrmGs5BrbbpfjB+PC3LgIAm1Ths\nNiAzW42qWQuhOFIPa0gEfD0twOEMGnsBAVxAXn+dR12XXMIQsXffdTu5dYapU2mbBQWd1dB19mw2\nCPP1bRJH7+FBsdbXA0ED45HhtQSJyixorotjmJda3bpxsXEjT1XnzqWx6MRY/O7E7ap8mEwmWK1W\naDQaXHXVVXjhhRcwsjHAR1T5cC6uqKRwNpmZQH6ehLHv/w3auCB6+156CYiMRFoa8OrLVkhGI+7w\n/gRTAzOoUT7wADByJMzvfgRp8y/QeCmBJ55w+ZGQs+UpSfakI4WCJ4mPPw5c/vO9CI9RY2y/Mv6i\n8XNbLMAf35ZA88HbGOt/EsppU+xtgl94gcI2GlmY2c0t/p4em7W1LCgRE0PlxZCZD58XnrAXW24p\nzmnpUn45JSXA8uU4qh+AlY9UwpZ+BLeMOYALh5Wzy4kjZjOVnbCwHj0haa88zx5z7cVqZe7a6dP0\nXC1fDqTvM0K3fCUmjrVAU5BNRSMggGM2N5deqhUrmlcH2L2buQCOCZznQs6sCg3tEbm6Yu2UKwnW\n1zNSY9AgGi8tsn07pOeeQ+Xuk6hRBGDLzGfx5//O6dwh07PP0tFRU8O140xfc+fQVVl2dsy2iVwT\n2eF0asMGOkzVavok/G01mLjuYWgMtTQUH3+c62xhIWXl72+v5rN0adMWlt1Id45No5Efqb0Fn/Ly\naOxs2ED7eNqwKtxx8C7O8chIrq2vvtr8jffcQ+W8tJTOim6qiNIeOiJPtzvz1mg08Pb2hkqlwhVX\nXIH09HRX35KgGxk4EEgepYDXpTOoTPv5UTl+7TUU5ZpglVSAlw/y4qdzkXLwnKj1tVSmbTauqH0M\nhYIbqJwTVF1NEeQkXgJzYRm9Jw4NMTw8gKnDazA+6BSUXhou5Dodj3JTU7lJyEebfQidjnLpClot\nQ0wTE7lh+Cj09lIqdXUtv2nUKIYS5eQAnp4oKgJMnv5Q+vogt8SLsedno1YzfMZNw40UCkaqdFQx\nMZnsFccKCvj/ockaDJ8bT2V64kS74lxXxz9iNHKAn01iImPMDYam7VbNZrYCvP12erAd0Wj4HjeV\na3uw2Rjq1ZJIAJ7meXnZS8y3qkwDwJAhsPn4wmqVoNdGwFxaBfOrrcjuXFx0EbX4qCi3rA/c2THb\nJsHBzUrbZGdzmBmN/A4uGNsAjbVRk6+t5YtmzeKCHRnJ8CSdDubgCNSEDaLH4803WaFm2zYn3mzP\nIRf0aC+xsVwmjUY66E9nmniBkBCuA2eflFZXs4tkVhbjsQcOdKgN2zp6Pbc3V+N2Hur6+nr4NcYc\n3XjjjbjnnnswodGb1palYDu7M4gDKpUK7uehVoPNX5rTU10U3cFD/fPPrJwTGiLhqWUNCHrlCT5R\nUYG6//c4/r01EVaTFbfcZEVokJUrWkEBF63gYFYBiIjgsZOLN1Nny3P/fq6/np5MEIuJoYfk0CHg\n2rk6JE/0OlPP2WTieu3jLbHk1enTPC7btYuZ7NHR9Io+9lj7z/Ll0nmenj1+jN5eWebl0V4wmehE\nbuyu3HlsNiYWeXkBmZmwZeeiYeZc+A1qoSPk++8zbtVsBm65BXUTZuH99wG9zoZblxgRHtdKqSez\nmfLswXjUnpjrW7Zw6M2cyYiWZ54B6mol3LLYgOmXeNnHUFYWrJt+hjFpNHxSJtkTiAF7VwiLxd7R\nRObYMX7Z4eF87vXXu/XztEV3yPPDD6lnJSRwvp/Lm2yx0ObwUzbw9Ck2tunReH09jq36Fmn7bYi8\nLBkz9qyCIjysfbI7e4zKHVS7Ycz21D5ktXLb6HA1kEby8oAP/6VHhK0QN90fBq9wLZNkjx6lYhgX\nxxc6yKooS48XVqlRb/DA0itzMebrJzl+Gxq4uHcDLt3XDYZm+4Ukcd/64w/2sBpn2sVNbMaM5s3B\ntm9nuUZfXz53zz3n3Ncris14ZlkNqs0+uOkOH6dH0vXqOtS///47nnjiCXh6emLGjBlnlOm2OHDg\nAMaNG+9y5bBjyJ0Um1NX1/diAFvjww+BI6l6eCkMOLHIB5MmTWL8VFgY/BMj8feBNTxGe7Kcsc+B\ngdxUrVbOzptv5gL26afcBK65xqUNH5xJair15bo65lLKjQqvvRYA7N6T8kOFeHdlNbLUQ3D3UhXG\nyI0Etm5lrO/Ro5TXlVdycfrmG+4OCxe23uZakqgw/v47F75bbnHL2NSTJ+k88/amAdJlhfrnn9lK\nWaWC8b6H8cKvM5Fz62lcPWwjrnx2or3Gt1xiS69nGENCAvz9Ge7Hg79WlOnG+qxQqxn/3g7vS2/B\nsdv3H38wOisgQIFdB70x/RKJ5dgyMlB/8Xw8n3cHiv4AFpuBS5RbqOD5+VGAEydScXNU3nbs4Eab\nmcmx3AcqeTgiSdQlYmLonJObk7ZGQwOXxbzTEh7BqxgiHefYfP55uxHi54eh98/F0M8/B7AH8PWh\nsXj11W3fTFYWx6iHB2uj9+vXa+oAt4bJxOiikye5DC5c2PFrxFam4cnPruacz5nBPWfaNFpAlZUt\nFrE/VeiNqjoO7d2nwjAmOpoJuG6WP+EU1q3j3pKczNCgxvkrnyCUlTH0Y9hDk+FdW8v1wNubwikq\nYgJ8XBz/bzRyHWiHkyxn9Xeo3BGKAF8zdm2ehJkzO9mFygm4nUI9Z84czGmrqUcL1NTUQKudjpqa\nba28wv0UAQFRm3ToX34Q4focRDy2EVj3GhW4wEBONrmFa0AA3V8XXsjVUaOhUghwJ9q0iZMvIKBp\nxYpezKxZrC4WZczByA1rAI/plI0jeXmwPPY0ph8xInTQPGzffq1dqSwooAyTk6mFX3IJlWs5ELCh\ngRtmS+h0VKb792f7wOuv73y7vG5k5Eierup0QErAAeCxL7nJdbbSQ14eNwKjEeUZZcjZH4Tw0nT8\nUqrBlevW2RuKfPopDRZPT7avbG/m/q5dVMZ1OiY+9SGF2pGhQymSkpLGkvKnT9NQ8fRE7mEbCsz3\nIcRait+fSsMlpkeokPj7c663xKZNVBhtNhp3fUwhUShYcGfdOuoR4eEtvCgtjXM3ORl5IxchL0+B\n0FCg6uccYGZjeVDZupTZuJGJcUYjvYcaDeNK2mL3br5ep+MC5BBW1lspLqYyHRXFbaQzCjVWrqTs\nVCp+FwYDQz2eeoo/z5nTrK7fsGGc4tXVQMrlPsCAp/g9OaN2d0MD8NFHvPjNN7dtgfUEGzfywx46\nxInvsLZt2cIwmZwcIH9PARLXruXaefo0x1ptLQf+//0fLR+jsd3J64MNhzAgeDyKanwwZ0IZHJ1N\n7eLoUTZ+S0pigfMunHS7nUItOL/4y4IaKHa8AW/Uol9JLmsfOVbtT0jgxKqqojI9Zgz/raqytycN\nCOCOJEm9Jhu4PQwaBKx+sR6Ke56GQhFId/7EiU07kpWXI8DLAJWfN4JqcjEkxeECs2dzYfP25s9y\nIxK12h4I2Bq+vkxc3LuXf7Mr9ae7kbAwrr+SxQrlXW/y833+OTsxOnaMbC/z5lG502oReulYDNpZ\nj8zjgbgudhcQ6lCbMTvb3sDA0nLoVotMmEADxc/PLboidhdaLfMxbbbGqKRy3zNtPuOHq9C/ASj4\n6hQWDEgFjlZQwVAomhuMMikpLLcXE0MZ9uJY6daYN4+O98YoruZ88AEF+t136D9qMuLjY5GT01ge\ntPRbzvGz53RwMNdFi4XvjYqiEtMW48fbyxb2kTEaGUl9KSPj3A76VklM5JpSU8M9ys+P64DBwDU2\nN7fZW4KDeZIgtwMAvJyn+O7fz5MbjYZNj+Sa9q5i5kwavkOGNLMIL72Uh6UJCUDsIE97y9+ICBop\n2samT0CHT5j971iM5f7/hS1xCFTzWlk/2uLjj2mIbtzIva4LeQJuF0PdFq3Fsmzbtg3z5y8/h4fa\n3WKo23q+Z+Kr3SGGGpIE46rXof70Iyj7x7Ji/LRpTV9jMvHRWptWSWIxUquV3lgXbbbdIk+LhUma\nhYX0Fj/9dNPPZzIBa9bAml8Iy/U3wjOxrUylRk6d4pnyqFFtlw+02RhvImer9yAdlqUksfPFyZPU\nsp97zimlEW1WCcbDJ+BtqWNgsByGkJkJrF1Lq+e669rQglqgoYHyPLtVczfiFnM9L4/jeMQI2Lx9\nYXplNbzS9lBBkbvVNemKcxZ1dZRZR7KiugmXyPONN3hiFxAAPPccbH5aGI3/n73rDo+yzL5n+mSS\nyaQXQhIINYQWjBQRCFVBRRd7WV1cC+LKiv4Eu7iWtYvoCtgLgiwKC4hKFUIJoQRCCYQECJBOysyk\nTv1+f5xMJp0kJJMJfud58hCm5Zv7veW895577yXUGHa7s/Z5RgZ/nzGjbkv3xuDCMeoqW9rtuLS9\nmkNZGT32AQHOZjcWC5ni+fMskenKGtPp6WTrViv/dnWCX6fNdUdzGy+vRtfDykouyVIpaK/cXM77\n33/n/n377fy/q/HZZ4xya7VM/KjXcKw19hQJtVsS6uafa69b5habrAOZmSTEUVFuqdVtCTrMnqWl\n9H707OmWsouOQJtsWVnJw0J4OEmHiBq41Vx3wGQiyQsNdauumS1Bp9jTbHbqFrqYvZqDW47NroKs\nLB5++vSp2TdFe7YSFgvnVVBQo1HbLp2UKOJPiuZO9pmZPMVGRzMk3EUJd5uh1darpO+G2LuXIcjJ\nkxtpW+kieHi4v53aE4WFbJgSHHwJrYCbQqXqHI9US1Bayo6BajWlZe7QCEqpdE97mUxMRquqYpSh\nk1tqdwmcP88ujX37UirR1j3NHfXtNhurbxUUMDGgOWmhO0ChoNi9HSASahHuDbudFQDKykjaeve+\nYhO53AaO5KWWyjyKihg2UyqZ4PHxx3++Q0991IlvdhCWL+chxmajHGjIkI77W+0JR6FlN5BuNIkN\nG1iFwG6n5+rP0JHXobNubfeXxEQe7KRSjvnaOTBXEsxmZ1vxy8WSJSSciYmX6NDTBXH0KPNY2AbZ\n2RRLEPh/tfqK3R+uvMwOEVcOzGZ2TUxIYLknpdKlutM/JbZtAx57jBlljo4yl4JSyY20vFyUWgCs\nDfXYY6wKYDZ33N/x8SE5lcm6jhQoM5MltebObTSJy22g0zkzyZrK3biSkJfHDrRPPAGkpbXuvZ6e\nzqTwK6RkaQMcP05iOG8eifDlwteX5FKh6PIlCRvA05NrktXqbLdutwOffgrMmsW+CFeoJEX0UItw\nX+TksJnD2LHcfJ9/vm2VG0S0HBs3Up+ZmUmb1y+83xi0WjaMOXuWkosr1PvQYvz2G8sKpKaSqHSU\n9+nOO+nd8vXtOt0v9+8nkRAE4OBBZzMMd8PkyVxrlMqu4/m/HBw7xkiThwcTtPr1a/l74+JYOtJs\nbve25G6DhAQergoKuCc1WtewFZg1iwmiYWEtLg/XZdCnD2vsGwzO8WAwAElJnO+OSl7uIKNqZ4iE\nWoT7wtHq9vRp12dQ/1kxcSKlBGFhrSOC3bu7p56vMzBhAluS9+nTPvVmm4JKBVxzTcd9fkdg2DBG\nQYB26MLTgZDLm684cqUhOprexKoqYOTI1r1XImEFnCsZo0fzAOjnR93z5UKrBa699vI/x11RX5Os\n0wFXXUUbjhnTellRF0GnVPmYO3cuDh48iGHDhmHhwoU1jycmJuLpp5/G2bNn4eXlhRtuuKHO82KV\nD6C5knrO5y2NPlO/5F6XyAa+3H6xLkSXsGdLUFpKT5ULW2PXR5e2pSDQho7QpxvArexZVcV/u7B8\ny63s2V4wmbjeurjmfJexZUUF10Q3J4Nua0+7nblQWq3b7+W10Rp7ulxDnZycjPLyciQkJMBsNuPA\ngQM1z7377rt46aWXcOONN8Lf37/B8yIAZ8vypn4sTT5XWlrSGRd8eZDJutwE7PLQajuVTHd5SCTU\nkroJmXY7qNVdmkxfsVCp3LaBk1tAo3F7Mu3WkEq5Ll7Be7nLCXVSUhKmVBcgnzRpEhITE2ue8/f3\nx549exAfHw9PT88Gz4sQIUKECBEiRIgQ4W5wuRtKr9cjKioKAKDT6XD8+PGa55544gmMGTMGHh4e\neOuttxo8D9D93jRc/Vxnvbftn1vffs3bU0RrIdqz/SDasn0h2rN9Idqz/SDasn0h2rNz4HJCrdPp\nYDQaAQAGgwE+jrIqAObNm4f58+ejZ8+eWLp0KWbNmlXneQDuqQ3qouhsrRUnffM68650vzvbnlcS\nRFu2L0R7ti9Ee7YfRFu2L0R7ti9aczhxueRj1KhR2Lp1KwBg69atGDVqVM1zFRUVGDduHHbs2AGp\nVNrgeREiRIgQIUKECBEi3A0uJ9SxsbFQq9UYO3Ys5HI54uLiMGfOHADA/Pnz8dRTT2HdunU4c+YM\nNBoN4uLiXH2JIkSIECFChAgRIkS0GJ1SNq+tEEMZ7YvOtqco+RDRFERbti9Ee7YvRHu2H0Rbti9E\ne7YvWmNPsTZWY9DrgSVLgMpKdjQKDe3sKxIhovXIzAQ++wwICAAefbTrtKfuijh8GFi2jA0yHnhA\nLDvYFIxGYOlS/vvoo2IzoI7GhQvcy3x9uZf9GdqotzdKSoDFi9kJctYsdkEV0XqYTMAXX7AD74MP\nAv37d/YVtTtcLvnoEti/n61Yz58Htmzp7KsRIaJtWLcOKCwEkpOBo0c7+2qubCxfzg03IYEt2EU0\njsOH+ZOTA/z+e2dfzZWPX34B8vNp85SUzr6aromkJODECRJBR5dPEa1HWhptWVYGrFrV2VfTIRAJ\ndWMID2cBd0EAevfu7KsRIaJt6N+fXgGNBujWrbOv5spGTAxgMLBxQWBgZ1+N+yIsjF04bTa2ZhfR\nsejbF7BYaHNxDWgbIiMBhYJ8oLrkr4g2ICSEEZLy8oatya8QiBrqppCXx4UoPNw1f68T0NlaK1FD\n3cEQBHpVPD27HMlzO1teCjYbJTYBAYBO19lX0wBuZc+CArYfDw/vsl3T3MqezUEQGGn18ACCgjr7\nahpFl7Blbi7neBeQKLm1PYuLKant0YOdE7sAWmPPTiHUc+fOxcGDBzFs2DAsXLiwzuOHDx8GAKSk\npKC4uLjO+9x6oHRBdLY9RUItoimItmxfiPZsX4j2bD+ItmxfiPZsX7TGni4/IiQnJ6O8vBwJCQkw\nm804cOBAzXMffvgh/vjjD3z44Ye48cYbXX1pIkSIECFChAgRIkS0Gi4n1ElJSZgyZQoAYNKkSUhM\nTGzwmtWrV2PGjBmuvjQRIkSIECFChAgRIloNl9d20uv1iKoW9ut0Ohw/frzBazZu3Ijnn3++0fcv\nWLCg5vf4+HjEx8d3xGWKECFChAgRIkSIENEiuJxQ63Q6GI1GAIDBYICPj0+d59PT0xEWFga1Wt3o\n+2sTahEiRIgQIUKECBEiOhsul3yMGjUKW7duBQBs3boVo0aNqvP8mjVrRLmHCBEiRIgQIUKEiC4D\nlxPq2NhYqNVqjB07FnK5HHFxcZgzZ07N8xs2bMBNN93k6stqEqWl7PFSVtbZVyJCROtgMnHs1iuW\nI6KDUFZGe5eWdvaVuBbl5fze1YFHEW4IQQBOnwbOnOHvIgirFUhNZZVcEZcHm439b3JzO/tKOg9i\nHera0OvZUSoiAoiKgtUKvPQSm3pFRACvvtr60okXLwIyGeDn1zGXfDno7PI6Ytm8jsWHHwKHDgE+\nPsDrrwMVFSxH22SZZLudXRUtFuDqqzu1fba72bI2Cgu5DtSe0zYb8Mor7PTcrRvw2mtNmO/CBSAj\nAxg0iDWrXYSOsqcgcF08e5ZljmfP5r9Ndrm32YCDB/n7VVdxceyCcMfxaTTycBMS0rC8d1IS8Omn\n/P2JJ4C4uDb+kdxc4ORJIDq63Vpwd6Ytv/8e+N//2Jn99dcv4ys57DJgABAc3K7X2Fp0lj1XrgQ2\nbOA28vzzrezdIgg8lev13HuakPx2Blpjz87bMd0Rzz4L7NnDbl7LlqFK5Y+8PMBPa0bWvos4v64A\nJSEDEOOfB2VkKLspNoK0NC5sViuweDH3jPnzxcZgrYe8mnQ3hFbrC6PxynK9FhbSi9S3Lxf4lsJq\n5Vqk0wE9ezofP33KCh9jDgyFHtj4ewASfr4IlVqCuW8GIiyskQ/atw/4+GMubn/9KzB1Ksnfjz9y\n8N52W5clQAAX+qNH2fQsOrrlPUXy8oDsbL4nIwNYuJCE+v/+j80oAXYdz8khyc7PtcN8Ohvybj6A\nVuv8oLIyYN48fqBOBwwdCkybBgwf3v5ftgNQVgYcP85+LI6mexYLcOQIG0Tu2wdkZQGhocCCBXys\nAXbuBD7/nL8//DBQO6m8rIzrb2AgbSORsAmMROJsTGSxACtW8Ibcey89HVcoHPaOiKBNm0N+Pg82\nBgMwahRw5521ejlZrcjedBL23EAgKAA5OW2cw2Yz8O9/AyUlgL8/8O67nEwAG/Xk53PvlMu5hmze\nDCQmAjfccBkMvuMgCMDy5fTaq9WcljWEes0a4KefgJtuojGrFwuTiePdbGYD2pgYQJl3nifoA47h\ngwAAIABJREFUqioekt99t1OdES6DyQRs3845rdHgjHE2DAYfHDsGvPwy8MEH7IOzcSNQVirglhG5\nUHh7NL65nToFvPce5/fZs8D997v867QH/gR3vYWw2biY2+1AejqQnw+vAf647z5g2/tHMeTMBhy+\nPx1Wn0B4hheh77S+wHPPNXBZnzgBvP02SU5gIOehycSNWCTUrYUVTXmwS0u7Zoe1pmAy0UNSXMzN\n89//dg4tQQB++AFISABuvBGYPr3ue1evBtat49720kvO7rgPRWzC6p1ViPc7D+Uv3XBXyu+wWCS4\nuP0phN0b0/AiKir4r1TKEyEAfPstwyynTgGxsWT7XRRbt/LrSKXAP/9JB2l9FBTQs2+xAHPn0tP6\n6qs0x5Ah3CAEgc+npzsJtYcH8MAD5BAPan+C5t+/kjQvWODcQPLz6Z212eiJiYgAPvsMGDasS2zA\nn3xCguflxfHp4wPs3s1GfGfOcL2LjQWKikhOGiXUjjFW/3eA7sJdu2iLF18EKit5epFIgKeeIntJ\nTaWR1Woe9ObN69Dv3JlYtIj7iZcX8NZbDSNL2dkcqwoFMH48PdTp6XzPqVO8R56eALZvx/iUlTh7\ncRykvYZj7Ng2zmGbjfdEo+G9s9v5uNkMvPEGB0JsLPDkkxwEK1ZwECxdyjHuZp3xHB3Zg4I4vz/+\nmA6Jf/61CNrnnuOLjhwBJk2qiSYtXw6sX895EBMDzIzZh5vOfcIQQGws7WKzdYn5fNn45Rfgiy/o\nmR88GHcPDMQe+8Po3p2+xnPngP37OUVHlG2Dj+J7KL3V8HrrJVw1vZ5Hp6qKdlMonHtPF4R7jfDO\nhFQKTJxIj1JcHNCrFwA+9PSoRERUZUABK3xLTqNAGsqVq7KywccYDJyoMhmJkb8/EBnJKIYIEU3B\nbOaG6O1NUm21Op/T68kh/P1Jns3muu/Ny+MCZrHQeeTA0G4X8a+hqzEjfD9GBJ2BTCrAV2tFH2lG\n4xcxejQwYwa9plOn8rGICG4SGk3r3OZuiOJicjMHn20M+/bR01xUxANMWRm/vpcXCcyYMdyAw8KA\nESPqvnfcOB6KBlkP80bq9XXFmVotGXhQEF28BgMZehfx+ufn0w6VlU4uXFDAcRsSwq9cVMSDSu1I\nSR2MHw/cfDN/xo+v+5zZTFvY7ZwAaWnO3zOqx6y/P6BS8QR6BXunAae9q6oanj0AOgaLijheDQYS\nvIoKRlKMxlrbk8UCX2U5nh7wG+befAb1Cmu1HB4ezpPok0/yPgD84xcucBCkpHCCeXryxOU4OLph\ni3mlEpg5k9KE6Gj+Py0NSE8TeP0OgldLv1RQwH8tFlIG+4mTJM99+/L7//OfTrtc6bBY+F2lUsBk\nQo8hOixaxLNT375UtWVn04x9TUdRWKqGRijHrh8vNPysgQOBe+4BJkxgRKCLQtRQ10Z5ORfuiIg6\n5KEyV4/VszYiKTME3T2LMavXZlwcOgUrKm/ByJE8wDpgNjNSpNcDd9zhUplkq9HZOsCWaKibft79\nNIyXa8+9e+nxmzCBzg4HrFZ6mzIyGAl/8knuT0VFwLJlXNdsNnKzO+5wRmFRVgb8/juZTkwMRZRS\nKUWUQUEtuyizmbtMYGC7aSZbgo4YmwYDdX4qFe3k4dHwNadOMWJrtXKTtdv5tfPzyQEdHulmcegQ\n8PXXQO/ewKxZdaVhycl0IcbG8sb17t2M4Lj90B72TE9nJGTIEDoaJBKuc48/zihteDjtc+ONbXQg\nlJQAmzbREzFmDI3+8ccNx2x2Nl/bv3+neQJdsXaeOkVv6NChXBPqc9IjR4CPPiKJDg/n6wYMAH77\njSqiiROrX2gy0a4AMGVK+xM+h3Zi927gL38BJk/m4yUl9FpfYoy7eh8SBGp9jxwBbrmFNtu2Dfju\nO/oNXn4ZCMncywdvuonMsBrZ2cB//8t/g4KAe8dlIWzNJ4yYzJnjFslSLrNneTn1HBUVJMSDBjVw\nDhw7xkNL96oMzBI+hVEVBPzjH7h9plfHX187oTX27BRCPXfuXBw8eBDDhg3DwoULax6vqqrC448/\njszMTAwcOBAfffRR3Ytt74FSVMSQhVQKPPRQsx64qiq+3KFlmzWLc8hoBN5/n46TrgZXTDxvbz+U\nlpY08wqRULcEZjOVF8HBTg7x3XeUMVitwCOP0EN6SZw8SRbeqxd10m4amuzMw15JCTnvkiWc4xER\nVCB0CHJyuAb5+gIPPthh5Loj7Wm388zlkIFUVDB3pOZgVx87d5LRXHst9bVu6L28FDrbGeFAURGl\nITk53KPmzavD/9qO06eBb75hePX++5vMF2oPuNqW2dnACy9wqikUVBUJNjsMn6+ER8ZRqP56J0+N\nXRRuMTbNZuCbb/Duqkik+Y2CSemNf/yDB7+QELdT/zSL1tjT5V8rOTkZ5eXlSEhIgNlsxoEDB2qe\nW7RoEe69915s3bq1AZludxw9ykzBnTt5VN21q9mXq9UM80qlXP/Dwuid8fHhqVZE4yCZFpr4EdFS\nKJXOfB8HQkJIZuTy6gOdyUQX7LffNl27bflyah/++IMuRxEN4OtLyYJKRZLSaAJnW2GzAWvXMjGv\nsJAuyMxMhicOH27HP+Q6SKXU7QcGck0MDa12VOn1wFdfAT//TG88wNPfN9/UDeWJaDP8/ZmbU1XF\n8dpqVVZFBRM0li2rq1398Uee4BMSeAi/gqDVUkqjyD2PG84vBrZtg+T8Ofgk/g6VuYzrp4iWIzeX\nOvlff3Xq6o8fB3buRJj9Akzp56FUcl3o1q1rkenWwuXuqaSkJEyZMgUAMGnSJCQmJiKuOgN4x44d\nyMnJwWuvvYannnqq4+pRZ2YCjz3GRT4jg7HyVmSVSiTA00+Tj0RENB46FiGiozFpEsmeSsWoKv7Y\nQ7ImlfIEWFuLJgiUf5w7x40zKMhZBiAzkwQvOJiVF/7sA/rsWYT++ivemByD3L7jMCDmMj2ou3dT\n/D5yJNnPqlU8BZlMQL9+TIZWqzu93NblQKWiF//sWX5FqRSslPDHH9xku3en6Fwm46Ddto3eCId3\nWhBol/37qeOv1/BLRNO48056pf38aOY6EATa+uRJ5kYcO8bKDNOmUROyfTuJEEBpmCPjuXdvhh08\nPGqVC7ky4O1NWYf92SUIwEXg273AM8/wCYOhYXJEfZw7x4S8/v0b1+I0hx07qJsaM4Yasi4YnWmA\nb7/lWNm9mydrR56IhwfuCN2FmGk94HtLP0TsWwusz3fWd3z4YUZAriC4nFDr9XpEVZch0Ol0OH78\neM1zp0+fxty5c/Hmm28iPj4e06ZNg6yeJqd26/H4+HjE1y671FIsW8a4bnEx4z69e7e6GrmXV12d\nqwgRroZUSml0Dby8+KAgNCwJkJ7OrHu5nLvuiy86Bf5r1tAbde4cSV8XKePWYVi8GNDrEWTej6DR\nfQDFZbioBYF6ap2Om/CsWbwHFgsJ5aRJdIdrNM5adF0Uvr71PKTe3s6KBw4pi0QCDB5MnbmHBw8T\n06ZRL71hA12uX3/NcXglkA0XQKFoRqGQlcXqKUol1wC9nvN+2TKSutplHWuXZbntNm5wPj4tz7fo\nQggKAhDtC6Sc5zgMDgb+9S+Ow+qCBE1i6VKul/v38/TY0uRYq5Xk08+Pxa/HjnULzfVlw9eXESeV\nyjnPw8KA116D3GDAkN69aavVq8m7Skp4Aly7lrrzKwguJ9Q6nQ7G6pZaBoMBPrVSjnU6HcaNGweF\nQoHevXsjPz8f3eptMrUJdZsRGMhTVGEhFwyt9tKTSIQId0dcHD0tZjNTrWvDIRg0mZiCXTtbtl8/\nyg00mksXvP0zwM+PolRPz8v31kskzHpKSeEuHhvLevclJbxHEkl1eOEKxPTpPLx5etY9+QUEOMmb\n41+djvYpKKCNRDLdPtBoSKYrKnhw8/SkiLh3b64Ho0fzMUGo6yGSybp0icwW4bHHOC/Dwpxe+JZo\nZnx9mWzp4dE6vafDpidO8PDs1XUS85rF/feTIAcGUiTtQHCwM+rm5cXxplLxd7OZ+84VBpcnJR46\ndAhLly7FkiVL8Pjjj2PmzJk1ko+5c+fi3nvvRWxsLMaMGYOEhATIa4lG201sX1lJbVhKCm/42LFA\njx4duogLAnVuarX77BWuSF5ovpKHWOXDlTClnoZSXwDJoIEMxev1JD06HWP1Wq3bhHc71Zalpcyx\n6N69ofeprIyeFbWaFQBqJWs1OcfNZnr/Q0M7bRPtDHta9yQBhw5DPnWyszg6QAnI4cM00pAhTlFl\naSnLDEZGdmgSXHvA3ed6HZw7RxI9eDBtnZXFca1Wk9wlJFBiM3gw7HYOV1c2qnOlLe12Z7W3NqOs\njHlXYWEcqxUVlHFIpVxPmzOeycT7ERbWJROQm0OzHEcQWEO+vJzf3WxunnMJArBlCw8uN97YqXI4\nt+6UGBsbC7VajbFjxyI2NhZxcXGYM2cOFi1ahPnz5+OBBx6A0WjEI488UodMtys8PDiojx0jqR44\nsJnCqZyAEknbCyIIAiM9f/zBdevRR92HVIvoehAErssqVcvH0c8/A+vW9cKQIb0wR3YA8pUr6TEx\nm1nhpjbh+bNDqwWuuabx5375hXXJ7HZ6WqtLq9hsrPCWnMzKZPfdV+s9SuUV3dWpsfWxKK0Qpx9e\ngkqbAjGJqQhYVivJXCptGEEBaPfaEgQRrUaja0NkZF2tqsPzbLGwxAUA7N+Pyrc+wjv/8URmJsdv\nTdm9LgaTic7Q+slv5eVsunbhAku5jR3bxj/g5VV3fdi0ieuC3c6Id3WOWKNQqbqM57+1+8wPP7Bf\nwtVXA7Nn17O/RFJPn3gJnDpFqZJMRiXB/Pmtvv7OQKfkWy5cuBAJCQk1lTwWLVoEAAgJCcHGjRuR\nmJiImTNnduxFeHlR0ySTNRvWzcxk3d8nn+RhyYGyMibmZ2Vd+k+ZTCTTERHsxFqteBEhotUQBEr4\nHn2UhzTHwbmigs26zp1r/D2//krHQEoKUFzhwdXOahUJTDUMBs7nS6ZSeHlx45RIasK9gkDZ9ccf\nc+3fvNlZ1OJKx9mz7GUxdy6JCkAZ6tpfFTBUKaG2V+BMYWMtE0V0BH74gTXWn3++bnOoRiGV0kta\nXg54eOBCrhxnzlDxtHGjSy633bF5M9MU3nyT3tLaOHuW66OPj7Msd20IAh3PKSnOYhUtQu01wQU1\n5V0BQWA1z0cfZUrDpRy0VittHx7O5lgljVTKtdnocDh+/NKfBw8Pp8OnC+1R7lmE1hW49Vae2r29\n2cGhCezbR4WIIAAHDjgjwJ98Qge3ow1vc9IrlYoH2j176JjpQuNDhJvBYOChLCKCh7S77mKI7Ysv\nOFbVanYBrh0hk0iYjL55M1MHfEcPAPyf4amwWm71Z4YgAB98wPbZWi3wzjvNKDOuv56eaaWyRnNq\nMvEwExXFZPdp05qpwXyFYd8+Ehe7nZtlQADHX06ODibP53Ft97OYOm9wZ1/mnwIWCwl1Vhb3pmuu\noSqpSchk1POnpgJ9+yJMp0L37lSHdNVmdb/+yjGYnk471E5PiIyk6iovj+XP62PPHtaeFwTW9W+x\nB3v8ePKIpiIvXRBlZawkHBHBwiR33tn8WUEuZ7Buxw6quBrrxvn778yLl0pZJa3ZUt8REfRKFxR0\nqT3qz0uoVSomZDjgaHFbT7s3bBirDkkk7ETlQGEhB5ijLWxThPrQIXZWGjSI0TWd7squwyiiY6HV\ncvysWcPN0qEFvHiRh3qzuW45WQfuuYev9/QEZDYLZU7iQKzBxYu0bXExvVt+fqzqVL9YCuRyVqCo\nBZWKPUp272aY/LHH6r3HZOK60sV1XlYro7Dp6ZQEDBjgXB+lUkp0TSZKoYOCALNPJB77ILJO8QgA\ndFXZ7X+eU4cLUFICfPYZD9wGA1MhzOYWvDEoqKaKhyeAV1+lA6nFTh9B4B9yk/E9YQLlbZGRDevH\na7XAa69xz27s++n1Tkezw8OaksKS3AMH0nkhszYyl2WyK64ykpcXpRv797OKYEtyL2fOpJ/SsUcB\njFp9+SWL93h4AErBhCqLEkZjC8ZK//4tbE3rPriyW4+bzVwdGuyK9aDXA2+9RRfV1VezDmqtqh+V\nlfzXwwPUa2Rm4ozQE+u3azFwYPOlKJ98kpPUYGBVHncquygmJbYvXGHP3Fw6lTw9yUuWLuXj58+z\nElOfPnSiSiRgpYrTp6ld8/NjW7WdO5lU5+sLvPJKw7mh1/PDevXq1PClqxNrTp6kB6WwkJ4tq5XJ\n61OmgDuwxdIsyxAEwJhfCW3WCUj1xXSN9ejBk8/atWSbc+Y0TMRwkb3bw55pafQ+a7X0QL3xBh+v\nsz6CEZS9e2m7OrJJi4XjcckSrqNTptCN2lTZsbIyjmFHkmJGhrOLTCeTN3dLSly/no4bm41kaMQI\nehW9vMATtlRaV9qYm8vTT2Sk05ZpaQw5XHNNy6peCQLL723Zwvc88kib7kt72lIQeKDTaFqf81Re\nzl5DgtmC2weegKdQhheX9YdB5gejEXg7bhVC9qwmR/jnPxu02W7RHzh8mB25OrCqWHvZ026nLb29\nW3FbBYE8ymYD+vTBJ28acPioDFUyLzzTcxU8tm6Asc9VGPTxI1AJ1d2IDh0i43bTqh9unZToMhiN\nXPHz84F77wUmT276tenpFPbs28fFYedOMpXqEmI165DVSvdVbi66B4Vh0JTX4B/Q/KTq25ebS4Ma\nrSJEXAJnzpB/xMY6q9zpdFx7CgvrRkwiIuqV9Cwv5/g3GumqefJJup/27OFjUilJ3+zZzveYTHTh\nFBYySfeVVzqduLgKDmfImjVcBnx9qz1c+fm0Y3k5Xc9NhB8ldht0S95mtr/VSkbz1lusrdytG11d\n+fl13WYmE/D663SP9+gBLFjg1vYOCCCZLi1luHbbNo7FwYPrXvaoUY30ZamooDZu717ax2hkhYnt\n22mn+jFix1jMz6ck79pruSZLJCQzV0hovTmcOEH5xfDhaOjlr4fwcPI7mYyRlauvrn4iNRX48EOy\ny2efJYFOT6fNrVa2ux83jgT74YfpUgwNZc3gkJDm/6jZzP0yPJzryp13Nh7rdyEkkkvbqil4egIP\nPADgk6XA418BVVW4I3ACFoW9DZ2fB/xWLgaMhbwxt93WovrTgkAplNEIXHvwCygOVevyXn/d7UuU\nSqWX9kU2wKFDwEcf8Ytfdx16bc/HvjPD4RHdC1Enf4V2QncgMwl45QydCY6woEKB/Fmv4EhpT0RH\nN9KgqIugUwj13LlzcfDgQQwbNgwLHVnGYI3p//3vf/D19cX06dMxd+7ctv+R8+cplvLzo7CnOUId\nFeVstqDR8EZXVDR8ncnEBd7XF5mJefjuvBl2lQdeeKHpw9XDDzMMHBzc9oku4s8HR9CkspKcw+EN\n1GjIc3NzL1GYw2LhGPb05Ifl5ZEU+vlx04yMbJjBWFFBL7avL920jqYcfxKYTMDWrfTqeXpWJ+Pv\ny2D818uLrtem9HwmEzOY5XJ6Visr6dkeP54ZUH37NmyQUVnJw0sXsbe/P6NshYVcUr/8kgTuxRdb\nULggJ4fjLiqKpNpm4+9VVbRdfZSWcq0NCGDGf48efNxma3UTrq6I7Gxq+c1mJso99VTzrx86lPdG\nEOpFQQ8c4IPl5SSCkZH8cEev8owMEuqKCoZRVSq+trj40oRaqXQmBw0ZcuVscKmpXD8FATGB+Xj2\n8TL4D/CE8lbQbSuXtyDjkzh+nOcZux3wN+kx2EfN9zrCOlca8vM5R6VS4ORJXB94Bn298+A5fji0\nXvFM/AkNpTY6OJjJJ716wWa24qtPKnCimsS/995lljbsJLh89U5OTkZ5eTkSEhIwe/ZsHDhwoKYO\ntUQiwfvvv4+J7VGvp2dP/pw/z9NkYSFT8QEIsx6DURkAL6/qqI2fH8OP58/zLj7xRONsxdMT+Nvf\ngG3bcOzqW2Ev8qiRkDUFhaJpsm21cux1xYEjomNhtXJcSSQNNdE6XSOeg7Q0MpyQEA668+eB665D\nVZ4eiinjIevdkzkDp05xbNtswF/+UvczfH0Zzdm1C7j7brcmdx0BRw1eX19AsFqApV8BJ4/SDjYb\nyXFT0GgoVP/pJxKN228HCgshHExGZfRV8PjnI5DU1wz7+FCMvHMnBZpuYG+7nd40na5xZ7m/P382\nb+baean1rwbh4VwIk5L44SYT19OHHqrJoK2zHvr7szXz7t10Gw4aRCItk7HD3xUOs5n3wtGTxfGY\nydS08qiBw1SvZz31w4fp0R9cnRx61VUk2mVlsF83FaZKwCMqipli//kPQ7KnTlEk3xwkEso87rzT\nmZTXCbDZeIZtqTTBZOIwanK6/e1v/MCyMsgeuB+9rwmi+nDuXGbVDRnC8Wy3Mwv08GHawKGjLisj\n1ygpgXDNoxCESEilQOo1D2Gw53rKPZop0+vOqKjgbVarm7Dj6NE8pFmtwIwZkKxciV6VlcDtY+hQ\nmD6d2sTERDpvnngC0Oth1/kj6sPNGFr+LXb1fxh2e9csM+pyDfXixYsRGBiI2267DatXr0Z2djae\neOIJAMCrr76K9evXw9fXF++99x6G1EsDbbU2qHai4erVvJEAfvD7BzaVDEe/fmwspyjMBZ57jt4Q\ng4HZHZeYmSUlzCgOCqIHurVrSVERI6B6PfD4453TxlzUULcv2tOeVivX7+RkngcvGax54w16ni5c\nIMvp0QP7KgdiKWYhIIDDuyYa20QCrjuhszSqhw9TeSEr1eMuy/e4fXAaDffKK61OorM//yIW7x6M\nfVmhmPhwFP46P6zTFB0tsafNxsTpI0dY4eDvf2/6tW1a/wSB7uw1a/j/Pn0o4wgJQX4+IzLl5VR0\ntKZkbWego8enIPBce/YscN11HHpvvEHH8UMP1c2nbxKbN7O2pkzGRJ8HHqjztNkMvP8+8wduvRWY\nPrmSErCAAMqQPvnEJY2ILseWViu9mSdOcBzef3/zrz92DFi0iGe5555rQ1d1s5k3QyKh0+Kll+iQ\ns1pZNxPgIXDxYsDDA/bBQ7Gpz+MoKWH1n1ZLKNqAjhqbDvWQUklfzH//Szs++2wr+q5kZQEvvMAD\nc0UF8ykAIDkZhlc/RI7RC37DeiD4ffepO90ae7r8SKnX66GtPmLrdDro9fqa5+bMmYMDBw5g8eLF\nNSS7PhYsWFDzs3379ub/mFRKxmo00itXLTL741wvhGlKkLYhHRf/OMYNMzjYqWX8+GNg2TLYq8w4\nd44cuz4czrzhw7nQPf00F7/cXE7wb75p3nNz6hSjHioVoyAiRNRGYSGHbXw8nUyCwPHywgvcCPLy\n6r7e3CcG6YfLcTQvACWKIJTnlWJr+ShopJXIPWdCRkatF0ulXPTffpsf3hiSkjiIW1JovQvBbOY8\nrV+j1gFfX0CnqkSfvsAfJUOA0lKURg7EgjcUeOYZZ63lGggCsH078t//HgtfuIhVq5w1bA09h2Bf\nVjdE+JVh6yYbLG++27S93QB6PaXe4eFsntdcVNux/k2eXJdMm83Ad99RrpCTU+9NEglOZylQeiYP\nFRcuwh7arYZhnNxnRGFOFaRSOuwLCv4Uyo4mIZHQEX///dyazp7l9qTR0C9URzFgs/EwXS2dWbuW\ncv+NqeEQqitS7DP0xeuv84DuQO4JPU6uPYHQwiP4/Zfq9oGOQsKVlV2iClBREcl09+7cRy/FexIS\n+LUKC3mQaAoVFcCHb1Zi2aSvkfvif5xlPyQSDmyLBfDzg8XbH2l7i7E1PwbFRQKwbRtse/ehtFwC\nS4UZ0gH9cf31DPi5gkx3JPbt479GI5NgJRKOyabsqNfzTPbvf9MhNGcOkFbgywNbURGjTg6EhkIX\n6olo4QSCS9J4WDGbOZh/+qlxCa4DgsB70txrXASXxxh1Oh2M1Z1NDAYDfGolMfhWZ+31rl08sh4W\nLFjQ8j+WkAB89RVDWC++WCNEnZboi7Uv7MMQn/MIWrEZGPEe8PLLZCm//QYcPAiYzdie1QffnhgB\nrZZeK0diWG0cOWRD5d5jUHt54vffe8Nq5UnOZKKXpSY5pB769OHn6fWX0bFJxBWLwEBGLQ4dYudV\niYRSxaws/r5zJ1UFDhzsfjN+DBwKI7yRlyfBkOA8jPI4jqLN6Qjy1qKXrB+AHnxxYSFZj6cnV7wl\nS+pGZPLy+JhUyt3q7bdd+dU7DIJAD0tqKqWkL7/cMOwbem4vYk6fQ+qhcNw2JxyY9gqSMnogYwf5\nxpYtLA9Vg4wM4KuvkJ0iRbg6F2svzMOQIdQU62beimEXipF8TIWx+augyDlHN+zcuQy/u1mEwNeX\nuZT79lEB1xYFytGjlIyrVMCqVfQ2OyCUV8C0KQEmlTckFisqh18Hfw8P4Phx9Fv+BXyP3oDKAcMQ\nEuKHZ5/l/frHP6hQ6BRkZNBlPnBg6ys6tDN692Y+67Zt3Ddef51BE6USnKv79gGRkah8+kWsXq1E\naCiwPLk/Rr/0JqyVFiz+IBxaLR2nS5dyaock/4reVUqcTg3A3b02AsciOC4dbeF37Wq+658bICCA\napbkZNaWvlQE6Npr+Vo/v+Z1/ydPApXb96Lv+S0oLJIhNNqHrHjhQrq5+/cH5s3D7imvYu25ApQo\nI1H5dRpuPPINMk5JcKyqD06O+BvmjgyHprCQ+RV9+3Zpnfno0fSz+PlRjbViRfN23LaN+1RSEh0Y\nAwcCa7d4Yt6CBdRa1xb7h4ZSauMIw3z6KUMzK1dysEqlrL7WGH76icnffn6NV65yIVxOqEeNGoWl\nS5fi9ttvx9atW+t0RCwtLYVWq0VhYSGsLRT9N4uUFIp9ysqYgFXdLnTGdAumLX0TqqzTkJTHcLH0\n9KS2KSyMSTMKBY5n+0Kr5YksN7dxQt3v9AYoTv0XFkEOzU3zcU4TjX37uKH4+TV9aQEBjMAlJ5M8\ndVV4e/uhtLSRtkgiLgsyGcmIycQhDPAQJpeTaNQuzykIwPkLEhzW94BUCggqYEDRKgyqVIz8AAAg\nAElEQVQ/8g2mKUqA3oOhKHwINYTaw4NCzJKSxss3KRS8gKoqDvynnwYmTQKmTu3or92hsFh4PggO\n5nJQVtawKIEy9TCeiU2GqcwC9eCZQNRY9BRoMqu1EVmpUglIpdCqLSi3e8DDg3vmtm1ASYkUM6cX\nYWbJd9AW74Ekx4d/eOFC6rGb01R0AqRSRvz//ve25XUYjdw8Cwu5vnXrVvd5iUoJZbAP7BlSCBpv\n+PSoXlDT0hCiKsF7V62AdVo5/lDcDIsFiDIkQ/PKCuCOQXSHu5LUnjzprIRxxx3UfnYidDomHWZn\nM00iO5v2DvAX6AAKDQXOnYOqogTR0cE4cYLrhUfPEJjNHOdFRQzUVlby0BOe449no3+A2VAJzVkT\n8K6OEo/0dG5ebnbgawwyGT2ftdfJ5jB4MCUfcjm/ntFIW/j5MRrocMp37w5I/PxgPi1DNx+Bm7TJ\nRDLdrRvHR0UFfCO0KPbVwm4H/EKUwFEJ9EVWaAIlGLRnKUxv+0NTfIZ/KCKClWvcuJJPc+jTh7aT\nSBgxueYaluRvqlhJUBBNJggcVnl51ZWpKivJxhUKtmJ0lD8LD2cI0Gjk4nz99Xzcbm/+5h44wM8o\nLOR+9Wci1LGxsVCr1Rg7dixiY2MRFxeHOXPmYNGiRXjmmWdw7Ngx2O12vN0eXrGpU+ll6NaN7uJ9\n+xgv0+mg1ucBftW17GrrxKZPZ8KAlxcmmHrjxH8YmWjqFBYkFEAXJ4fNZIGmlx5Dh3PgeXs3X3Pa\naKSyxFFW56OPukSErQFIpi+lgxbRFkgkddeRmBgGWiQSZ9EDgOX1Dv54CreV7oKh3wjIBscg5Jcc\naAf1gCJdDwT7cUNYsMDpCXjpJZK7fv0aLvD+/hTGnTwJLF/O51euZCilC7fWVSrpZPrlF07zRtfd\nKVNgPZaGMp8QqAYNhgQ8c7z9Ngl5cDC46G/dynJuI0YAzzyDHll5qNIOx+TuFuQt/RVf/tQDkqie\n6IGVuCqsBAgKpD5MrSY7b6CHcA/UH3OtwY8/MuyuUgG33FKd85qQwALf8fHAlCno+dsSGL77HzQx\nPaGKp4MDo0YBSUlQAlDGD8dIJZCytxJ/WfEyevYAsCmX+gdXJnKVlPCGKxT0prkBFArggXutSP/k\nd9zSqxz+qhsAiRcJ/+rVqBg1EWZVIJ5+mrwiJISE08PDOd379OH4X78egH0ynpkWiiGSIxTES6VM\nbh40iFVWHPY+e5Za7LAweoHcjGi3dszWblKyciWHKMBlz5G2FRQEPL50MCpTXkCQzgQMYiMs07S/\noGzDDvhNmwaJlxcGD6ZtLRagf/8oQDIF/ZM/Rd7ZLKBvX+hOZgBVlSQDjgoYbpB83FYoFOTD773H\ns+a+feQujQ2J0aO5xq5ezfE4cWJ1NP77taxfbjKRe/3jH3xDUBDXVAeBHjqUpyWLpUEzrTq49VYq\nEWJjL1H6quPRKXe2dqk8AFi0aBEAYIlDoN5a2GzU2mRn07gO10hEBLNIu3XjqvLFFyQEv/zCUWG3\nN/Q8yGQ1BX4r9tNJl5nJw0/9zksAgFtugaqigi6AYcMgk9WVBjUFqdTpBLzchmFWK8OrWVkkDF21\nhqMIJ4qLyWVVKjrnNBqWYFq4kGNn/nzn2iGzWzA19QMIdjsCzyZi0JcfAffM5KB44Daymw8+cDZ6\niYtjHL250Ejv3pw3mzbRtdCrV/O71o4d9BRMnXrp6gCdiOuu4w9AOc1vv5HPOQp4mMKi8Kb/h8jM\nBCZvYBEOoF606eOP6e7bsYMnm5gYKGJiMAgAjh1D4YEkSKqCIZw9h7Ix/YGy03TZ3ncfSUpKSvt4\n+/PzeY+Dg8leXbBRCwKjq0eP8k/WjpQkJXEIeHtzuMisJurwfXzokRo5ErLQIPjNf6Tuh4aG1pEV\n+QN4/urNwKaLwJmLgPdQOj7OnuVnuaKgf1QUWYLF4vSUuRD5+Zz//v4sAOMgLBO992OidjlQKAXW\nWbk4XH89codcz3LpScCsWTzn1Yafn3MMy+UOnb8U5v6DgUF9+T3Ly3lqP1adV2Sz8Q0rV5IRnT5N\nDWPtAvgA99JVq7iZ3XlnlxILy+Wcyjk5HLu16yB46yTwHuss0VVaCry+53rkl03ADJUnpkskkKBu\ne3N88QV05kLoBAM3dt9ewJQ76PW/7jrnHD1zhpwlOpqPdyGvdW3u4uHhvPSqUgtWfFoMo12LewI3\nI7DqAgbdfjsGvRKMdetIrA8cAF7MS4E2J4cftGWLk1ArFKwSsWkTD9A+Ps0TaQeGD3ebTpWXvQLP\nnz+/gTe5scc6DAYDCfKaNVzJKyuBefO48n/0kTNE8+qrKA0fAOXJI1B5evK13t5cAKphtTJzNf+U\nAfdG7sTZY/5QlveHsUqL06flDQj1hQtAQUEABj46p9UhUi8vkqLUVHKby/FOp6bSwaBScRGeN6/t\nnyXCPfDbbzz922wkJxMmkIfZbNz3UlO551sswK49UpzSTMN0zVb0HWDlYIqMBP7v/wBwLyzOUKHX\n3sNQR3VrPrW9spJsyc+P8b2cHM6fefOaDrkXFpI4aTQkm59+6vYbhM1GPalKRefbkCH8ygUFPECb\nTDy89O/fsPS03qKBLScHulAPyOudhqu0geipK8YTgT9CP2wCrn7rNiD/Km4O/v7cUHfsoCv3hRec\nZK2gwJk83dLF4McfqXe1WOh6rE90OgBZWZQsajTU4n74IR93lM/r14/Ew9cX3CAjIkiEHU4NQcCJ\ntaeweqsOgyYF46bpEkgMejLIqCind0Gl4v+Dg1nMf/NmrvNeXoy01D8Mnj3LaKSjC1JeHidQdDRt\n01ps3coNwW7n54aHX47ZWo3VqzkNTSbatIYgq1ScW3Z7jat11y5n/nDPnvzaI0YAyM+H+eBRJJYO\nRNhVITXE78YbyXk9PKr16VI1o1YnTjDUHhpKEv3qq5z3vXpRBllZ2fi8TkxkFEImo5Ts7rs73kBt\nQHExzwS9ezvPZLffzrNA377Azq0m3BxzAQExwZTRaLUUaEskgM2G7DUHkfYzUGjW4fOzHrhhmBSy\nlGSKgx3eDYeeTKdjrsTw4Y07Lj77jFGQw4c5Rt2phXJz0Ouhys/H/KeicPSkAkOHOqds8strsPl/\n3aGUWeHpm4eHBh4E7HaYZ83BqlWA1FQB+dYdWFUVBUhm4m71OnjUT5AYNqxLN226bEK9adOmBuT5\n119/dQ2hFgTGHlJT+TNkiHPw2u18LCgIyM3FgW1GfJrxD+gkxXix57/gfzGNs6pW8fqUFEYipuX9\nhAL7Ngw35mBF6b+g7uaLAdExqC1fyMujpq2ykoepRx9t/eVHRbVPhMLXlx4Mk6kJL7qILofgYA5v\nudyp3Y+L4xmxrIxDPSSExHDjFhlU0ROxw6sf4l72hNGsxm/V3cXj4oBPnzmLyb9uAWwyxMjPNx+y\n/fprZ/ZjZiaJoEzWPEFWqxn5MRq7TH1VqZS84exZEmlHN9TQUJLor76io/2dd1ju6uqr6bzLywMW\n5PwTssJ0DBkaiEdqua6zsoC33g1G1bG/40mfbzDCsgGwjnXq1MvLeUhJSeHNXbiQQkSjkYtJVRUj\nbDff3LIvERBAMq1UuizZSavlrS4t5fngwAHyCZWKX2nPHg6ZX38FZs+WQv/IPPy+vBhB0X4YL1dA\nsmsnPn+uDCa7HKcyJIjto0H40ldILkaOdHbunDgRNY0Crr6a2lMvL/7hvLy6JMVgYCkBRxek11/n\nvlBYSNu8+27rvab+/vxXLu+U7n+hoc5bWyc6EhvLrqeVlcDIkThzBnj+eV5uTg6jk5MmAbDbIbz9\nDv76823YVahCaD8bVq6SoVcv3qtJk+r9wZQURrGsVnpPCwtp78xMnub/+19ezPLldd24gHONEASn\n3dwMjibHjn4ir73G84NWy8PH6ZNmeKcmQrNoGaCyOYssz5vHkPOGDTAs2YLs3PuRI/WFwWbG1kdW\nYkroUQ72Dz7gAec//2G31P79G2kXWgtBQVwwPD1dUpqwXWA0MpNbr0fkNdcgctasmqdMJiDnWDHM\nir6QVRkQqq6WTAUE4JtvgD277Qg8fxTdhcMokpVCpfTEgdCbMKYToj8diTYT6sWLF+PTTz/F6dOn\nMaiWxqG0tBSjW1Qksx0gCKzbEhLCDf/hh51F/2Uy1hxatw644QZsP+oPjVaCIr0/MirD4N+zuqad\no8YV6AQ5dQqo1F+NuPD92GyYCC9fKSTlBhRdtCMg0OmhMxg4iFQqRm6OHOEpt6SEHoCmGqp1BMLD\nmdxaXOz+9VtFtAzjxnFTVSqdIUWlkt4qrZZFOo4do/NNqQRMZk+ETegHdAd++ooOULudhNtUYYNC\nYkWFxBOQWgCzGVVVXPszM/kZxcXkcoPy88ku9Xp6TQoKeDG1hYf14eVFIWFmJr0tbuaddjTuqn1Z\nEgkd+I4mfA5CLZeTr+Tnk1OkpdEDuH07iWNhIZBw1BcWy3Ds+hU4UkozPf44N2ijEVDbLNiH4Rho\n+oOlnByEzGYjEVQquXYFBPAm5eeTIGk0vKCW4o47OCB8fV2mHfTx4Z6akkIVx4cfsnLCAw/woOeo\nPvrzz+xq/cMaDfamaIAUICgSGFhcjO6aUhwqjoTUbMZnS1SIOjgQ98WmQlH7u8vldYst33knTzkx\nMQ07ZVmt/HF0+RME50232y9dS60xTJ7ML6NUckxfBgSBl9GanMqbbuIt1WrrnVElkjqlo774gnM3\nO5vBDkedYNgEpOd54fecwTDZ5ShOleDppxkVbZTn6fVOj7xQKwnvqquc/bwdC0p9xMaylqfZ7Gwe\n42Ywm2knb2/++9NPdKorFHQkW84XIfL7VdAEelJbFxICwW6HvdIMGQAUFWFPVRyGadJw0RSCUrkf\n/nP4Glw8koMQz1IEpggYPAo8UNQpA9QEZs1yRs/d9BDSAMXFJD4+PlwYwSGzYgXtKTXdDiUycccM\nC45XzECmdTJuGzsYpz8GpBIBErkciZaRkFltGOJxBpO6Z1ziD3IoCkLXyS9rM6G+5557MHXqVDz7\n7LN4++23awpfa7Va+LtqgEil1Ehv3Mgw07XX1n1+/PgaceTEQ4xEd+suQ98ZtwHHdtIj4thJwUk3\nfDhQkNUXm2w345hvIOxSBbx6BUOuqrsa9unDKi6Jic616IsveJj/z39YfL9bN9c57CIiGumUJaLL\nQRDoJE5IoMy2liIJ3bqR1O3ZQ+5VVUUnwIIFPMg5pMsqlZNPhIUBEx7uhTO6JxFv2QTcNxEID8ep\nIyRFUil5ypgxwOefA4v+7++UT119NQlyjx4MB18KwcGtqO7vOhw6RGlHaCgJdO0uc1pt4yXZPDxI\nGs+cYVXBrCzel6oq8jy5nF5DvZ6PHT3K/M1Bg7g3Vg4cgDE904CJf62bAu/tTXdiXBw/ZPJkbk4x\nMfRU5+Swi09LoVC49OSelcXysAMHclgUFDCEnp0N/PWvJIEpKTwneHtzz1WpnGRSoQAwcSJm5/2M\nk3nFWFM1HDkXlciUTMTQ8krEzmmmA2J0ND3NjcHfnyeao0e53kulrEyzezcvti0eZqm0XSQ0ZjNV\nUMeOUULf0ibAMlnT3NRm47hWqThWY2LIfZ96qlbwSSaD8Y6HoFwvhckkh12QIiiIKqFGCfXIkbzB\n5eUUxx88yAXIEcF98klGfOvvsQAJtxvnTQBcL//yF0rp7r2XX0Wh4PppsQBXTQsGjKPpGXv5ZZjP\nZmPNdl9sXjwUD5iAMTffjPEZW3BMOwx+xlD4+ctw8sRA7LDkoUAZg4EbPEmoW3NBbqL7bTEiIlhG\n8ehRCvvBakY//MCgkULhj+iR/sjsBaQe5JrZbT/PDqmpMpwT+sCrMhOeOjlGjJdgwPTwZuUd+fmM\nEJpMnM5dIfjp8k6JADB37lwcPHgQw4YNa5CgKAgCYmNj8cQTT+Dv9cpKtbkD0O7dwPbtsIybCNk1\nI5s87Zw7R8/KmTO8iaWlXFOvv77ptdVgoHe4sJCkxlGz3KFRe/31OqoSt0J7dFRqvhMicKluh2Kn\nxLooKeHe5agg9NlndUuYCQLljYsXc+97882GpWIrK0m6vb2BuKFWSFb9l2TtrrtqMlYLCymRdDgd\n/Pw4xp966rIuv93QXt2+/v1vfnWDgWUIW1PT2GBgvkx2Ng8mUintP348vbCKCgMCf/0G8PLElK/v\nRVCkB2w2EsjLTTRub1yuPQ0GejfLy+lMePFFEpOsLEavX3qJSoDVqxkU1Gq5Lmo0dDr4+dGRWTtK\n8N//UhatVPK1l5QpCwLLU6Smkh3V91S7EC2155kzVPMEBpJcf/TR5f/tDRuovJBK6bipquIBp745\nLBbeo4wMwGoR8IDfesQHpeKq1zvXdvXhiq6opaVUb5SV0fM/ezbX0cBAnmHrz9e0NK4d/v483Lzz\nDh+3WBiF2r6dntljx7jXP/NMC87CjozeI0c4fi8z8tEUXNVltriYRTj27qXqb8gQBs169OA4l0i4\nn8TE8KuXl/OcJpfz/NZoxKaqioY1GLA15F58+2sglEo6fOo1+nQZWmNPl1f5SE5ORnl5ORISEjB7\n9mwcOHAAcbW8LOvXr0dQUFA1UWsHlJcDX34JeHlB8fXnQNxQZ7WCoiK6lnr3BoKDERnJAXD4MD1T\nvr7APfc07/nV6UiaS0q4eWRnc6PIy3MmTosQ0VJ4e3MBOn6cDoz6cmeJhGMqMpKeqsakoR4etTxh\nKcep8VOruVA98wwAHvzeeKNaoqAm6Wyu0UG7Qa/nl+vZs2Gh4g7AqFFMOvTzq1tqsCWoquKi36cP\nbTpnDiNRffrwPgjfrkVFZDIUEiuUmX2AyHGOZqxNf+DhwzR+M82r3BFVVfzx9OSyKZVS0rF8OR3A\nkZG0yYwZ3Cy1Wqesu4Fetxq33sqx7uPTwtyPo0d5kgwK4kU05bF2I4SE8LtlZ1OL3x7Q651qFqnU\nWbWmPhQKJitmZACBFefh/d7P0PhrGEqtbTu7naEFgKyoq8TXW4H64zcoiPO5KYSFMeCWn19d/rEa\nioJs+J87h1snxWDsWB1OnyYpb5HiKjubGZBeXvSUODJ6uygqK53kWC7nsHIUMXGk0DlSHSQSfu1x\n41A3xDJwYN1TdnIyK38oFBjSzxMazcOwWrtOnqLLCXVSUhKmVLvUJk2ahMTExDqEesWKFbjrrrsu\n/4RltfI4qtE4s741GsbTr7qKPy+8wBkTEcEjaLUrUKfjQhgZ2bI938vLmVfg78/Ne+1a7plNTTST\nidVhJBJ6GN2stKeIToJMxkNdSQnHkkQCbngGAwemVIoZI7IhJJyGPdAfaScHwNtbguhorlOrVlGG\ne/fd1cUNpFLuJILQgLU4Ct0AjTctancIAjfy8+f5h995p33rWgsC2Ya3dw2rjY8nR3CUf24MBgPn\nYmAgF3zH+h4cTNLoqHLnmMv5+STpIw5X4Nq0FMi6hbRMB/n993RtKZUMD3QhjVZ9W2Rk0Es/ezal\nLg4fhURSd5jZbHQwZGRwTNY+R8ikAmLCDNyZT5VW19qT8U2//UbmM306PRsOLdTp08wkdbOmOE1B\no6H33Wi8PKmsIACJiQIunCzHqGvVKC6W15QpHDIE8Fab6Q4PDeU6YbUCGzZAYzBg8M03A3ZvIKg6\nmzS6f90P37WLBA8AHnnkimzdGxhIb35yMiPOl/LXeXkxspCTw3yU2bOBQT1K8fdTb0BpKgWiohD4\n6qsNC3gIAqVyCgUXnHXrOHmuv56nTC8vDob2qshTVcV73QmJjd26MU0tNZVfb+VKDsHbb+cUNZt5\n2FOrwe+cnU1HikMnIpVSwF6bLfv50XZGIwJyjuCDGbtgHTEa3roOzMsRBG4Cnp6XHVp0OaHW6/WI\nqt6ZdDodjh8/XvPcpk2bEB8fD5lM1mSnxNqtx+Pj4xEfH9/wRSYT3W8HD9JV99xzvNNLl9JDtH8/\nd4dt2zizHGLUakK9fDk3i/Pn6eHq148bbmUlN5NLcYDu3TnQ9u+nA7yxyM62bXQYSiTcX928w6sI\nF0Iud4aIkxLt0KxfiWEFv0MycgTw2GPwXfEpHpTlIel3G1bn/gs7N3hj4ex05AYOxm+/qaDR0DP1\n4hwjsud/Do8SAcHjIiG/447O/mo8KXh5cTKZTO1LqL/+miXpYmJ4Kql2l9QvW1xRwZrJgYF0kCxf\nTokMwIPFwIHO144d25BfrF8P5O0/jz6/vQ+ruhwylaJltZFLSjjZbTagrAwmE3kjwA2prQ1VXAWH\nLcrKKCWw28nfqtsINIqMDH5HvZ7L8Zdf1iKWq1YxmyktjaTjjjvIelJSKPZ1HAYffZSbXmUlF+SS\nEoq2uwiUyrYfWM+e5RnCzw9Y+tw5ICsLmT0rEfXgOEilShw8yMjSDemf0uvn58eQ6fHjPMlIpSRc\nDz7IQ8jRo7BfPw1bNjFkP3UqoDManYmbRmP7fXEXIiODys6rr25azj16dN081/o4doz7/ogRPAip\nVExcXLGC0iZ9bxNuEirRvVe1m1sQuIGnp/P/Q4fyhPP5584yQtnZnCjdu1MU//LLZOn9+zd9IS1F\nbi41fxUV1KbFxl7Wx2VmcvkcMqRlfF8iYc7YhAlMyN64kXZ7/XWHpppf/S9Tq1hWpaCAZCgioqYU\nIYxGEq2sLNqnf3/a6I03gIoKaJZ/AQzoAeg6sLnG+vXUqoWF0cnaXAL+JeByQq3T6WCsnrQGgwE+\ntRJGvvzyS3z33XdYsWJFk++vTaibRF4esGMH9Fml2LzrONZtsWHqvcNwl38gpBfOIVOIhP6wgIG9\n+kJefJGx9VonvMhIrvFqNRf/fft4oHKMgdqJYk3hq69Q04L81VepD6ydseoIjThKo4n4c8KxjzXm\nMVm2DFj4vh2K3JFYeFMZxiTtYga5tzdwNhOCzAOVZVZI05OROe97ZISPh956P/R6Log71xZDfdKA\nCkUYrBmViOzsgSaRUMi8cSN3vjr1wNqG0lKGGsuMdjycmoKQPuEkEyUlQGBgo/Zdtowbh1zOtVsu\n53m6tJQkwwFBoMY3NZVSBkc54/BwwD/tc3ibiyCHlaSvJYXo77+fnVrDwoD+/bFtIzkPQNLVXpKA\ny0FLsuq3bOEGarXyuhsbu1VVDPueOUObpqYy6vf99wy1r1kDnPlQhvtCAxGauZEb63ffkfR5eDiJ\noCOLVCrlG7ds4XrtrokpLYTdTrvVtt3evbTLiBGUGTiqAVZUcKpI8nNhU2tgL86G/pwRGRkBMJmq\nC2+kVZeBLSnhGx02tNu5t5WUkOiVlSH3QA6+0z8PiYRj/uF7xvN5wNnhqAvBYgHef5/DZdcu6nfr\ncyJBIDk+coRBj3796o7xjAxWWrRY+PvDD/NxuZw8QCIBKjQBKJv+EFCejHP9r4PhqAQxXucge/NN\nej8mTHDWCa/OdrRWWXDqrAJbv/DAX+YB3bu3Y/J2ejpPqp6eTFS4DEItCKz8V1HBhPj33mtd/yRH\n6dGKCkoSM6oLeJw8CRzQViE0rRQ5Jf4IyslAxH9nQVJVxZvUty+z6isqSKjnzWMosHdvnnA0mkt6\nGkwmZx32mTPbUPBoxw6eeLOyeABqS936arh8hx01ahSWLl2K22+/HVu3bsXMWiVmTp06hVtuuQXZ\n2dkQBAFjxoxB37YIO7t1AwIDceKQCj/bb0ZmqhWmtRJc+/zTsKedwmurB8K8W4UbAmfjLyNS8KV6\nNrKe51reqxdzt4YO5QAJrsxE4YVySBENm12KzEwOuFGjmo8OVFQ4nVFmMwfZBx/wMPbYY1y3HO9v\nLHFaRMfB29uvumV6Q2i1vjAaixt9rr2Rnk4ZnY8PK1DU55d79wLlVTLYJP44clKJMY9PxMHjaqzM\neRKBmjOIfkSJiXYpwkvXo+ACkGTQ4IIn+VpsLFBcGIGU0OsRrj+CohvuRJtbB2Rn0wMTHX352Xb9\n+rVrQtSBA/xRqaT4ze8ezLzwKQmXvz8KC7kxlJUxsugoB11R4ewWZzIxOrRuHYnf3Lkkz08+ycRN\nRxOTzz93JiaNHQsYrpVBJu8HmT6fKeiXckEKAknjhAk1Iuza+0RrG0N1BIxG2quggMWTmirBabHQ\ni19UROdC7WvPy2MQMC2N/BjgOuqop65ScdyvXQuodXFYlmbAM74buHuHhdFO/ftT6280OquYmEz8\nw3fe6ZbVZFqD5GRKwSMiGEjx9OTX/uorct9166j3X76cthwwgPab+4QN+384hC3lo6D/wxd5eVQu\nJiUB0x98kF620aPpGXWUtSkvpw2LimoiQqrSohrnkIcHeAEOj/+5c3SLR0e3rs5fJ8IR5S0r4/mr\nscNgTg4lCRoNC+34+nKNfOwxHv4SEjj/fX25Pjhwzz2MZFmtfH2vXqOxZctoPPUUed68u4Dbioq4\nLhYXM3Pu/Hk+ed99OPHzKXxf5oui8j6Qr+ffazcMGMC5YDRS23aZUKvJzz08Wn/rg4PpOCws5Hgs\nLwdyzlTgq4UWfCLzhqz8LSwIWYrsqNtwb4kPoh58kG+8cIEESaPhGHXg8cc5+Lt3v+TamprKg5RG\nw6DX/Pmt/OLTptHL0rfvZTdwcjmhjo2NhVqtxtixYxEbG4u4uDjMmTMHixYtwqFDhwAA3377LWw2\nW9vINMDBvXQpimeugj21OwyyQPj7Az5RfjiDkTAr+ZKcgdOQOn4aEj/gmrJqFfDsfAHy3CycO6RB\nws+FuOf8vxHT34YXr7oL2zxuQEICI5KlpcANNzR9CQ8+yFBnjx48MR06xNNxUBAjDMOGtcscENEG\nkEw3rtEvLXVdDeXNm0nqzp/nYby+tOCWW4CTJyVQ9tAi/r27gaEKfD9XgqJiFX7aHY1BF4H4cTac\nQTz0FXnYpZsMnY4ObIMBmDRFCo3X3ZDJ7kZQJMes1ksgQVapmm897kBuLj0IVVXMLuusVOsm0K2b\ns0xgzztHAKOG1rhNjxzhV/XwoMTKQaj/+lceXhxNXF58kRyisJDrwP79nKv9+pnSYcQAACAASURB\nVHGRLitzRmiPH6cHLNj6MO69rgfCh3eD5y2TL32hu3fzRK1W09M6ciTGjnWeT1rSYbejceIEw75a\nLdeupgj1tGkct2p13Q7qNht1pzt2cGN2RMQBEvDwcDrpS0t5zyoDI+Fz8/3AkP7Ug0ya5GRDtXob\nAKDGd98+Xtwbb/BGZWXxJjYljndTrF/PcZWezp+hQ2mnvn2ZdxkQQAlSSQkJXmgoS49ptdfi4wOj\nsHuLFBVZkpoDYVgYGPGpVZ8aQN0GLCEhnLtHj0IdfyPuzebYu+aa6udzcjhZFi/mwWXGjLrZeG4M\nuRx49lnaLjq6cYeml5ez91ReHm19KMmMnEFZ+HZbdxxLU6Kqiia77z7n+/bv5+EvNNTZ1HTtWqcn\n9tABG24rLeX6GBfHDf7552ve73ldEIoOkJA71p92Q0AAw0DtUFbIUZf/8GGe91vaJ8pmoz39/TnE\nHLlnkvxcnNr3P6wzxuOi0AsSpQ9eM8/HlIh6n929OxfkpKS6NSW9vVus5Q8K4hJQVdVG5/LEiSwj\nolBcdg+FTokB1y+Vt6ieCO+B9ti0/f0Rv2IWAo7xpkdH8x4NHMgNITeXnmiJhBOtsrLacbZ1K/D9\n9/Der0JM/6ko11tQaVGiv3cO8vrwJOSQXTeH4OC65XsTE7kZnzhB2ZMIEXFx9K56ezceppo6lURO\nrZagWzdmrfbv7yw15uEBZJyWoTzqZpQHAxMHcmFTq7lRyuVck377jaRRqwVenpKEwJ+XcPF47rlL\nx8eKi7lre3jQm+Bm6NeP8jyTqbpOqcTpLu3dmxup2Vw378Xfn8QOIOmrqKCz5/BhLs4BAdxA/fyc\nkkeHLnP3bs7/hNNh2Jf9N0RXAq/EtyA8+sMP/ANqNb2AI0dCJnOv6FSPHsxnKytrvkSup2fjsjdB\noHfbbOaYjozkY+npDAH/7W98r6cnE/UKCoCYGDmguqYWs2sCFy5wAJeXk61//jkX1IgI3iR3q1PY\nDEaNovfZ379uXuoTTzi7tO/fz5/u3Skrj4xkMqwNspqcQ0cvhOqSwM1DIgHi42GIja+pW3/DDdVn\nkaQkYMkSpy44MJCHlS4Eh1O+Keh0HCZZWYwQ7Nop4K7cRfjp6VD8LycetqBQDBwkxU031U0e3bKF\nEcTsbN6bQYPoCDt0iDz2jkGpgCKCh5BGCilERVFTXFHRQb2Xmi0r1DoEBbU+l+vzz8ltwsNZOlOl\n4jR9YNw5bF24CxcUAci09IDWh1KmV16p53B2ZDGfPs1seomk1fW5w8JoY4PhMg4t7VQV4opW73p6\n8ibWhlzObPPacNyMnj0BfJKK7UUD8bV+CI7uHYQRQUF4Z8gBYPp0XOPLE67JVNcz40B5OSdrUFDD\nqHZqKgdrbq7bNpMS4WIMH85NUaFoPElbImm4CP/971zQU1M5DiMi6FnIzyeJueeehqf0gwf5+YWF\nwJ6fchBfKYdOUcHd5VKrfP/+HOyZmQ0njpugqZJrEREsKmKxNE14JRLKPP74g6FCPz96Dx2qAsdG\nffQo5X1mM+d3ZaWzw2ROTgsItcVCVlRRgQz1QOTt4oHKnRIRg4OBt96is6CxihR//MHk7AkT2JOm\nPuRyeveyssjJnn+ekpkePWi/jRvpwRo1ikSxe2vyjB58kE0CBgzgDT9xghd8/jxd3u2gx3cVJk/m\nAc/Ts65zXaVyRkImTCA5UKs5tpYu5d5xyy2054kTNMONN7Z8DFmtPFynpJDg5eezy73S0aHSy4uD\nPTi4dQ2G3ASCwO9WVUUpTP0zlqP3VFQUkJst4NDRSByp7I1rfY4j2SMId9whrVOF5uBBLns5OeQR\njsYiM2YwquDtDQRKRwHfZ/BG1icb1fh/9s47vgky/+OfrKYrTfek0AItq+yClDJlOhh6euLpqeDE\ngaKH3t3vTgFBQEGBczDuHHeCAxUVREAZAgoIZbWFskopdO+ZNs34/fFpmm460mbwvF+vvMSmSZ4+\necZ3f5sT9G2JnBzeKxERLatuZjTSIBQYSH03P9/8t56WDcaXYQvgnXUVM/pWYPB4F8yZ00T0hqkk\niFxOzXv4cFy9yrjooCA6Vm4UEufvz4e1cWiBuqX4+lZ/0RkZqMwswCenR+K6S08UGf2RFxmEhAmx\niAkAnMCEhqb45BNasJyc6PqsHY5z3320Sowf3+4wHYED0ZrED4CXRO/e5ov3u+8o/GRl8VDbtIkR\nGrWZOZMGqNJSYIdhOGTXjmPMHSp4tCSVWyarK0ibaqmGhPBmsfE4y5ZUk+rW7cbNINes4VlvNDI8\nY/58Hvh9+rTQKvLoo8DnnyOryxAs/aYPKqsY4TBnDnhjf/klb7G777ZqlrLJglyfigomFHp6co3F\nxDSc2/R0xv+GhzPe1NSRb/16egmVSiaQDh/ehmXTuzcz8I1Gmg1lMn7gjBmt30RWRiK5cci9RGKu\nmx4XR8+oi4u5YY6pBnBrDPM7dzLp8fx53lFeXjTyD54wwZyF/8wzrZ/P2uv3D3+w2plw6hSjqkyF\nA2bMaPz3fvsNuHBJCplfLMLyEpDv1QNPPizHtGl1Pf4ffmhWLOfOBdwrcoGPP4fE0xM97r23Wsrz\nYcKFnaPXM3okK4vW/JUrb6yoSQx63Bd4EF/t9cbYP4QiIMC8bj78VAm3mEHIyxuE5Ut5xjbJLbdQ\nMtdqa5Jiv/qKivmlS+Yqx/aAEKhrs3kzFBmp6OoZhWuuPnAtl8HNreWaT3Ex95hOxwOvNo2V3xII\n2ktIiLl8plzeeAxZVBQbFS1eDKSkdMEW3zfQ9/GWx8nVYdMmXr5xcZQma9eYc2D69GEJaamUHqbh\nw1vpmYyJAWJikJMA6M5QoCkpqX7us88o2Rw/TtdW7dhXG8HJiYaAlBRalhu7bCsqzIluppC4mBha\nY//xD4Z4RES0s29IZibXoKsrP+jee9vxZvaBvz/nu6LCrLy1JWy8tJTnRHg4z4wuXarvtuBgumnb\nyubNNJnHxVHxsZILtryc608m49/aFCEhPCuNQcGYsSi48Vbs4Fo9cYLKj7c3gM+/ZRyOKSC6qRfa\nIUYj58wU/lpV1QLPR2IiJl39Dyb1cQIMvQHpgpqnIiN5nPn6tqD+urc340VqER5Ob4Ozs21YnluK\nEKhrExgI6cmTeGXwT7jy4Aho/Tzg79/CLl6glWv7dmpj7ai8IhC0mOhoWhZMCXXN5fE+9hibJoaH\nm92XrSYggBl7SmXjbRodlBdeYM6XUtnqEL869O1Lg39mZi1vV0AAgzKdnGgCtkGkUobEpKQwlKYx\nI3p4OGPTr1ypWwJQqeR9ee0a3e3tyvtxc6MwXVLSYa2bbY3QUOYJFBe3r8HmHXdQFlQqOXW+vhaq\nPhgYSPOwk5NVz4Thw6m0lZUB06Y1/XuDBrEihV7f/Dk4d665V467OyjZ6fVc/A529snlrGj6yy80\nGJuqVTaLpyc1tMrKBpV3nnqKYdE1c9dKZs5kUrSpyZ69IDF2RtP3esyfPx9xcXEYMmRInQTFFStW\n4Mcff4RGo8Frr72G2+sVZu3wHvVVVQz28/Jqh8RhP1hiPtkivrn3aO759r22rWNvfszte18rbKfO\nRatlSZK29PJuBTfFXJrohHPHoeYzM5PSeZ8+VukQBzjYfLaXdq5fu5lLvZ5/p5ubTVvMOnU+U1IY\nPN2/v10lBreG1sxnpwvUJ06cwLp167BhwwY8/fTTmDNnTk3rcZ1OB7lcjrKyMkyZMgWHDh2qO1h7\n2Xh2gqMK1M3VmTYjBGpbRsylZRHzaVnEfFoOMZeWRcynZWnNfLYnmq1NHD16FJOra7NMnDgRhw8f\nrnlOXu1HLC8vr9NB0RoYDMx92bSpbvc0ge1jrjPd1OPm4fhxJs+lplp7JPZPVRVrCH/5Jd3KguYp\nKWEzjR9+YKiBoOPQ61nB4/PP7bZ7uE1x6hTPzStXrD0Sx0GnY0jsF180H+Nuz3R6DHVhYSG6V5fq\nUqvVSExMrPP8008/ja1bt+LTTz9t9PW1W4+PGzcO4zqoO8q5c6zaIZFQoH7uuQ75GIGgw8jJAd5/\nn/Gv8fFszytoO0ePMn9QKmUST2O1mAVmvvuOlSWMRsbrNlFVTGABTp5kszeplElltRoQC1pJYSHw\nr39xLuPigLVr293vQwD2Zdq8mfOq17PEq6PR6QK1Wq1GcbUKXVRU1MAS/f7772P58uWYNGkSjh49\n2uD1C+vXBOsgnJz4xet0tlUrViBoKXI5HxqN3TWTs0mqGzDWdAkUNI+zM+dKKrVY3wRBE5jWZk07\ncUGbkckYDlxWZncVGW0apdJ8fjrqGu30GOqTJ09i/fr1WLduHZ555hnMnj27Joa6srISSqUSWq0W\nsbGxOHbsWN3BdmJskNFIq15uLuvOurp2ysd2Ko4aQ93eMTlSDPXly8xUHzKkBeWLbAhbnEuDgVWz\nKitZMcuecnCsMZ9aLbuoubqyGo0jWflsbX0ajSzxVlLCtXmjRhi2hK3NJcBcu4sXWcHSnsq2AbY5\nnwDX6LFjNPDExNiPkm3TSYkA8MILL+DEiRMYPHgw1qxZg3nz5mHt2rWYO3cukpKSUFlZiRdeeAF/\n/OMf6w7WRheKvWKaz4yMDIwePQUaTVWjv6dQSLF9+xeIaqTmsPUEagWA5gIzhUBtz4i5tCxiPi2L\nmE/LIebSsoj5tCw2L1C3lZtloRiNfLSrAUILMM1nfHw8YmLuRlnZ943+nrv7Y/jqq1cxZcqURt/D\nWhZqWyzHZ4/r0zRkW7Ig2ttcmkIbbBV7m8/aGAxcm2J9WgZbW6u2PJe2eDbeCFuaT1tba22hNfMp\nGru0AIOBGdRZWcBtt7FjVUBAx4SBlJay7WdGBgvLt6Q7tCWQyZwBNN4oQSazTq1XgZnSUuDbb+nK\nnT695S5dvZ4le318Gi/Wf+0akxWlUmDBAhbiF9wYo5Edl52dmRC2ciU7T775ZoeW57YpjEbgwAEg\nKYnnYteu/FlaGmMkLRFidPQosHEjG8LMn++4sZeWoKoK2LKFd8fs2dXd/eo9/9577Mv0wAPAhAnW\nGac1MRiAXbu4d6dPB/z8mv7d7Gzu6/Jy4KWXzCW2i4qYuNi1q30J2p1BejorefToYb6zRowAHn+8\noWCt1fKsCApynJwUIVC3gIQEliOSSoHvvwfy8ijQfPghN5UlOX+eMa9qNYX4zhKoBbbFvn3AkSPA\n1KnA4MHscLhzJy8EPz+gpcVtPv0U2LuXl+uiRQ3bjf/2G8ts6fXMwp4xw+J/ikORkcFM9YICliJ0\nduZ5cP06Fe01a4B33rH2KC1DcjIFtF69KHzUvxDT0oCPPmLi69WrwBtvsNPaxx8zPvL//o9dY9vD\ntm1UBE3nYr9+7Xs/RyA+nkJLdDQwcaJZqDt4kB0VKyvZyf7DD+u+Li2Nyl9AAAUdexGo9Xrg66+5\nxu67r3137rlz5ko9RUXAiy82/bunT3O/OzsD+/dToM7NBRYuZKz6tGnAPfe0fSy2hiXmeeNGvv7Q\nISoikZG8Y+66q24sutEIrF4NnD3Lz3n11ca7r9obdm6M7xxcXbkBtVomK+Tl8b+bNln+s7p1Y2Zx\naWn7WhwL7JeCApZsTE8HPviAB51KxUNIImmdZ+TMGa6n/HyW0atP//7Malcq2RZb0DxffEFhZfdu\nXqrl5bRIV1ZyDh3Jwv+f/1CI3bq18Xq8SiUTMzUas6KWmEhhurycSkZ7GTGC+8HXF+jSpf3vZ+8Y\njbQyp6Xx/snNNT9XWcmHkxObSdYnIIBzmJXFpDB74fx5KlYXLtBA0B5cXXneabU37h4eEcGmiHo9\njRoA57W4mOdxQkL7xmJrnD9PRe3CBeB//2vbe6jVXIMKBeWXtDSgZ8+G1VKqqqjc+PvTMFFS0v7x\n2wIOoBO0H72egkpTsT49ewKvvMKD/fx54K232F++I7qP+voCy5fzQrKnqgwCy+HsDHh6cr2FhXFd\nTppEK7NMZj7cW8KsWbyEYmMbtxb27Uu3pkTS0HotaEhQEJvlhIXxkggLA55+mhYdkxKs0zmGtSUw\nkNYmN7fG14afH/D3v1NwHjiQP7vjDl6Q3bsDAwa0fwx33EGh2t3dcdzC7UEioVCclMQzorZyPWkS\n8PDDVGoa65vg4gK89hots76+nTfm9qJWU3mrqOCa1Ot5DraF8HDe5Xl5rHzUHGFhvOv1es41wDs/\nOpoGNUewTuv1vF8kEv6NTk6c5+Dgtr3fY48BQ4fynOzenQqfl1fDikhOTjwzf/iBe9zKffwshlWS\nEufPn4+4uDgMGTIEq1evrvn5okWLsGvXLgDAkiVLcOutt9Z5XUcE21+8CLz9Ng/sl19uPqbKxJUr\n1FKjotq+sW2B2kmJo0b9CcXF8Y3+nlo9BV988aJISrwBllyfJi9IZKQ59vnCBYYTqFRcq/Z0KbYW\nW0qsqY1OR8uUp2fDWGmjkeEgP/0EjB0LPPKI7cRYtnY+v/+e4R7BwcCzzwKhoR04ODvEmutz0yaG\nII4eDfzlLzdH0te1azwPf/iB3rannxbhkE3R0rV5+jS9Hf7+zJ9RqznPubkMrbKXsnYdjU23Hj9x\n4gTKyspw4MABaLVaHD9+vOa5hx9+GL/99ht+/PFHLFq0qFPGs28f41IzM1vuwgkPp0XGnoVpgW3j\n40NNv3Yi4d69XKvp6bRCCTofuZwXeWOJhxUVDAXp0oXnir26MY1GxtiGhvJcdARru6Og11NhGzCA\nZ0BenrVH1DmEhtJDkZ5OQW/nTmuPyP7ZtYtzmZpKzzvAeR48WAjTbaXTBeqjR49i8uTJAICJEyfi\n8OHDNc+FVd9STk5O1ZbPjmfYMHOMakeEcAgElsIUTqBWMwxJYFs4O1MJunaNCre7nRbHkUho/UxP\n5zpzZE+IvSGTMXzr+nWgd++bq5NfeDjD3srKgJEjrT0a+2fkSHM3SFMFE0H76HTbQ2FhIbp37w6A\nbcgTGzG1LVy4EE899VSjr6/denzcuHEY19JyB00weDBDPuRyx+yGKHAchgzhWlUoxFq1RSQShkfk\n5/OSsmdX/COPsLKHWi0s1LbGo4+yaoKn58313ZjyiyoqHCfm1pqMGsWwVaVSlKO0FJ2+HdVqNYqL\niwEARUVF8Ky3M7Zu3YqCggLMmjWr0dfXFqgthUjGEtgLN8pMF1gXqdQxLLoSiUiKtlUcZY21BWdn\nkZxqSYRiYlk63YYSExODPXv2AAD27NmDmFr1e86cOYP3338f7777bmcPSyAQCAQCgUAgaBOdLlAP\nHjwYzs7OGDNmDORyOaKjozFv3jwAwMsvv4zs7GxMmTIFM2fO7OyhCQQCgUAgEAgErcYqEVi1S+UB\nwNq1awEAO0XqrkAgEAgEAoHAzrDjtBmBQCAQCAQCgcD6CIFaIBAIBAKBQCBoB0KgFtyQoqIDmDp1\nKiQSSYOH4yFv9O80PTw8vK09QIFAIBAIBDbGTVTFUtB2KtB8m29HQofm2paXlDja3ysQCAQCgaC9\ndLqFOjExEcHBwVCr1RgwYECd595++224uLjA39+/prSeQCAQCAQCgUBgy3S6QF1WVoY777wTRUVF\nqKqqwqZNm2qeS0pKwv/+9z9MmDABS5Ys6eyhCQQCgUAgEAgErabTBeq4uDhMnjwZAODr64uLFy/W\nPHfp0iVER0dDLpdDpVKhpKSks4cnEAgEAoFAIBC0ik6PoS4sLERWVhYWLVqEkJAQyGSymuf0en3N\nv9VqNQoLC6FSqeq83jET4axH3flsbm7b+py1XttxY2puDYr1aTnEXFoWMZ+WRcyn5RBzaVnEfFqH\nTheo1Wo1/Pz8sHDhQtxxxx3IzMyseU4qldYshOLiYnh5eTV4vdHYdMKYoHVIJBIxnxZEzKflEHNp\nWcR8WhYxn5ZDzKVlEfNpWVqjnHR6yEd0dHRNwmFWVhYiIiJqnhswYABOnDgBnU6H4uJiuLu7d/bw\nBAKBQCAQCASCVtHpAnVmZia2b98OT09PlJeX47nnnsPAgQMBAEOGDMHs2bPx9ddf1wn/EAgEAoFA\nIBAIbBWJ0Y58A8KVYVnEfFoWMZ+WQ8ylZRHzaVnEfFoOMZeWRcynZWnNfIpOiQKBQCAQCAQCQTsQ\nArVAIBAIBAKBQNAOhEAtEAgEAoFAIBC0g04XqI8ePYrY2FiMHj0aL774Yp3nFi5ciEGDBmH8+PF4\n5513On4wlZXApUuARtPxnyW4MSUlwOXLQFWVtUciEFgegwG4cgUoKLD2SOwTrZbndVmZtUfieKSn\n8yFontJScUe1F6MRuHYNyMqy9kgsTqfXoQ4LC8O+ffvg5OSEBx98EAkJCYiKigLA4O9Vq1ZhwoQJ\nHT8QoxFYuRK4eBHo2hV49VVA3unTITBRXg4sWgTk5ADDhwPPPGPtEQkEluWbb4Bt2wA3N2DhQsDf\n39ojsh+MRmDNGiAhAQgO5lnh5GTtUTkGp08Dq1fz388/DwwaZN3x2CoVFcDrr1MQHDQIeOEFa4/I\nPjl8GNiwAZDJgFdeASIjrT0ii9HpEmRAQEDNvxUKBeT1hNhXXnkFXl5eWLlyZU05vdosXLiw5t/j\nxo3DuHHj2jYQrZbCtJ8fkJpKq4da3bb3ErSf/HwK0z4+vDQFAkfj7FkK06WlQGamEKhbg8EAnDvH\nOcvIAIqLAV9fa4/KMbh8GdDrAYkESE4WAnVTFBZy3/r6AomJVPJER8LWc+ECIJUyQuDaNSFQW4Iz\nZ84gJycHvXv3rvnZvHnz8Nprr+HSpUuYM2cODhw40OB1tQXqdqFUAg88AOzYAdx9N+DhYZn3FbSN\n4GBg8mQgLg546CFrj0YgsDx//CPw4YdAv35Ar17WHo19IZMBf/4z8P33wJ13UvEWWIYxY8xGjNGj\nrTsWWyYgALjtNuD334GHHxbCdFuZPJlKnJsbEB1t7dFYFKvUoc7Pz8ddd92FLVu2wL8JK82YMWMa\nCNSivqJlEfNpWcR8Wg4xl5ZFzKdlEfNpOcRcWhYxn5bFputQ63Q6PPjgg1i5cmUDYbqkpAQAkJub\nC51O19lDEwhsGg8Pb0gkkkYfHh7e1h6eQCAQCAQ3LZ0e8rFlyxYcP34cL7/8MgBg2bJl2Lx5M9au\nXYsFCxYgISEBBoMBK1as6OyhCQQ2TUlJAYDGNeWSEuF+FAgEAoHAWojW4zcxYj4tS0fPp0QiQVMC\nNeBY36VYm5ZFzKdlEfNpOcRcWhYxn5bFpkM+BAJBRyAX4SACgUAgEFgJUXhZIHAIdBDhIAKBQCAQ\nWAeb6pSYnp6OW2+9FbGxsdizZ0/r3linY3MQgWNSVsZaqQKBwEx5Oc8+geWpqGC/AsGN0Wo5X4KW\n48h3mk53U3ag7nSB2tQp8eDBg8jOzkZCrSYey5cvx9KlS7F7924sWbKk5W9aVAT84x/As88Cv/7a\nAaMWWJXvvmPnxGXLWAxeIBAAR47wzPvb30Q7c0tz7hy7Br70EpCWZu3R2DZpaZyn558Hzp+39mjs\ng+3beactWeJ4ikh+PvDXv/JsOnrU2qPpVDpdoA4ICIBTdcvY+p0SExISEBMTAzc3N6hUqpoyejfk\nyhUgPR1QqYDWWrYFts9PP7Go/sWL7JImEAiA/fvZHCEri40SBJbjyBF2ZywqYodLQdMkJrKLoMHA\nttKCG/Pzz+zSnJzseArb5ctAdjbg4gL88ou1R9OpWC0psbFOifpa7g+1Wo3CwsIGr1u4cGHNY//+\n/fxh9+7stFdSAkyY0NFDF3Q2kydTaIiIAIKCrD0agcA2GD+eIR+BgUCPHtYejWMxciTbI3t6srOl\noGn69QO8vDhfMTHWHo19MHkykJPDfRsSYu3RWJaePWkA02iAceOsPZpO5YZl8woLC3H48GGkpKRA\nIpEgLCwMMTExUKvVbf7Qpjoljh8/Hvv27QMAzJgxA5s2bYK7u7t5sM2VL9HrGcfl4tLmcd1s2FV5\nnfJywNmZh7aNYu2yeY5UUs+u1qY10WgAhQKQN59fLuazDVRW8rxRKBo8JeazHlVVtFArla1+6U07\nlx10p9nEfOp0XBMOII9ZpGzewYMHMX36dIwZMwaff/45UlNTkZKSgs8++wyjR4/G9OnTcejQoVYP\nrrlOiQMGDMCRI0dQVlaG4uLiOsL0DZHJHOLLEzSBq6tNC9MCgVVwcbmhMC1oI0plo8K0oBEUijYJ\n0zc1jnynyeU3pTzW5Em8detWrFq1ChEREY0+f+HCBaxbtw6jRo1q1Qc21ynx5ZdfxkMPPQSNRoPF\nixe36n0tQkUFcOIE4O0N1ApFEViIkhLg9Gm6uMLDrT0agcA2EOdO60hNBa5eBQYMANrhKRVYiJtl\n/VZVAXFxzFuIigIkohwpkpKYhDhkCK3tNzmiU2JtPvqIyQJyOfDqqw4fl9jprqEVK4D4eGquy5YB\nvr6d99mdgAj5sBw24bbsLEznjkIB/POfHXLuOMx8FhYCr7zCkmORkTynrYDDzKcl+PBDFgNwcuL6\n7d69VS+3m7n85hvg669pVX75ZaB/f2uPqFE6bT6Tk4HXX2do1MSJwJw5Hf+ZVqA183lDX2FFRQW+\n/vprpKSkQFdd71QikeBVKx1kHUpxMS81vV7UtO4ICgooTFdV3ZQ1KgWCRikqEudOS6ms5MPVVZQK\ntBWKiihMO3oviKIihpbq9VTobnZMNfCVSiq6ghsL1DNmzICnpyeGDh0KZ0c36f/pT3TnBASIzO6O\nYO5c4Mcf6Rbs0sXaoxEIbIMHHgDc3VmtQ5w7zRMQADz+OEPHpk619mgEANevSsUKTH37Wns0Hcdd\nd/G/Hh7A0KHWHYst0LcvMGsWSxbPmGHt0dgENwz5iIqKqtN8xRJkZGTgjjvuwLlz51BWVgZprcD8\nhQsX4ttvv4WXlxemT5+O+fPnmwdrSVeGRkONMyDAHAtVXMzC9OHhDEcoKQHefZfa19y5QFiYZT7b\nRrCqq62qCvj3vznfDz3EGKwbYTSy1JCbGx+WoKICSEjgOggNbddbiZAPbGM8NgAAIABJREFUy2E3\nbuAbYTSyJmt5OUM7ADY8kEpZPz8yslPigO1yPo1Glsv09ATOnAE+/ZSxq+PH82zu399qSYN2OZ83\noqyM992VK8C8ee0XjnNygJQUoFcvCqFNYJNzWVLC+OBu3YB6xRPqkJYGvPcePa/PPsvygYD5rnJ1\npbLciXT6fF65Qm9R7f1YUsJ5yc+n7FQ/Zyo/31yW0saxaMjHyJEjcebMGQwYMKDdAzPh7e2NvXv3\n4i6TxlcLiUSCVatWYYIl6knr9VzUPj51D96SEmDxYl50d94J3HsvN8CKFcC1a9wUK1bQCpKYyM2y\nYwfw9NPtH5OAXLnCJgBeXsAXXzQvUJeVUSA5eRLYvJmH86uvWiYG+8MPOQ5nZ3atCgho/3sKBCZ2\n7AC2bAFyc3mxKpXA998zuamsjErckiUiwakxPvsM2L2be7KsjEr4jh1s9KRU0kL94IPWHqXjkJDA\nrrS5uewU+cUX9Jq0hfJyxtcWFFCYWrTIfta40QisXMk7ytMTWL6cgjFAQ1xxMYVsiYS5D5mZLNkb\nF8dYYgDYuxf43/9ouf/nP5sXyu2ZK1coS1VVAbfdxj4g3t7MlUpI4Lz98AOVDRPx8cDq1eZY9CYK\nX9gjTdZs6d+/P/r3749Dhw5h6NChiIyMrPlZe4VrpVIJz2Y0k1deeQWTJk3C6dOn2/U5WL+eLTCX\nLeMXbiIjg8K0p6e5NabBQOHbw4MbpqKCh3ZxMVBaKlyxlsbfnxuvsJDZ+k1x5AjwyCPAiy/ygFep\n+JrkZB587SUzkwqTVktFSyBoLUZj3fOlNseO0QItkfBMKSoCvv3W3NE1J4eKf1IS13plZeeN21ro\ndPybTVy9Cvz6a8P9d/QolebMTApoP/9Mj5Zez7M5M7Nzx+3ohIRwfWq1FIaeeQa4dKlt71VRwe9T\nraaXwdYs0I1hWofFxVxbHh78G0z5PsXFFI5feQXYupU/69WLsoOzM63ZBkPdaiBFRaxK4yjU36tF\nRfx7nZyAbds4N0uWsAukmxvXUn1PR0IC14NWy3OvOfR6nhd2QpMW6m3btnXmOGqYN28eXnvtNVy6\ndAlz5szBgQMH6jy/cOHCmn+PGzcO45rqxKPX8zILDmYrzMJCfskAQzeMRsbzTpvGTSCT0QK9eze7\nPTk5AZ98wo3i7Q2MHt0hf+9Ni6cnLRj5+U2HWly9CrzxBjXa8HC6lLRaCh1r1gCxscBTT7Wvluec\nOczcjohodXa6QIDycuCtt7hWH3uMHfZqM2MGFfvYWMYb7tjBy7aqynzmpKRQ6dfpgClTGALlqCQn\n0/qnVNI65eQELF3KeYyKogHExB/+QCvf0KEUcMaMoXATHc1KTH/8o/X+DkekSxe6519+mffjmTO0\nVPfs2fr38vamIeToUVoubb3ecn4+75qyMq7DZ5+lfHDLLfRwA4wVNnm8jx4F7r4bGDEC6NqVHnAX\nF2DhQv7ehAm03kZEOE4pwdxc817t35/Cc1QUZajMTOD33xlHn5pKYXrZMv5u/U6Qo0cDx4/z/Bs+\nvOnPy8gA3nyT9/1f/mIX93OTAnVYdbxwfn5+g+dUKlWHDcirOgapZxObuLZADYBaY1ISheTabhWZ\njAt+61Zg7FjzpjA9J5XyQL52DcjLo7A9aBAfAAXw8nK+Tq83a9gGA7Uytdr2DwlbR6XioynKymjZ\nc3Kil+Cxx4A+fYBHH6UQfvQov0NfXwoo5eWtj0cNCwNeeqldf4bgJiY5mQ9vbwrLI0dy3Z49SwFl\n8GDggw/M7u477wQuXAAGDuS68/UFfvuNwrRC4fjZ8ocO0WJZVQWcOmVWkl1dKdTUZswYXr4SCZWQ\nd9/l/n/mmZuyaUSHYjTS+p+RwXvUZKkePLjt7zl2LB/2gEZjrh6Tn09BMTTUfD/p9ZQ1AgIYxvLo\no+bXBgfzv6dPU7H29OQef/99+wlzaQkajbkbtWmvyuXAfffx37t2mcM33d1p4ff2Nr8+N5dnZWQk\nlWqg+fk5fZqymZMTzw17FqhNDBkyBKmpqTWCbkFBAQIDAxEYGIiNGzdiaDuzXesHe5eUlEClUiE3\nN7emTF8zL+YXk5LSMNYJoOZ0550NvzSZjAf1gQM8oE2JBJcv020RFUUN88knqXVNnMjXGI081OPi\ngGHDeLA70oaxNQIDefF6eQGTJ5vrfo4axQ3Wty+/99JSas6ZmRSwb7utdZ9z8CA15ilTrJ6l7uHh\njZISUQ7MbujalZdsdrZ53f3rX8y9cHfnmVRbyUtN5WumTKEwvXo1Lw61msp8I3klDkVlJfcuQIt9\nSAgtmYmJwB13NPx90/nq7s7LOzOTD9EYyrKcOUMFzxRSExlJa2v9akzHjvG8HDeuZYnk9kJwcN11\nuGkTY/UjI2mx37UL+PxzygELFlBGqM2xY/RuG40UvGfMcDzZoEsXes/OnWt8r06Zwvl6801alF96\niSExAPf90qUUkIOD6Q2obZDU6Wj8zMkB7rmHSl2fPrR063R2U1XlhgL1pEmTcM8992DKlCkAgN27\nd+Orr77C7NmzMXfuXPz++++t/lCdToepU6fi9OnTmDp1KpYuXYpPP/0Ua9euxYIFC5CQkACDwYAV\nK1Y0/0amLHBTrFNFRV2BGmh6Uc+Zw8tLreYmAWhJKi2l5aR3b7p7brnF/JrSUgrTXbtyA5WXW67a\nhKAh5eXcWN26ce5NPPYY3cGm7+7aNbrZfHyAX35pnUCdl8fERBcXm7AqUJhurpKHwKbw8GDMYHm5\nOWM9M5MCoEZDa7VJoM7PB/7zH/NaW7KEwnTXrlzDs2c7fqvrq1fNHdWSkrjXxo3jozni4ugdLC9n\nDKYQqC1LQYF53Xp5UdGr744vLwfWreP3d/YsjUuOUkq39jo0Grk3Q0K4T3Ny+JDJKNwVF9d9be15\nkclY0MARkxAlEuDWW/loioQEzodczj1rEqi1Wno9PDxoqdbr6wrU8fFMiFUouM+ffZb3/qpV/P9O\nrpTSVm4oUB8+fBgbN26s+f/JkyfjpZdewoYNG6DVatv2oXI5fv755zo/G169edetW9fyN5JKOfE7\nd3Lz13Yv3AiJhBfg779Texo5kpsgK6vpsmzu7nRDHjjAjVdPeDfF2SuVLR+GoGm0fiGQ33c/pInx\ndetcSiR1v+uwMLqDrl6llaExysqY9OXjQ3e7SWh2duZ3XVzscGURBZbFFPklr39qOjnxYWLuXHq6\nBg5kTGFODivUBAeb11q3bhRcYmK4LqdMcXxhGqBn0HT2jxpVE0oulYLu4EuXGGZgyncxERPDZCi5\n3LEso51AZSWXp0QCekiSkujtCwoy/9IttwAzZ7I6xahRjSfhKxRUDnNy6JVpsBEcBImEnu2tW+k1\n8vcHpk83hxRWW0tNuchOcrl5XgIDm5dDsrKoRPfqxTPAATAYqGc4OYF78+efOTExMeZfUqloCDt4\nkJbugwcpc5kUMpWK66uqqm54bn0DqY1zwzrUkyZNwsSJEzFr1iwYjUZ8+eWX2L17N3bt2oVhw4bh\nxIkTnTVWy9dXPHoUWLuWO2PWLGpeiYnUTJtqPGKSmmtOKKLXs+xiXJy5El9bMBjMlXjuuKPu2rI0\nlpjP0lLKDq6uwO23W04m+OUX5oR260aP2w1DJmtON6fGn9+wgW8qlwP/+EfdUj2ZmQwb6tOnXTWB\nLTGf7ak1LepQdxxpafRkVlU1zI+5do3e4T596t4hALguX3nFXE3mL3+hV8S01jpJC7eZ+TQaaY0C\ncKyiP9ZvkMDfH/jr3CJ4vL6AVv0uXegSlkiQnc3Q9K5dgfGjdZBIJWaPohWxmfm8AV9+yapl0dHA\n07M1+P2hd3Eu0xOT+qYjdP0/Gs6lVsszsqn8oNxcKj0RERa7nGx1LrWlWuz4SYGKSgnuvLOukbSy\nEnj7bRqw778fmDykel4iI5sWqA0GhouYeimsXNkhHu7OnM/SUhrk09PZb2nECNRYHpJT5di3j/px\njQ6ckMAwOKORnuTaZS8vXqQVe+BAmzIuWLQO9ebNm7Fo0SLMnDkTABAbG4vPPvsMer0eX375ZftG\nam0qK/nFSiT8t7t73RCPxpBIGr38cnMpTHfpwgvgD39oW87i2bNMbJdKmZ80b17r36Mz2baNB7bB\nwPN11CjLvO+PP9KBkJxslnWbxZS82BQVFeY4+PolzgID215vVXBTcPIk96NCQYNybYH6vfd4Rx44\nQAXQlKNUg8lEqNMxbrq2MtfEeeKwSCQ1ZTJ/XkYd4/p14OIFI4aa2hhXVNT8+ocfmsN6Q0PljlSy\ntsMxGHgXdenCFJHE4UasT4iBTGLE+biuWNGYkNDcGQpw/Vqi/r8dcOSEE77cwiUrkZhz7wAq2ElJ\nNNT/8AMweXIL5sVoNJfj1Wrrlo60Uy5fptPD05Nh5iNGAJDJYDRS4dBqmXO9cmV1qlpVlVnmqrXP\nAThEPeobCtR+fn549913G32uqUocdkNMjLnm9O23m3+u0VBLb4GWVFXFQ//cORqcrl9nI6+2FgBR\nKvlanc4+wrNdXXlwSySWTbzv1YvhU35+TSj8paX8wJZaqx58kAdeYGALpHOBoC5RUbw49XqzteX8\neTb7PHuWoYFubo3IIxIJa6jv3UvrlR10BmsP584xTLxrV+Z0N9AVjEbuXXd3jBolwYcfcluGD/YE\nvJ9jctz48TXeP1MpWyenm0vvsARSKYts7NvHaIV3/+OK4i594aIpgGqEJ+84jYZn6I0E6ZsQZ2dA\nbtBCYjTAza1urHhQEBWVPXsYEZKQ0DBPsQEyGRP1Dh7kIdJM90h7ISyMd3RenjkqMzubRoZTpzhP\nvr61ooMGDAAefpgx+43lOul0NEDYg/DTCE2GfDz//PNYs2YNpk2b1vBFEgm+//77Nn1gc23H09PT\n8eCDD6KyshKLFy9u0C3Roq6M9HTgv/+lWfWhh8yn9YkTXA0eHsDf/94wlq8e58/TO6lWU7776195\nZ7Y1r81oZNRJXh7DwjuyOpQl5rOqipEzLi48IyyVz7d2Lb+KqirgueeqNV8T27axdnR4ON3pTSXG\nHD/OrnS33EKFqYOTDUXIh+WwRTewRgMYsnPhtuVjwNUVq3IewuUsd+TlsSjQhAlAjx6NvFCnA955\nh7fupElW6e7XWfP5+uuMbikpNmLhsO3onh/Hm3bwYB5uH3xAE39MDPDUUygukcDZuWl5rrSU2zgg\nwLb0YFtcn41hNDJkd9UqCjYFBZRnBg8GPNPP8sLKzGQokpXqetvqXBqupSHnL8th1FTCZ8kLUAyo\nWwHqzBne/V3d8zH+6se4bbqCk2tlQbmz51OrpU3S9Gd//TWvXY2GSsYjj1DBviGlpaxdnZ7OOJrs\nbNbyfuABq5bMs0jIx0PVzQVesnCN3ubaji9fvhxLly7FgAEDcOedd7av/bhWS/PR5cvMnq+vPn7z\nDWN2Dh6kmTUqij7dQ4dYi/PaNUrLNxCo/f0pTBcVUW4zVeBrKxJJCzRdG0KhaEOYh9HIBKP8fFqj\nGqlF3acPBWo3t4Z14fHzz5z45GT63ry8WKrs6lWW3Jk6lRO5YQMl/S1bWObQ35/a75kz1WYxUSlA\ncANKSykE5uXBZe5cxnXExwM6HUb06Y0zZbfCx4c5S41GDeXlAfv38+HsDHz1FfCnP5ldWHo9JR43\nN1qw7bzUVlQUQ0mD5VkI+u1rIEDNxjbvvmv+b3g4EyQmTIBHZGSz7+fu3kQBkGvXqMkPHOgQruKO\nQpKZgR6f/Qd+yRORpxuMMROVGD+++snPD/COAxgI6+JCq6Fczvvz9Okbn5NZWbQA9erVyEFt45jW\n0IAB3HvXr1OY69cPcHODNOksApRFgNoZOHYYSE8FNm5kMt38+QgJkcLXFwiN34PexlPAUQMFv8ZK\nyjkw9XOye/bk8Ramv4z7IwrQNXAAACfGxZ45Q7P23r1cN3/+M+d//34eHFevUub66itK6S4uLGH4\nz39a6a9rHU0K1Kb60k12ImwjSqUSyiZ8dwkJCYipzupRqVQ1Nalr0+JOiRcv0hLi4cHMjPpSateu\ntHRevsyYDYWCsQUaDTMNTBmnN8DLy9zwLzCQcdR+fi3UyG5CsrOB7H2J6LV1PRTy6rKHjz/e4Pcm\nTuQZ7ebWSO7LlCn8Tnv25CG+dy8FnStXeEGo1exMFx5OH7SPjzmj5NNP6QNVKoFFi5pOPhUIAF4A\np0/zYN++nXXKq0t9jJwZgC4qHjFNKtLvvMN1eeoUb51u3ZB6Mg+5Ej/07w8odmynwieTMfu2seoK\ndkR0NI/O6D4quPzLkybRfv14UZpcWXv2cD++9BL/9taWXtPrmSFaWsps0FWr7KasVqezdy9U2Zex\nKPQqsif/GcWDxuD8+WrdbfRoGh2ys7mmN2+me3X0aAoxe/ZwzS5c2PiFptczwSw3l2fuypVWLaNn\nNPLar6jgdd9s2KXBwPEWFzP49x//oHW0tJSVPf7yF65bT09zFbAHHqB8EB8P3H47fPr0YePAn4IR\n8L0EkMjqVk6xM4qKKPp0796+fNOBA4EVc1Pg/vYSuP5QBeim0Cv35ps0Vup0NBz4+XHNlZRQBjP9\nvLCQlR127+Z821E1lBvGUB86dAiLFi1CSkpKTaMViUSC5ORkiw9GXytIX61Wo7CwsFmBulkCA831\nqU1tw/PyeDnm5/MgVyq5aaqquLEyM3lIREXRat1Y8O7Zs7SujhxZc/mp1Xxs3MhCEs7OwOLFXC+H\nDvGCGTSIym+XLnZXCcZilJZS+XBLkeD+VGBg/6Z/VyKpPsPz84GTV5npde4crcy3306zlbMzT83g\nYGZGmIrGazQAgOv3vADF1UsIGNqFdcO/+IKXh4cHLTAFBTCeOo3LxwtwfdCdGDHV02HKqgrawW+/\nUaAYOJCanYsLz4jevVEVOw4nrgVD4qzE0D5h6FYrhL/sqx+R9n0cuvZUwLksn2u0pIQb3scHiIhA\nqc4Zn/9fPM6rh2P8NHc8qM2jMG06g+yYCxeYRC2XA3fc4YY/PPUqtCfjEaIuh6SqiuepSbk1tba+\nfr3x1tZGI7+DTZsY+/a3v9UV1upb8nNz+V6RkTflAWs00qOXl0dbgpsbeOBqtUBCAlSlpUgMux3v\n7QVcq4qw0P99BLmXAB9/TKXkyBFAKkVBqRy5F4HuWbmQmZLnsrKoFPr41DVMGQw8a02Zpf/+N72D\nVsqtSkigjGwwUPadOrXh7+Tn8xHeDZABSC/3xKmiMPS9oEVYRQUnLi6OAuDgwcBbb/GFTk68N0pL\nKfitWAGMGAH1/fdDXZUK3DKcMV/dulEI8PbmXNmJx8lg4J+UlsahL1/e+pyFigoqNFevAj4FVbhF\nXw5cvES5KjKSsSB6Pc9VrZYegvvvN7+BXM6woylTuKZiY7mgTbWs7YAbCtSPPvooVq9ejSFDhkDW\nweWKasdTFxcX13RnbBM+PizOXlDARW5KO01Joebt4cGL7N57+fyVK7RcBgfzwC8t5f/37m1eWRUV\nLHgvkQDHjsG4Zi30CueagHtTZazKSt6NJ0/yPjAaKVRnZ9M7+c47jlvCszk0GsoX+i598XHpi7h3\nQBmi/zAITabDaDQw/vkhGC5egszDnZvSyYmW5fpaa79+tA6EhgKjR+PYMeC991wgkfTHfH9gwGef\nMbREIuFrBw4EKitR8MFnyDgnxYUdGqSXP44//amjZ0F0Q7R5PvuMwtuvv7JD57JlzOoKDcWeXRJ8\n8mMv6HTAmCxzczBtYTmWLNIjvfJWzN7yOsYGnINk/35aZS5dYihSYSEq/7sdU08vwz1VhTgrfQH4\n13QeGLXq29orGzfSQaRQUO+NO+6J8kNuGKZKxfQ+R9Fj1d8pzSxbxlC7Hj0oBTUmgOXlAR99RCvE\n+fMUqk2udFO3umPH6C6WSGjBKCrief23v9Fr9fXXjNV+4AG7EWzayvnzwJo1lFeuXQMenWOkMBgf\nD11hKWRjR0F9cj8kAXfB+WoSjl6qwqS+BXA7doy9HPr2RUGVO/65fThKSoFbBz+Ghwd9Sg/g8ePM\nNyoooCXXlAOgUDDhdudO3pVnzpgbvrQ1K78dFBRQL1UoqAPUJzsbePVV3kNTpkhx34sLsPAxLa5W\n+CPgf25Yd8+DcL0cD3z7LX/5yBGGCo4ZwzfYsIFr6tQpSp1ffcULHuC9068fcPgwFRSFAvi//+Ph\nYAfo9axU5OFBA3FlZcsE6oICGuy7daOx+ccfuXUH9O+BBZ7jMESaDPj6Qr9oCaQVFZAUFXHfymTc\nk5cvA088QSWlqoohoKYPtsPqWzcU6zw9PXFba1s5t5D6gd4DBgzAkSNH0L9/fxQXF8O9vW48T08+\nduxg3G1yMjdC7cP10Ue5Gs6d4+Ft6twQGAhD3AnoEi/CaUi1Vi6ToUrmjJLUAigCvLB2hQyXU9l0\ncdQo5iNs2cJIg8hIcyMwg4H7TC6n3J6WZldejGa5epXKQ9++dQtumCoEOTubp9vPjyFTP/wgwUX3\nwXj3FHDXnuqa3UYjJyohgWEZfftCGzMW54+UIBXDMCjzGEJ6S/k79cvtBAVREVKrgbvvBpRKpKTw\nLfV6Gq8HDBlCAalHD3Nh68REGCCF1KCD1skNbexT1GpEN0QbZ8gQxvT5+3PR1so4LyriEk1PB7JP\npSHggw3wv8sdxscfR4Y8FH6aK0iTBMMgOQ+ZwcD1NnYsX1xQAK8ffoRcloZKyHFr1S7AMImNYBwA\nkwE5O5vylKbMiEv53riYH4vEkm5YWuaGgN7+DPUwXagREea9X/sA8fBgJuKVKzzD3d25mTdt4g3+\npz9xrwOUnoqL+ZrUVL7Xpk00qvz0ExNBAwI6f0I6EZ0O0OsMqKiU4PJlCSrK9HBOS0OcZCjW5dyP\noN+AFwftwdwrC/BR4XR8WTkJqecvY94TYRRgbrsNOReA4q94jCZleQHLnuObL15MaUuppLBZO6k2\nMpJC97lzNEIFBVlNeRk+nMultBSoX0vBaKTC99NPDOFNSgL093TB7zns+XUtDyh/eyJcp0+ksex6\nGvQKJeS1ZZTISOBvf0Pamq+Qu/sE+qbnQBERRkUiMJB3SlkZL3q9nlJpbQwGKuunTtESO2xYR09J\ni1EoeAz99BNlmZbmVb79Nufcza2meA+uXweqdFLop9wOGI7jaGY3nE71wK3F1xBuLIZE6QxpSTFK\nVMG4dEmFsBI5vEz5cqWlLApRWEhB285CMpsUqOPi4gAA48ePx4IFC3D33XfXiX0e0sZuVc21HX/5\n5Zfx0EMPQaPRYPHixW16/zqUlrKd5X//S/eLXM5FHBtLt05ODv0c8+czC27ZMt6Yp06hauNHOH/V\nGR8s9cXIqeUIST4Arbs3Tjr9FQZtEtKK+6DgogIBAZTXR41iiELtHM7qbu01JWjPn+e57uRk9ngW\nF/MgsMeSUMnJwNKl9N7MnMna2yY2b2YI1NChNICYDBYTJtBQvHo1v46SEiA5vgyF/1yJMOk1eLtW\nUOnZtw+ZoSNx0XMYupacRVzgDIRM6M3DOzUV+jOJOOY7FVI3V0RHB0C6eDFdBH2ZiT1uHOdbLmd0\nDtSP0gfo52cundK3L7yevA9+356Bb2QMekbxe2rWe1BWxpAAHx+6BB3c8nXTUVbGBTp5MjMNawnT\nGRk8TvLyAIVcj34p2yHBBZTtLEXwLb1x++Qg7IgbCv8ZSshkPsBddyFN0gXn9/L48ff3gnTcGKjP\nJgBeXtD1CMV3+9UwKJgLZq/hRuXlvFRjY5nrbTSaCnnIkIlAdJFlIFUVhc++c8OfHzDAp6yM1ua+\nfbmfX3sNxsNHcDryHii6BCBybDAUMdFMYty9m8LKiBEUlvfsoYD93/9y/wFUfGbNoiV12jQeNgMH\nmhsDOHipQqSmIuyDf2HEXg9s1PwZZaVd8f4GOV588knserkQrr3cEVD0O1LPlsGtewDuzvsGa7q9\ngSOufTFWpUZ+dfON7l11mDRCg4SrKjzwQK33f/RRc0fhxnKW3NxYEeviRbPHoJO5eJHhlcOHN56G\nUFZGIToigqFJc+ZwmfTuzbXr62tOrNMvexMnZq1AXr4R2oRwTB+l54LWapEh74KF3w5EhWIUbu09\nArPdttCq+uSTlC0UCiodanXDutTXr7P2pq8v168NCdQAr92AgJZFTFVVAUd/qYDzwQMY4OGCJHks\n7rlHiq+/5ta+805gyMRuwJhl2LFMidKyCyjLKMG0qm+g16gQ0E+NVYWPI1U+Dr6vafHGGxIo3RUM\nyY2LM+esPPXUjQeTk0OPVLdurAxhxTu5SdHhpZdeqi7hRY4fP17n+X379rXtA5tpOx4SEoI9e/a0\n6X0b5auveCCnpXG3REdz4UuljLz/8ENqkvv3c6edPAl8/jlgMKBUI0NRhROSTxfjzMFC9KgsxyOe\nn2F/8BpEDLsVBXlMRCrI1ePR4WeA864NYn1cXChoAtzkO3eaIxMSE5lLo9PRRdcZoQaWJj/f3LMi\nLc38c72e0x4ayr2Rn1/3bBkyhAp6YSHvv3VzL2FcYjJOOHliTFgOnGQyQK2GX78AnL53KX69mIHY\ne4OBWU48kP71L/xSEYP/VA6CMbw7nnpchzG/reepOmUKcP/98POjd9KMrGFijUYD2Y5t8CxT4JdN\nadiR2A0TJ0lRXeCmcTZv5nqRyejSs6P4LkEL+PZb+i2NRlqkal16CQn8sZ8fUJpTiWInP6hQAXlx\nPgz7DyD+p5Ew5uZif5oG4//ojqreg7Hsn9TR/f2BN1/OhWzXLr5BWBj2xPwDX26hJq1U1i2Fby8Y\nqyMLTM6/oCBG1fn5UY4dM8UVZ870QJWEMb7+107iT5nv8pcUCmoaZ8/iVLIapw6dQE+PHKTvdke3\n9dXu8tpauo8P37SwkNK7CYmEynLtoNmnn+ah5O/fdmvF+fPUFvr3t90YPaMRWLUK0m07Ea3php2G\nMdAU+iI11R0YNgyxo/fg9w2/wqM4CW9JZkCS5YHYgSXIL3CB3N2T4UwBAAAgAElEQVQFzz4LdA01\nIladgKer1uDPWi0vo6hacxkSwiTwnJymK3mEhvJhBaqqeJfq9bR1rF7dsIyxqyuv/2++4b29YweX\nXnQ0l6KzM79qDw8gv9INZbkV8HfRIuOD92AYMA3SD94H9HoUZHiiMv1huCgykHbPZODRAVT4TNpw\nfDxd1JWV/HdQEOctOZmS/KlTXEuzZ3f6PDWHKSJWo2E0Vk0jlibYvh24umo7RqV8A7VagttmOuNc\n1TBIpfzT+/evdjj5+2PUyAJs2qZBqVcM7sz4EmVKb5wMnIKMiOnwLExD/o+nUCH5GcpFL/KLKynh\nl9nS6j2mWDOJhN9FWJglpqRNNHlK7N+/vxOH0UEoFJzk/v0Z/D5pktlU2rMnLVGVlebYxX37eGgn\nJsLNTYZSpQ+u5Hqgq0chsst9oJPIMGNMHnJVnpg2jaFV2i3b4f7jFuCYjDWR+/ZtdCjdulGWN1FZ\nSQ+QXE7t2R4ZMIBTmp3NEFETMhkNGfv383fqb0y53KxoGAxAuV83FCt84KnLh/6xuUD/noCvLwrK\nPREdC4TOCsPAgaBpsLp1mr/UCQii5KtJL+RhZar4UTvRoTmqXc15OjXKtAq4uTGkq1m0WnPHxeok\nXYEDIZfzuwUAmQzp6bwD+/alE8vXl8fFPVN1OPeuDIVlMVA/Fwptcgqua3zhU3kJaYZeqLz4I4xp\nmaioCIOrK/e4MS2dSnt18rWTmp4So9F+rdM6HcO+vL0ZT7l6NXWSoCAKLO+/T5nW9LvO8uo9k53N\nCc3LA5ydUakFJHIZIJVAX1UdAlIfDw+GH2Rn37jkpVzevri6c+eYmaXX83AzHVg2Rn4+cPRaFEI8\nc9C96DiG+lxB3qCReOIJPj82Ih1DI/dg59lukMg9YAzrDu3UcETG0YErkQA9KxIw/PclgOEYLfv7\n9jXM6HN1tdk4RYmE+yc/n1d6Y6leUin7GSgUFLpNkYMaDQsGlJczrzUwEPBSG+DtaUBhgRRhEXpI\ndVU1b9LLLQ1j/M7h1/zeGDFS2lB4GzKEEqmpDGZFhTmX68IFWrMzMpjsbGO4uHCYrq437pdWVgZI\noYdMLkFICODXz4Dte/keGg11CFPH2Ekz3THs9O+oOnIMP+WNRpE+CHeGavHEH4Fdf72Au/rHQ114\nlZevqViEq2tdpbk5FAruU7m85Y3eOog2qd0nTpxoc8hHp3L33bwB1Wou/CVL+PN586hNv/UWT3m1\nmj+fMoV9v4cNg9OQIYj7LAza331xrsoX824vhO/o2RjzRHc41TJ4KCtyAHl1ln5RUYuHNnAg5b6C\nArpH7BEnJ8aNN8Yjj3D6Varm81OkUmDeq55IuP0NhIaWw2UAK6vo9cBbi3jfurnRAuFaWgq9izuu\neQ2CUavEuLGA16kPMfZKPn13SUnmdk0twc0N+MtfEHHsJCaM7I7LRdK6rs7GeOABril//yaVJ4Ht\ncuQIq2SNHg3cemsjvzBjBqVDhQL6/Qfx5n+LkB86EG5dvLFqFS03ej3g6uqB22dMBcpGU2PMzsZD\nhnj8dLgPHpT9Arf+3YHIYMybx2pxY8cCcoMTL9nycmDAAIwZYzae3nJLp06DxVAo6D7fsYPHZ1RU\n3UIQx49Tvigr4/NTZg4FPujP5LWcHF6aTzyBofsOIe+EN4xF6VBNCMK7P/WCbifPlzoKuamkUkdT\nVGSO/8rN7fjPayHHjnGuR46kMeO99yW4IH0ACv8pWPxGLl4Z1R9untUdfvPzgbNn4e6pwK2z/JFS\n3gWS3mF48GEZRo2loV8qBUp2FKJ3lQRIVfFvfe456/6RrUQupy0rIYHXQFPKqVTK8G+1mvfS0KE8\nyv/3P+oKJmejPMAHUf9+AZq4s3CdPAoI8KeUWFkJWVQUMhfroSvtgs1fytH/3KcIuHyYVv3YWKB/\nfyTMeRvf/yBD/3g33OlZBElxMT/Qx4dazMCBVquE0hQSCSsFnjrFod0ohnrGDOAH7TTIL7vAazTN\n/7P8WV4+NNTchMlgAL7aqsAF+QsIvL0UP+srILl6Ff2T9mFU5UEMf8MF2HgaCAihjJaXx7tVo6Hx\nqiWWhscfZ36UFb0kJprslNgcjz/+ODZu3NjmD50/fz7i4uIwZMgQrF69uubnCxcuxLfffgsvLy9M\nnz4d8+fPrzvY9nQA+uYb4PvvYTBKsL/7bGQ7dcEU3Q54TRnOwCsTFRU4ddYJG/4txZ49vDwNBnbu\na1TwzcujO8zDg9l1dtTC1RY6VB05wiIIvr60bEVGAs88w0Ny3jxa8iUSVkZxdzPiwtqd+P2/5xDf\nfSamVXyJUaGpdBG98ALjaZrbgElJDBkZPLgJaap9tHQ+O6obouiU2DxVVUy8cXNj7sLq1WbZLDOT\n4bndu7MwBBIToVv2Fp4/MweVMldIoqO5Bt3pvV2zhtEHL7zQiGu0ooLnQH1N0mDgIv/+eyYrPvFE\npyXLdfZe1+mAn78pwhdvpyE50wWZiq5YvESG+/5o5AXo7U1L3ZtvNqjd++OPzEuWyRiPed99nTZs\nM1otQwYLCzmAeoV5rXF26vX0cur1DBkMD2dYbteuPPaWLjVbBQEw7u6//+VaHD+eGeH1KStjAufv\nv1MTuu++Tq+lbLV7KDmZSRF9+lDbayL2Ni2N949CwXSrtWs5XdpiDdYHLkSvHtXtst99FwBzhiQS\nXktvvAEEX/mVVQkmTzZXqurAKiidPp9paaj6/Ctsjw/DbuU0PPaEtMbp/8MPnIPwcMrIzoYyGE+d\nxuPDTmG8TzybZlVWmq3Lp06xgERsbPVBbH0s0imxOdojTJ84cQJlZWU4cOAAnn76aRw/fhzR0dEA\nOPBVq1a1r0NiU0REAFIpzhaE4KOjfSE5dxZ5wV54JmU9BbH8fAZTRUXhu20shadW82IICaEnpzbl\n5fQKhoT4ILBWln56OjVePz8aM+0x2bCzuH4dWLeOZ8v58wxXPX2a51yfPtSYf/2Vc+/urAPSMuE0\n9VZ8e/A2XLoIRHTtg5FXDkDqqWbyUbUwnZnJQ7BPn3oJFu+9x9soPp7fuYNn/gvqIqvuu5CaWjc3\nFeAlGR9PYbtLFyA0KAhybw+8FLENvwXfgyFzzb1Ddu80QJmbgdQsb8THu2DMGCqFn33G+/Kee5wh\nk4LCysmTXGfV5w/Cw3moJCczX+P5560yFx2FVss9ffAgoL+QDUNuMXxLrqHfEA1OnuyL+6ZpaHy4\neJHmxEYCNQMCeL+6aXLR1V0KoJF+AB2Nk5PNJbZIpVybX2+uRHmpAfn5LoiK4v10330Upo1G2g2M\nRqBPWDgkzs4w6vQ4UtALuxcxTr9OLtz+/aybLJHQQiiTsUlWr16Ofz5u2EAX8alTQJ8+MHbtZp67\nPmb5+sABigd6PQXpUaMYFePhIcevmkEw/roTqV1HY2ge4ONlQJRnOtJPZCDMVQeVczSFw5aGL9gj\nn3yCkrjL8DsZh9DYSGzd2gdDhzIU7NVXec9nZ9NQJtXKEFB+DrGGg0CfaoHZJCSdO0fB6tln7TYG\nrk0CdVJSEnr37t2mDzx69CgmT54MAJg4cSIOHz5cI1ADwCuvvAIvLy+sXLkSAwcObNNnmDh1igpo\ndDRw++39IVm+HIpLMkj+Vgx9fjGcK84CA5VUnZYupTsmPBx6yevYvZt339/+RhdIcDC9lBkZdM9+\n8AGrdKhU1MBMieRff81Qqfh4hm43lchrNPICPniQ4XmmiiCOTkIC6/+Hh/PvLimhMOLhwbPN29ts\nZQkPrw6VNBqBf72Pa9/FIaEoDOVe/0CvXgroUgtQ5qaECqDJMSAARUVsHlNczPjtBQtqfbi/P78c\nlapGmrpwgQJWdLTjFwO42ZFK6Rq+fJku3trOpOPHuQ6dnSkUItQbhteX4vwXhTie2AWFe7lfKyuB\n28u+RtTR7ShRBSM88FUALvjkE3rLL16kUL1zJxC5+0NMUh2Bh6+SizIkhAvd1IXVz89aU9Emtm3j\n3zVhAnDXXRQ4dDoa30yNZv/5T6YxODkB3uXO6KvSY6DHRZR6hmLoMACffAJDWgaupcuxvdsc3Jbu\njO7d637O4MHA6/eegcdHq6HeKgV6Lripk3/Ly2kLyMgAHppwHbmbzyJL4oqzhT2RkhKIp5823zO7\ndjEsSaUCXnopAqOWL0dBtg4b3gqEhwcLp/j5MbbdzQ2Yf4snPEzWUg8PVrrKzaVF/s037crj2hxG\nI9fvyZPMc42KAuDvj+Jz15GQ7Ibf/+2OAePZ58ZopCfAaKTz2ZQD4FQrYsvLCygvV+D8wLtx6kos\nipUhyNkJPKD9BI+d+hZV5y9D0r8fnPfcU10X1nEwGunw//lnViea7ucHN9lZyFyUyKlQYWw0K64s\nXsyCCwDPhyNHgPR0Z8yU+aG8WAenpCRK2v7+PHxXrOC5OHGizSVttpQ2CdSTJk3CNdNMtZLCwkJ0\nrz5B1Wo1EhMTa56bN28eXnvtNVy6dAlz5szBgQMHGry+xa3HU1OR9ui/EeXmjW8vPIGhQ10RGOiP\nSD9gfvdNyFfpEaNNBB58mb9fWQmtswfW/9IfWwuM6NFDgrNnWZdx5EhqW2++ye/77FlaolUqbq7S\nUrMwFhrKODcnp+bbd+bl0SMXEEBD1cSJVo+n7xQ+/phW6FOnOHf5uQaMxQHE5uxFv0fuQPisW+pk\naJ85A2z+1IiIQ67wLQ5GF6TAUFAEiY8vvGQlUPh6AHJDTXfE0lJz5bP09Hof/sIL/PK6dgU8PJCV\nxbyjykoKVH/9a6dNg8BKuLszhLE2RqPZwSGVcu189x3www8qXLyoQmYm8PU3ZsuV8qoODwZIcUve\nNii2egIvvoiuXRW4epV6WmYmXfJ9S4uQWq5ElJe+Zn2iRw9WhyksbDgQG0ajobEgIIBzM2kS5+mn\nn+iRk0goUOv13IPOzkBgtyA8/qQGQwdPwtGCSCRfAS5cliI9JxIbzg9DhdQN2R8bsWjQVkrl06cD\no0ezS2rpWcDDyAP3woWbWqA+e9bsPflpWwVe6bUV353vhe7y68gePAv/+Y+53Pa//02FUS7nnTVq\nlC9c3Zlo1zPucww0nMTW1c/icFw3yGTAqNiRmPCyBxd3RAQvI1NR4Vqdi+2dtDSuX5WKysTYsYDO\n8xlUhpzBBVUQ0lJ8oD/JqCyJhOH9u3fztTt2MFpm1iz+fMMGcyUbo0SGIZk/wPtSKgKmzAFOnIDc\nUwW5sRyQVtFi5GCUljJqLSiIczppzUNwGTQIA119EebdBYGBtEY7O/PckEr5mrNnmZpwoNwLhQGz\nsMBnF1QpKZzon382C9clJcjN5Wf4+1NotxfZqEmB+rlmEhMKCwvb/IFqtRrF1S12i4qK4FnLLGjq\njNizmYD9Frce//57hEgzUHY9GX0CboFKRfeCRAIMfmYkq0X0HMPMBKUSePJJnNt+DUdzpsC1UoID\nBygUb9pEgbpnT3PHw/Jynv0bN3Jj1q4kNG0azyUPj+bj49VqCtwpKSyxaoXGUlYhK4taa0UFp92l\nMAO3Z30MiZ8PlLu/h/zButlZmzYB5RopfnGZinvK1uG4aiKGj/fBzLuALs73w/mIG3dddfHR4GC6\nP8+caSQ/UaUCbrkFOTnA/i0MBzEY+D2b5B3BzckDD9CqEhvLw3vrVl4CSUlcp6Yuy6dPA2r/gXA6\n+xZKu/nCKz4euHQJDz/cByNG8JLV6yl07g2bg8jQH4DbwihIm7CxhKSWoFRSpk1K4p8il9OzU1Ji\ndo27uvI8U6l4vo2bIMfEuZEoKgK+nM99Fq/5M/SVyUjzdMf1rCCMkxbw5vTxobYdG8vDcPRo1txU\nKOw3Y9NChISY4/6DRgcg67o/wnEVX0lmQpnOcASNhkpccDB/32BgaAJAwebVx9JguLwL7t28sGXv\nJWSUs2KHtqq6CpaJefMY4zBqVN2YKDvHw4OPoiLOxyefACUlSowYMQw55YCbM+9ulYpzN2EC5bt1\n6zi3e/fyZ198QV3YVGLPD9n4Q+Bv0Lm6wzPlS1qjP/2U8dLR0ebmQw6EqytlHFPUltJDCQwbBlcA\npgjLHj0YTeThwflTKLiGNRqgQB2Fi5pLOKEai7Hu7tQG1Wq6qEePBmbMwOef0zBpMFCOshfbQ5MC\n9ccff4yVK1dCqVTWqUdtNBqxefPmNn9gTEwM1q9fj3vvvRd79uzB7Fqm/ZKSEqhUKuTm5kLX3pJk\nkZGI6nUMheUu6Pv3oLp1KaOj+ajNiBEICBsB1SIgQkVXZm4uL1e1mnfg7Nm8RKZOZZiHszMtm7Nm\nmZObZLLGC8vXJynJnDx+6603T3+QkSMpqJSW8rz2jPRESIA3tmUNw+YrA9F9OQ14prKvvXtXx6v1\n6YIRry6BRsPSRgy78gX6zqnz/hIJNdrmmnuury5ZDdB1XVjI809wc7Jrl9kwFxXFS1WpZDiWry9/\nJpPxvC8uBnQ+ffGj+iXM8t4FqFWAvz+cnOrKJcuXA+XlwQgKetwhml9KpWxalZ5OK/Xq1TzDwsKo\nuBoM5h4sxcW0U5iqfSgUvISLioDgYFd0HR6Fwl+AUCfgwSfdgNUBNOv362c+CENCWIVJgKAghiot\nXgzs/k2FuIhFyFYD/lU0Hqxfz1A6lYpJc9evsxRc7Sp3nmFeQE9vID8fAwcCqWVc4w06Y9cv0+Ig\neHgAr71GS/XlywwFNBpp3Hn7ba5PT8+68/HYYyyx98svVFbKyqhUXrrEKZo8GfjjOBlU77pTwu4V\nyVq6plblDopMxvnLzOTarG8MvHCB82USovV6nqPPP0+l+rvvvCCXD0PwgmFAQHF1Q48CZiA/+igA\nfl+mIjstaTRjKzQpUEdHRyMqKgqxjQTTt9hK3AiDBw+Gs7MzxowZg8GDByM6Ohrz5s3D2rVrsWDB\nAiQkJMBgMGDFihVt/gwAwKRJkEdEwNfV1ZxcUV7Obzs0tNF4jGvX+CtdujCUbMcOxvBGRVEAHDqU\nls+PPqpbR7q+MFxQYK7iMnAgtTKlsu7Cu3DBXD8zOdl+NLD28vDDjG329qaX59QpN+Q9shgp60sw\nxDsd58/l4cQJH6SlMUchOZkKzG23NV9o3kRFBTdyWRnnu7Hu9VKp+bsbNqzpXgWCm4Pt2ymQuLvz\nDPD2ZgxlVhYjDtzc2CQoLc3cFOLnQ/fDffhY/Dk2GRK9Hno9LYXe3rxwPD0dLyb/yhUK0b17032b\nlsZIjXfeoX1i/37uKyUNVjU5fa6uzEW5fJkys4eHuRu4Wq1k4HV6OiVA02F69SrN33362I+/twMp\nL6eAkZfHu2P0aN5LM2fSyLNvH+c5KIjCtJcXUJp4FavXOSND74dnnnVH30WLgMxM3B8Ujl7x/J3a\njhNHwGjkHHl4NAz/zs/nXEVGMuovOZnLLjubxXe6d+eaNRlzZDJaYouK+L5GIw3QQ4dy7ihCBLAc\nb2Fhw9roOh0vMU9Pq5dzawv1z7TaKJXcromJnEcnJ8ZVR0TwodPxns/NZey/RkOhesIEFhlQKk3F\nZDyARYsa1Ja/b0YFehqvwbO7NyIimomdtTGaLJuXl5cHFxcXuNqQetDecjD615dCcvECpF6elJj/\nn73rDo+qTL/nTslk0ie9k1BCDZBQpEkVEHABC6CIrroqVhQL6lpgWVFUsK2NlZ8N14K6FhBXadJr\ngECAkIQaEtLLpGfK/f1xcjOTZNInySTc8zx5CJl257vf977n7VXfLT2d52HdOt74vDzm0/brx+4T\nq1bx9aNGsbWWUkmFERbG59Qe6PP668x5U6lorO7YwUP85JOWgtaMDOBf/+LvixZ1TEF1R7bNy8uj\nN0WsSpN8SbUCBQeToAgNxr9DlyO/SI3kZHoBDAZ2YWgMe/YA//d/XPfycnrAlyypqzTy8vjc8HD7\nGjJy2zz7ob32pijSy5eUZBn+sHUrFebo0cwM8/GhrH/lFe7F++5jaD19yym8GfEudL5KrAlfgX2n\nvdCvH/DEEzTqHAmtXc+8PH6vo0e5ZuPG0SMdFEQHwjXXcP7JypU8bwYDvdheXjRSiovp3WtSatvZ\nsywSNxhYQeaAQ1Xaen+azdyTLi6UU5WVVFnffMP9mJVFI+bxx2ngfP892w1mZDDtaGpkEgaf+Rrv\nnZoEt96hiJwQgSVL2uxyWwV7ruUPP7D4MCiIRrAUmS4ooFe1spK6VhRJBl1dedYVChotkt6XsGYN\n93F4OIuSParSzZOTGZVu0Bnz7be01p2c2O6inQbj2GM9zWZ+7/h4Fgk/9lhdx2FWFtdLalo0dChl\nwcKFLF6urOR9WLGCjsNbbyU3ahLeeYfhfw8PvkEHeifs0jbPp6GKuk6I4/Ei8r+6BLWrJ4b0LoSm\npARwcUFKChPoRZHek/x8CqzgYDpIPvyQnpngYFqq0iC1QYPoJTAYmG9ZWMj0AU9PWnYKBZ/3558M\ngyYlkbhLRlhgIPdJZ0N5Ob0hGg2VakudR66u1XMHoNOJcO+jR9+pnsjJKoJoMMLFRQ2VikoiKIhE\n2d2dUaHKSnoUvL35f8mjsGULn3PkCK1hQeD71ybU3t7Ml7va4eHhjaKifJuPubvroNfntfMVtT8E\ngcaxVkulu2YNz6mPD52jYWE84ydPsqXv7NlUMEeOAD1UF+Hho4ZJr8eZQ3rowrywdi2J5gsvsPVv\nZ0V6Oqvy+/bljyhSHpaUkIBIPaLj4rhW5eUkHMnJ9BBOmUIyeO4cHXhGIwl3//5cn5gY1o7YRF4e\nD7mTE/MXrkJs3sz6EZWKpCUqigZNbi4HBRmNTK0xmcg5PD25bMnJ1D0HE3Mx2i8DQkU5jh8uh3Mf\nkqTOXKsjikzByM3l2XJ3r/uc3bsp+69c4Y9UrmA2W76/ycT2gdnZ3KN9+zJf18XFErg2m6l7vvuO\nXtWiIn62JB+kIHeDPPnyZSrKigreHAebNFlUZBkOPWpUTcJcUkIyHRZGI7q0tO44d6uBsggIsHTp\n6t+f7weQW0lf/8MP+R4vvdSEFNdLl7ixi4tJrjpJuK9eQj1jxgzcddddmDFjRh0vdUlJCTZu3IjP\nP/8cmzZtavOLtAf+2CzAEP0AeiVthG7YdPT19QXAMIXknYqKYucWDw8eri+/5H1NTbWEMJ54go9J\nJC0ujodOIpZ33UUP1vbtPD/p6SR/kZG1mu53Uvz2G70hokhZER7OGpboaK5PU6HRWOpB1WoBuX+5\nC6FJ38N3+jA8HuSM04kWL1hJCQm1ZIwUFlb1uTXRQyClw48fz2KTAQMoEF1dLVPl64NeT29iF6q/\naTJIpm1b3kVFXSDxt4l49FE6Rf/3P55bqfFQfDw9M//9L7vS/PEH98rDD9M745sdAdXGQJj7XQev\n+DB89z335uXLjGKOHNk526mKIieT5uYyvWXVKirdJUvogVarSUjGjKEs+PJLyse9ey0jyO+6i3w4\nO5sK1dmZsnTzZnLlgwdJdqrEcE0MHEgWk51ND/VViNRUkumKCi5DVBQJ5Esvcb9KBdVhYZSPajXX\nt6KCxp5qYAwOmk5hrO8phF4zCKk5FmdRZ8WpUywSFEV64qXx6taYOZP7sV8/6iYJ3t6MiCYkcK1y\ncoC//53OGq2W283JyVILdfIkowGiyL06fTr1XHIy70dpKXVLTk4DPHnePFpFwcEOmZf+zTeWFuSe\nnjUv0c2Na7JtG9OzbCUqBARwLyYlMRIvCDSsN21ibcWIEZZZa0VFlBH/+hdw5511s2Pq4N57KXgH\nDKh5Ix0c9RLqTz/9FO+99x6WLl0KpVKJoKAgiKKIjIwMGI1GzJs3D59//nl7XmvzUFlJl5OfHyAI\nGDUK+PhkDDLGxWDc7aguFAoL48YoK6NXJTDQ8hYaDQ9bZCQLET78kIf6k08sz5Hm3kueAoBKQmo9\nKYrcmNLzugIky1QUWdCh1/PgvfEGBVdTcffdTLMJCwP6TQ4Frl8EeHpiIICBgxgZiIvjrfT25uc5\nO/Nfk4nraX3Qx40jubbOV2/II3PokMVqloSrjE4Ms5kaTqdrVs6FszMFv7c3U3cPHeLeUirJ7Sor\nef5FkaRGpaoyjoP7AoOeR+pF4PzPTP3KzubzOlmL6SbhmmvoPCgvp8JNT+e5Ly+n8WE2UxaEhlpC\n4YMG0dDNyWHDAyni5+YGOKlFICub3ifrhFeNptP2obUX/vIXevU8POjNBwCIIrxNOQjw9YazsxLF\nxSzg1mpJJCMjSaiNRqBS4YxjMX9D797A5QPkJZ3EydcqTJhAcqdQ1PWCSsXFr77K/2dmMt0SIFVY\nu5br/fzzFn0dEECbbuFCZm/8+KMl1WPixJqFyHUQGspq0rZEcTFDaE0pMGoGBIHE9/bbG+YtMTFW\n+xOMuksF/8HBfI/z53nuy8t5qdu2Vdce1o++fXkj2gOiSAHl4dHqSXz1Emp/f38sX74cnp6emDdv\nHtKrmvqGh4cj0Jp1tgD1jR5PT0/HggULUFFRgeXLl7d8YmJ5OeOMqalkybffjlGjqDQ1mppeo9mz\neUBcXJjCYY2ZM9mR7eRJemm0WoYwrREdzdwsyWKtDUGwHZrqrJg2jeun0dAC3biRh6R20WVT0K0b\nQ+M4exZ47nWy5McfrzaVIyPpKTOZWNtRUUGvnyjSaHV357mzRu2wVEM4cIDXXVDAS5AJdSfHmjXM\nU+jVi3FyVb3izSaCguiNuXyZ51nKrx8yhFM7Kypsn3GVinvf1ZX9agcNYv51Z/ROA5RZTz5pSfmw\nJmIqlaXQVzI6MjJIPIKC6DyYNMnyGmdnRuwkPPEEvYQREYDHhv/QZR0WRkHQWResDRAQgLo5z199\nBcUff+Apj344MPlxXLiiwalTdAYZjSQvn33GfRgbSxLo78/cVS+vzu/Q6dcPeOABS8pHfWjoe0pN\nBIzGmjb33r3U73l51PHXXEMunJfHM69UsptNUBC515gxFgdahyEtjQy2vJwLM3x4s15+223cZz4+\n9Xcma+6ecXKyrK1SSVnxxht0dK1cSdVuNXrEMfDf/zLxPr/hpm4AACAASURBVCCABdK2Ohk0EY1q\nnKKiIkydOhU6nQ633norurUyD6ih0eMrV67EihUrMHDgQNxwww0tJ9RSs+PAQGRuPo5dmtvRq5dF\nQYoiw2QuLjxE06fbfhspT3jkSFpdCQmA1ZTx6o4StlId8vKYPx0WVv+0xM4IZ+eaLemeeIK1A1FR\nLfOAFBQAX7xWCv3B6/DX3gcQdvx4jdiTRJBrt6IdOZIEp6KC96msjPeyOe0HJ05k8WhQUF1iLqNz\nwGTiOSsrMWHSniPQdgvlYS0oqCefgGkZ27ZRfo4cWXPPxMQwZGkyWVopCgI7J9SHkBCeg9RUvl9n\n9gSazZSNQUH1t9AtL+f6AQz5hoez+8ewYfQ8SXUmu3eT/EyaZHEq6HRWjou9exkSTE1lDk0nCu22\nBdLSuCT9+pHgmM3MXz1/ngaa3+79qPQORWjeKYSOzsAFsRvOnydxGTKE96xHD8rC0aMtzrbOnOZh\nDUGwPcFb2rNubo3L/5496bPJzrbk+QIcrPbSS9Tnkr/Qlk5oJmeF2cw0soICdqtqjsOnUZw9y1wK\nV1eGcpt5cW5udBo2B+XldB7UN0BTSndNT2dULziYz589m4ZKUhJwww22XyuKLdPjUm59VhZlTbMN\nnb17qSsyMph4X7vLRDPQKKFetmwZli1bhvj4eKxfvx5jx45FaGgotm7d2qIPbGj0eEJCAkaO5AAW\nd3f36r7Uta9HQr2TEkNCKGGOHcP7xudxaSNv0Kuv8rCsX0+l2dSKfCcnpjZIlldFBdtFrVvH+/Dc\nc3WV6Nq1JOAKBbBsGT0ybQVRZE5xZiY9bO2l0KU86ilTmu0MrMaaNcDHm/sA+YFIrgjDpyuDUNvR\nnZnJQ9q9u0VmWE+uDAhg/mBVMKLJ6NePI30Vis5drHM14+BBKQVLidKgezE37UO6jxrIPVq3jt7X\n0lIq1WnTSGBEkQNZ9u+nUD9yxHauX1ER9721UukK7XtNJnbTOXaMHsC//pXf1cWl5vl+7z2uYUEB\nyfH771ueIynCkyc5UU4USV6svdTVuPFG4KuvKKu7QoFJKyClz+XlsS/600/TQ334MPfmzp2Ac+6T\nyDmainunpaG/azDCdGyGAFg8iVXqs8vBYCCZqx3tNRrZtjEhoWnyXxBqpigA1B1btljSNjduZJ2E\nPfDnn8Ajj/D6T5+uisjaCwMGkOvo9bQI7ACDgaTWFik9fZprrdHQex8aWvNxk4nyeMcO8tK9e0na\npTRMqSOILb4lipTjO3dyDy9c2HRSnZhIHiHl1ls7PZuEWbMsxVetdBg3mQb5+/sjMDAQPj4+yM7O\nbvEHNjR63GQ16tTT0xMFBQUNEup6oVIxOcpshmK5AuZzNYX95s3ch6dOUdjbkuV6PYWUZFEKAjdC\ndjajLLt3U9kaDLTEas+Jkbp8tAcSE0ngAW6oBoZc2hUbNjBaEhbGHOSWFPYpFICgUkP08YVwjS+E\nCN4k6/X/6CN6aQDeq9BQ9gMvLuYB/fNPSwHjrbc2L0zVUkOgc0FVYzhTV4L0tUQRUIy4BrhpWB3r\nqKCAkRUpo0AQ+PxTp/jUM2eYWgTQ82oykUj+/nvdmrh9+zgh1cuLKX5dxfsHcJ2OHqWjePt22iT/\n/S9l5d//zrOYkcHC5NRUvubKFZJna28fYFljUWzAWJ08mS6lLm7NVlZyP3l7N0wSrHXGl18yL72k\nhI7I4GCgwDkCnlO74e0MAdon2S7vqaccr0WjvaHXM4MzOxtYsIBbRkJuLsl0aChJ8fz5zfdurl7N\n6MCZM0yVkV5fWUkdo9O1fPCaVCiqUvH97Qpvb3oJGzxkTYdeT26TlVV3nQGmSIoi5cSpU3UJ9ZEj\n5KUXL9IzHxlZc90kDmULZWUk0+HhJOLz55PUl5TUrE+zBWsd0KL7NHYsnTB2WMNG6cQHH3yA9evX\nIysrC3PmzMHatWvRz7pRYzPR0OhxhdUX0uv11aPIWwyFAg8/zBvUvbul1/PUqcCvv9Ig8fev+7Lj\nx2n5S1aVdSTy7Fke4m7deFiuvdZ2c/y//Y0bJDS0bb3TAAmkrbywtsb27Sy+unSJAqklE5UXLqTX\nobBQwO2383vUXn+1modKyssCmL7z++80aMaMoYKfMKHz5wm2DYyw3c2j85PsYcNY7V9WxuK32kJx\nxw7mlXp50Tvk48M859BQCn212hKhcHXleT5/nnvPVirYrl30xubkMITZlQi1TkfHQFwclak0KTIt\njXnlvXvzfIWFMW0mPZ0E+z//YXjcWlz360cvX14ejd160cXJdGkpSUpaGtsMSsXqtSEIjJYeOMC1\n3LWL3j2jkXbH4sXsdJSTI6C0lFFpadpuV6/9uHCBUUqdjufZmuj5+FAXxMcz0tQSQiVN8hwwgAb0\ntGkk0i+/zP19003NT42QMG0ao+GFhUxztjsEwW5jli9e5Pe1tc4AjeZ9+/i4rZxrSfeGhJDzzJhR\nNxpQH7Ravv/evYxCu7vzvq9cyTNgVVpVB717U9ZkZzciaxqCneRQo4Q6NTUVb7/9NgY3lETYDDQ0\nenzgwIHYv38/oqOjodfr4daK5HAJfn706FtjzhzebGdn2+soVfkXFTHnx5pQR0VZhhk89RQVUG0S\nW1rKPV77c9sKvXrRIZ+dTXLZXpg+ncq0V6+WD4Ly8KgraA4f5n0pKqJV/+CDPMjh4RblER7OEClA\n67+4uGXFnwYDLfPGvEcyHBNKZcNCVAo75uZSQEtG2axZFNxxcSR/kqh57DG2fJPG5tbGpEmsWA8O\nblWqnUNCGmxTWkqCsW0bPaU9evC8SR6gJ5+0hMmlfsgXL9Yk1ILQddMPmoOMDBojAQGMatZHqAHK\nNmmGTXg491hlJeWskxMHCxmNdAZt2MC8/q7YTaY2unfneqSlAXPn1nxMpaKxIe3Z5kIQqMcPH6bH\nX3IKnTnD6IuvL++bNaHOy+NnNaWGNiDA0lbSgWbk2URkpGWdbe3TqCimhCkUth13gwczvaW4mI4J\naX1KS6lnpZaEtiAIdIzcdhv1uCDQYCwt5d6Pi6ufUAtC3RqrjkK9kxLbEo8//jiOHDmCmJgYvPPO\nO9Wjx9PS0nDnnXeirKwMy5cvx3W18oLaa3ra2bMMA7m4MI+tthfbZOKPrcT8K1fokSgtpffVUW60\nLdhjPSsquA72JKONrb+9UFZGJZWaSk/CvHmtez9HnpRYv4faMacr2uusHz1KAhwQwGKYjz+mMnjm\nmZZHjiorLZ09Ogtaup4VFRYv/ldfMa0qPJwpICdOMHcxNJQ5v3YtuHJwNHU9KysZbTt1ivm9zUl1\n/fJLpidGRHC9rTt6tYXc7Sg0ZS3NZpLS+orh7I3ycuYLJyfTwB47ln+XBu74+DDiZedudXZBa2Sn\nvdc5LY06tqyMXuTG5kJYIyODdVKVlTTiG+1d3UZoznp2CKFuKdpzVLbJRGHVXKW5ezeVjJsbPV/t\nlc/cEnTk6PHG0NL1bw4uXACWLiXZKi1lsVVrIBNq+8Gee1OaXPrFFwylV1YyR+/66+3y9p0C9ljP\nBx9kRCkjA/jnP0mspbXtCsSuOWjOekp985tbr7FwIQnblStMP2hpFNDR4ah6yNZ9+8c/6KEuKGCK\njtQ5zJHgSOu5YwedGK6uTP9obtqL2cz70JGpnM1Zz07kY2lfKJUtI3P9+jGHSBTtVnh7VaKl698c\nhISw5WF2dvul58hof0g1BmPHMgzp59dwGzwZtjFrFnNZBw+2FHJLayujfghCy4qfZ8+m8RIb2/Xz\npB0Rtu7btGkslIuMbFnN0NWG/v0trfMmTmz+6xWKzlUXJXuo2wCiSMvKeiOIInOzMzOZ89nhTeHR\n8etZXs7CRq2WOVcdcXBa6j2yBdlDbT/YY2+aTPRIl5WxYNXZmecS6FzpGvZAU9ZT6uean88CT1sl\nLEajTKKB1u1PvZ6eu4AAFtU2tJZXw3q3tx7KzOQ+j4qqf6BJQ3D0qExH63UJ586xBeeQIUwL60zE\n2BrNWc92bxpWVFSE+fPnIz8/HwsXLsQdd9xR43Gpr7QgCHjppZcwoaGRSA4KQai7eVJSmFIgiizg\neeSRjrk2R4I0yhVgvnRzm+bbAy31HslwfMTFMdwI0Kt0yy1XH5FuDk6eZItKUWTrrHvuqfsc+ay0\nHl98wW4egsDBbA0Vt8rrbX+88w5ze1Uq4LXX6p3/VC86KzFsT5SVcUKiNATKaiB2l0a7H9ePP/4Y\n8+fPx7x58zBhwgTceuutUFuVjAqCgC1btkDZxXattYHjAMajQ0DyFkoefRky7AnrPSXvr8ZhLZfk\n9Wo7yLqgYyF1q5HXvm1hNtfsEX01oN1TPubNm4f3338fvr6+WLRoEe677z5ER0dXPz5p0iSYzWYE\nBgbigw8+qNGL2lFCGS2BKHICW0YGc4kaaiHTXujo9Swro/Xq4sL81s5uQ8kpH/aDvVI+du5kwenE\niS0bPNRV0NSUj927WXQ1aZLtlA8ZRGv2Z2Eh5V5gIDBihOOmDrQX2lsPZWQAe/Yw5cOKenQZdLRe\nl5CSwi5Lw4a1/SyOtoRDd/mYOnUqNmzYACcnJ7z44ouYMmUKrr322urH8/PzodPp8PXXX+Pw4cNY\nLY0wA7/Y0qVLq/9f7+hxGU2Coxy8rgLr9UxNTUVycrLN502aNAkyoW4Y8t60L+T1tC/k9bQf5LW0\nL+T1tC8cIoc6MzMTt956a42/BQYGwtPTE4WFhfDz87M5DVH6/4033ojPPvuszvs2afS4DBkdjIce\nehrbtiVArW6jJtoyZMiQIUOGDIdBmxHqgIAAbN++vc7f33rrLWzduhVz5szBsWPH0KdPnxqP6/V6\neHh4YPfu3egp96WR0UlRWWlCaelSALZGo13lMV4ZMmTIkCGji6HdixLvvfdezJ8/H//617+wcOFC\nqFQqxMfHIy4uDvfccw8mTZoErVYLrVZr00MtQ4YMGTJkyJAhQ4YjQe5DfRVDXk/7wno9p06dgz/+\nmIv6PdRyDnVDkPemfSGvp30hr6f9IK+lfSGvp30hT0qUIUOGDBkyZMiQIaOdIBNqGTJkyJAhQ4YM\nGTJaAXkOkwwZMmxAVdUv2xbUAAzNfszdXQe9Ps8O1yZDhgwZMmQ4FtrdQ/3WW2/BxcUFnp6eeOKJ\nJ2o8lp6ejpiYGHh4eGDw4MFIS0tr78uTIUMGAMAI5lfb+jG06LGiovz2/QoyZMiQIUNGO6HdCfWM\nGTOQlZWFgQMHIisrCwkJCdWPrVy5EgqFAikpKVCpVHj11Vfb+/JkyJAhQ4YMGTJkyGgW2j3lIyoq\nqvp3tVoNlcpyCcePH0dgYCD8/f0RHByM+Pj4Oq+vPwwtoyWQ19O+qLme3zf0TAd5rH2vozn7Td6b\n9oW8nvaFvJ72g7yW9oW8nh2DDsuhLikpQXZ2do3BLhUVFQgKCgIAeHp6IjMzs87r5HYw9oPcXse+\nkNfTfpDX0r6Q19O+kNfTfpDX0r6Q19O+aI5x0u6jx7/++mvk5eXh7Nmz+N///lfjcbVaDb1eD4AT\nEzUaTVtdngwZMmTIkCFDhgwZdkG7jx43Go1YsGABIiMj4e/vX+OxmJgY7N69G1lZWUhLS8OIESPa\n6vJkyJAhQ4YMGTJkyLAL2r0o8fXXX8eWLVtw8uRJeHt7Y+fOnZg/fz4++eQTLFmyBKIookePHjCZ\nTHj22Wfb+/JkyJAhow48PLwhCEKdHw8P746+NBkyZMiQ4QCQR49fxZDX076Q19N+cLS1ZB6d7fHt\njnSd9cHR1rOzQ15P+0FeS/tCXk/7Qh49LkOGDBkyZMiQIUNGO0Em1DJkyJAhQ4YMGTJktAIyoZYh\nQ4YMGTJkyJAhoxXoOoTaYABKSjr6KmS0BUQRKCoCTKaOvhIZ9cFsBvR63isZMroCysqAioqOvorO\ngYoKrpeMpqMr67SrlI91CKG+cuUKYmNjodVqYTabazy2bNkyDB48GBMmTMBbb73VtDcsLASefx54\n9FFg5842uGIZHYqff+a9XbFCVnCOCKMRWLWK9+irrzr6amTIaD1OnQIeewx48kng8uWOvhrHxuXL\nXKfHHgNOn+7oq+kc2LCB8nL58q5niOTlAc89ByxaBOzf39FX067oEELt7e2Nbdu22ewzLQgCVq9e\nje3bt2Px4sVNe8Pz54GMDMDdHfjzT/terIyOx5YtQEAAcPYscOVKR1+NjNrIyQFOngRCQ4GtW2Uv\ntYzOjwMHuI/1epkkNoZTp+jUEkWum4zGsXUr4OcHXLgApKd39NXYF2fPAllZgFZ71Tk4O4RQazQa\neHl51fv4M888g8mTJyM+Pr7OY8uWLav++VMiz927U5kXFwOTJ7fRVcvoMEydCmRmAr17A8HBHX01\nMmrD1xcYNIieqqlTgWaMapUhwyExejSgUAA6HdC/f0dfjWNjwACuk1IJjBrV0VfTOTB1KpCdDfTq\nRe7SldCzJxAYSM/7hAkdfTXtig7tQz1hwgRs3boVCoWF1+fn50On0yElJQX33HMPdlpZOA32AzSZ\nmLfj7NzWl91l0Kn6VZaVARoNlZyDolOtp70hikB5Ob0SdoCjraXch/oqRGUljUO1us5D8nrWgsFA\nGeDk1OyXXrVr2UY6zSHW02RiKqBG07HXYQc0Zz3bbPR4S6HT6QAAPXv2bN4LlUr+yOiasBNRk9FG\nEAT5HsnoWmgBObxqYcPokNEIurK8vEr5WIe7+2oz/6KiIgBATk4OjEZjR1ySDBkyZMiQIUOGDBlN\nRocQaqPRiOuuuw7x8fG4/vrrcfDgQSxatAgA8PTTT2PMmDGYOXMmXnvttY64PBkyZMiQIUOGDBky\nmowOzaFuLhwiN6gLQV5P+0JeT/uho9bSw8MbRUX59Txq63rUAGxH0tzdddDr8+x1aa2CvDftC3k9\n7Qd5Le0LeT3ti+asp0yor2LI62lfyOtpP3TUWjZUfNi8v/MxR9kP8t60L+T1tB/ktbQv5PW0L5qz\nnh2eQy1DhgwZMmTIkCFDRmeGTKhlyJAhQ4YMGTJkyGgFZEItQ4YMGTJkyJAhQ0Yr0O6E+sqVK4iN\njYVWq4XZbK7xWHp6OiZOnIjRo0dj69at7X1pMmTIkCFDhgwZMmQ0G+1OqL29vbFt2zaMGDGizmMr\nV67EihUr8Mcff+Dll19u70sjSks54QcA0tOBXbuA3NyOuZauiJISTlFqKs6cAfbs4VQpGe2HsjKu\ne1JS3cesz4gMGa3FhQvA7t2AXt+055vNQHExJ/PJsD+uXKHey8lp+mu6gkxoyj4sK+NUyKsV0hpV\nzQuB0ch7LwNAB0xK1Gg00NQzjjIhIQEjR44EALi7u6OoqAju7u41nrNs2bLq38ePH4/x48e37oIK\nCznlzcMD2LcP+PhjwNcXePxx4JVX+HhwMLByJZ8no+XYsAH44QcgMhJ45pnGx8RfuAC8+ioF2Pjx\nwH33tf4aRJEGkqtr155UVR9EkYrS3b3h9V+3Dtixg9Pili0DunXj3/fsAf7v/wB/f+C55wBPz3a5\nbBldCCYT96C3N8nLK6/Q0B4wgHuqIRgMwKpVQGIi8Je/ALfc0j7XfLWgvJz3Iz+fZ/u11wA3t4Zf\ns3cvsHYt9ebzz3dOmZCbC/zzn0BBATBkCPD3v9d9zvHjwLvvcj2eew4ICGj/6+xI5OQAK1aQQEdH\nAw8+yP/n5AB/+xswenTN55eW8sfXt2OutwPQKKEuKCjAvn37cOHCBQiCgIiICIwcORKebXBoTFae\nS09PTxQUFDRIqFuN06eBN98kUX7qKWD7dh6WzEwgOZmbwdUVKCzElTQzKk1KhGfHQdi1Exg3DoiN\ntd+1XA3YsoVE7Nw5ev+7dwcAVFQAFy8CISFc7mqUllL5OjnRsKkPoghs2sT3nT0bCAur/7n/+x/w\n7beATge89BL/7cJITeUE2ODgqj9s3EijxseH37/2Od63D9i/ny90cqrrgdi6lWQ8PR04fx4YPLjd\nvkvng6qqDV9NOFJ/6vZCbi65SmSECMVHHwEHDwJRUcCCBUBlJeDiwifUh6Ii4LvvSMATEoDwcGDz\nZplQtxBZWbRhIiKs/ERpacA331AvOjkBhw6RIC9dSuOnPmzbZtGbZ892iF4sLwcuXQJCQ7mVmo38\nfO7Jigrux8RE6orYWGDsWD5n925ApeJmTkrqcoS6spI+rODgemyo8nIatNJZPXcOyMgAvLzInUaP\npq74/nuuZ2IiX3P77cB117X31+kQ1Euod+3ahTfeeAMXLlxATEwMgoODIYoi9u3bhyVLliAiIgJL\nlizBmDFj7HYxCoUlA0Wv10PX1mQnIYGEQRSBU6eAiRPpoQ4IAAYNogV26BCSuk/FypeUUFaUYnnB\nBwiKcAZOngTee69xL6sMCyZP5mHr2bOa4YkibZrTp0mo//EPynIAQJ8+wG23UdDPnFn/+6akkCQ7\nOQF5eVQA9eHAAZLIvDySxi5MqA8cAD78kArzySfpAMS+ffzO2dlcV2tCXVgI/Pvf9NwXFQFjxpC4\n9O5tec6kSfRQBwdXG0Qy6oMRtnpUFxVdXZGuzEwGOUpKgJnTTbjl0CEyn6QkWtB33035O316/W+y\neTOJm8lEmZue3rBMkFEvLl2iM7ayErj1VmDatKoHPv+chFijYUrNsGEkRpcuNUyoJ02i3gwKAnr0\naJfvYA2zGXjjDaqB0FDqEFVzY++CQAVkMvG7vvcefz92DOjbF/DzA669Fjh6lB5Xa5nYRfDuu8CJ\nE/R5/fOfNqhNSAhw111U1tOnk0gHB9M6u/VWPmfXLuD337lvSkqAgQNpqFzthPrHH3/E6tWr0atX\nL5uPJyUl4aOPPmoVoa7dLHvgwIHYv38/oqOjodfr4dZYqKm1GDmSIWyFAhg+nJugd29aWl5eFCjD\nhiFtOw1XrUqNXJMXgoqyecCafWqvctxwA40WZ2euOSizkpJ4iNPTKcerZbdC0bCSleDmRjJdXs77\n0tg1rFkD9OpFYp+aCvz8MxXB9dd3qbSe8+f5r9FInThgAEhC1q6lkqhNiJ2c6H3Oz6dmuv9+4PJl\n4IMP+Nxp03g2YmP5XKWy3b+TjM6HzEzqVldX4MxZFffghg2M8vn48N9x4xp+Ey8vnk2Fgp5trbZu\niFlGk3DlClOBXVwoe6sJta8vDZvAQHr+//tfGtT1cIBqjBzJSJVaXVMn7t1LMjVlCtCvX5t9H4OB\nzlI/P/oISkuZwdkshIcDU6eSUd5xB6N4hw8z2ikxy+ho4F//otxTq+3+PToSokiHsq8vfS16vQ1C\nLQhMvbROs/3HP4AffwTi46lPPT15Rj08eEMqK5umw7sI2n1SotFoxPXXX48jR45gyJAhWLFiBb78\n8ku8++67SEtLw5133omysjIsX74c19Wyapo9Achg4AkLCKibL5udzYK3nj35uNkMPPQQD0tGBnNG\n+/YF7r4b+jI11qyhUnhgTg4C9ckU6j4+Nd6ypAQ4coTksDMYsB0xUenSJRK96GgLcd6+nZkIY8dS\n19bgtJs2Ab/9BowaRSu4PsJ74QI198CB9edGFxZSYIaFUYAKAr3ZaWncKy++yP3QQnT4hCpRZJ5f\nZSUQG4usXCXWrAE0CgMedv0U6tTziB/8V3gNj0Kv3vXUI2dmUjv16UON+8wzlK4mU6vXpznoKpMS\n63tNe3+39lrP5GQStthYwE1jAI4cgcHJFWv39celVAH33FPFz8zmaqO6STCZgD/+YL7m77+T0AwY\nwNCLLezdS0U/YgRw0012N5Q7/Ky3AEYjOaLJxGyOnBzgvr+Z0S3/GGVH376M2vr5UYYKApUZwHSb\nw4e5ljYaCtRBXh7vjVbLe/3BB/Xeb3us5ebNzNAID6/2gzXOeYuLSQRDQpj7AvBaAdbrFBTQQPjw\nQ4uyKiridwsLY43Jpk1UXDfc4DDOmJau58aNwJdf0ud1331N/Drx8awv0+upe++/n9zKyYlKXjKC\nARKktWuZMnPffQ2nZjoQmrOejbpYe/TogREjRuDaa6/Ftddei/79+7fq4lQqFbZs2VLjb8OHDwcA\nhISE2K9dnigybHPsGG/cSy9ZcgkOH2bOtIsLC+TefJOPKRR8TK8nWd69Gxg1Ch7BwXg6+DcS774T\nAcVIy+dUVNDL7eaGzw8Nw569ApycgOXLO81+aTdI9UfFxbRXXn6Z523CBP5AFLmekmlcVASsXk3T\n+eefKZz79GHC9fDhNdM1IiIsQrE+vPUW44Jubiy28fQk+dy/n9I3K6vdCGOb4PBh4J13uI433QR/\npRIvalPodf79d1yOz0bZf9Pw4fjP8fIKq7xqCeXlwJ9/8h707cs46r59/PvQobUS3FuBsjLeYwdR\nQDLsg/R01hBXVJDQPB72C/DDD1CrVHhwyRIS4NJS4D8/8gU33lgz4TUvj8ZzUBAFgvX++Pln4Kef\nyArNZu5x62KnXbsYjr/+ejL2Tz7h+d6wgaF6iRg2FaJI1llcTGO+M6b2nTxJphkbC+Tm4uhh4IOU\n6TCrNVi8mLV32LWHhDE7m57kxx6j0+G996gPn36a67hpE0nlG2+QcY0dS8JUHzSa6vqjaudFG2Ly\nZG6H1auZ6jZvHjBrViMv+vBD8gMXFyomPz9+55wc6pzsbOoZqYlCQQF5RF4evdnbtpEn/PADIyjH\nj9telwsX+H6DB9P774AwmejYUqv5NazVcL0oLgZ27uS5Ky+ngzI5mdHeZcvqRjCPH2fEQqEg/5o9\nm5EQtZoX8OuvDJmEhdFokwrhOxEaJdQnT57EgQMHsHv3bjz11FNISkpCdHQ0fvrpp/a4vpbDbOYN\nDAhgWF+v54mrqADef5+euIICboKoKGDRIt7YwEBuhIICHjBBYJjn7FkK2aAgwNqo+OknCnuFAs7e\nT0GjGQyjUe7yZgsGg6X+SK8H1zg3h0aN2UzCe+oUFe2sWbxXly6RWGs0lJS//MI3iYuzXYndEPLz\nKeTLy/nexcUk53o933/dOoYvOyvRKy62eP5+/pnCrj+gPgAAIABJREFULSuL+/v8eWgLTPBXAV76\nSygvtyGs9u7l+goCf1JSGFY/cQKYO9c+RTjffkvlHBMDPPqonDbShVBeTr2o0VSdb72eHj6Tid4p\ngFp70yb+7uUFzJhheYN16xjiM5spZ/v2tTx27BgjJ2lpZE933VXFCEHi88knZABJSZTXffpYEkKb\nHf8HdYdknFrniHYWmExMilUqSVS8vOB3xQn91c6ID5pmqTMuKuKaHjlCAg7wBooiBfbZszRufHwY\nub18mV7s+Hiucz0du+DqCrzwAsORffu2i0wtLeXWUSopChtFfj6VUWVlTYX9xRcMs1RUWHKVAK7T\nnj38oOJiOhmSk7kG779PB0/tdSkpoQe3tJQRllWrmheZaSeIIi/VxcXSGbBRQr1hA3WyINA7k53N\ns5aZybUtKuL37taNzwkMpFMsLo5n6tgxPn/GDJ7Vb74hOffwoBH45pudrhNXo4RapVJBrVZDqVRC\noVDAz88PAZ2hulWpBObPJ7G4/npLeoZSSUs7IoI3b9w4CpPCQt7wlBRLsdrDD1tInlbLvNLacaSK\nCh4QUcTM6QaIaU1LO7sa4eMDPPAAcGJ/CWafWwVhwo8k07Nn0+tx8iQP5qZNJNQuLrT49+/n+k+d\nCnz2mSUq8OefvH9NFdaLFjEuOHgwFW1ZGYWlszP3hZdXW379tseoURRU5eVUZBcvUsNoNMCkSdCm\nXIYqV4vFpjcQ+poRiOrFHBtps7q5cS1Fketz440k2CoV8NVXPCNz57b8+sxmrn9oKM9eTk6Xq5S/\nmhEZCdx5J7fe9OkAXG7kXvL0tHR+yMiwFE3UrpFxdqYHWqWqK2cFgUTOw4NE/dIl4D//oXyYNs1S\nSNu9O5/76KPc/0FBLfMuS72GFQrKm84GQaAOS0ujjFMoEBIsIraXM3oNAa65BlzHtDSum2T0fPIJ\nIwlKJY2SESMoh5cu5ZqvWUNHiK9v48ZwYGC7emSHD7d0L/nLX5rwgv79WYQ9dixlkgRvb953jYZr\n88UXlIXu7tybEsF+8kmLQ+3ECUY3e/asuS5mM/e0kxP3kYOmCalU7BS8YwfXsVZzNdtwdub369uX\ne8XLi3tk2DDqoFdfpbGyYAGN4MhIttl76ilGPg0GGi65uSx0j48nETeZLGmGnQyNEmoPDw9ER0fj\niSeewL333gvfztRTcPJk/lhDpWIPydOn2QJswwYK99JS4JFH+De1mo///js3RlQUlUJ1AqAVbryR\nG8vDA76TY/E32eHWIIYPB4YLp4CtR7jm2dlc69tu49qmpFiqZFxceADPneOh1ekorF5/nffjs88Y\nXmpKbk1KCg9tWBg9CwCV8Isv0gPj6krB2lm90wAVwLx5/D07m0ZjURGVYt++cDlxAj3//JMG4pa9\nQMYVru1TTzG3zd+fZ0CpJAFSKklQVq7kvTh1qnXXp1DQcNqyhcqsVg2CjM4NQWDDBwu8KDMllJUx\nChIeTkU8bJjlMVHkeTQY6ACRUq/Ky0lGpK4T587x9Zs2kSz/9htl/AsvMLQuRQ81GsrtliImhtZB\nYaFV1V4ngkLB+ofTp7leFy5ADWByTg6w60nAczo9iTt3cu1dXXlP3N35M3AgGZYEDw8S7RdeoEHU\np4/DFeWr1VTHTYLJRDk0YgQdaPn5Fnl0++0kh3v3Um9s3sw9ePPNdP4kJjI9RtqvUirimDEkj9K6\nSOHYxx+nV/baa5lG+ssv/H3WLIfSN3368KfJmDGDxodWS51q7Xnft4/nXavlfpF4mLs7z60gcD9N\nnco0kIICOtNMJt4HH5/G+587IBo9EV9//TV27dqFDz74AB9//DFGjRqFsWPH1ikY7FRwdaV3c+9e\n3jRfX5KKkBDuqPPneShGj+ZmyM9nsr0t4ubu3iKvncHAIurcXGDOnMabU3QphIbSM5mTQw/G/PkU\nWM89R/eCtXls7eU4cIAkurgYRWpvfHd5HIQf3DH3XhGuJVksfFGrWVxau82T1Bvz8mV6cqX+yeHh\n/PyuAJOJQk0QAD8/ZE67C999BwReBGbHAKqRI+lBWLfOMmnO05PFW9nZ9OiNHGkhOqJIwXj2LBXM\nokWtv8YFC+gVd3d3yNCnjDaESsVzfvYs/83J4fkDUHEpE99/XIIipzmYu3kPvBcsoEPj229paM+d\ny319000cIiH1+OrWjXvJ29tGUUAroFRS2Xdm6HSUdQBlbmEhc6R9fYEvv4Q4cxa2pvXBibIxmNn/\nIHqEVvVgPnSIxrXBUDdSEBBQM6r0xx80biZMsFFR7njIywPWrwc8PBS4pe8gOJ08yj1onRakVpM4\nh4YCb79tMTT27mWEZfx4OoAAEsVz50gc77nH0ob08GHqI39/4NlnSR6NRhYOeXvTsz12bMPtCB0Y\n+fnAt986wd19HG65BdDUFuUDBzIlKy/PEi7YsYN56ykplP35+dwv3btTHnh5cR3d3ZvJ7B0HjRLq\nWbNmYdasWUhMTMSmTZvw9ttv4/XXX0d5eXmLP3Tx4sWIi4tDbGws3n777eq/L1u2DD/99BN0Oh1m\nzpyJxYsXt/gzGkRqKm9qSAiFh5sbD0VcHC3Wd96hhTRyJKt32wDHjtE5rlJxbz3wQJt8jGMiKIhe\n5uJi3gNJCCuVDec7bt5MYygoCFt0C7Atvy/E9xIRcCAJ0ydX9YYzGkkCrXMzAXqrTp/m67timkFc\nHIVVaCiNQzc3fPMN95nBQIff4MHgGg0dahF0N9/MlJr4eHpTgoIs71laytSayZMtUxNaC0HonJPU\nZLQeajXPe3Y2icTvv1dPPz18Vodfc66BqrIEzv7X4y5BoPfZz491LrfeyvxTCY89xnSFwMAu18Ks\nzeDiwvVPSwN69kR6zAx86TIaztEC3ve+HW++XFazn3B6esOFYRUVwNdfk6D/+COJpoOf7Z9+onow\nGgVEPvAIRs69XP8eGjKEsrSyksLzwQe5b3fsoH7x96e8rD1sLi+Pr8vJYQQ1OZlOCqXSoofqnZ7S\nOfDzz7QvTCYGQut0sHR1Baz5m9nM1BlPTzq1tFpGkY4epR564QUayenp7FktRVo7GRol1DfffDOO\nHTuGHj16YOzYsVi3bl11V46W4MiRIygpKcHOnTvx0EMP4fDhwxhaFYIXBAGrV6/GpJpxQ/sjNJTe\n5suXgSVLLKPGNRrm9DTWAsdkanUxlacniU52ducsIG81vLyanbOsjxmH8g8+gVu3YPhMvwbC3ksQ\nlAroCi8Aym70qKrVtrt9zJ7NYT2enjW7A4iipZKlEyPvy02oKHKBX/I5qJKTgZgY+PpanEweHuD3\n7N2buaihoZaQ3bRp9Ai4u9cMlbi4MEfn4EEqhE6sAGS0PQwGGnCeng1kW6Sl0XMqhYOr4OmvgWrw\nAJhLyuEzt+rvEyaQqHXrVtf7XN85l1E/1Grg+edhungZxwvCUX5FDW2YH4qLgYhIAK4KOiQEoWYx\nXn1wcmL04MwZ3qNOoMh8fam+VSrAw1sFQ0hE/XtWEGpOgu3fn46HoKCahoPUak+KuJ06ZakHKCqy\nDLsRBJJMaSxw9QSzzge1mhlDXl5NrPlVKJi2eeIE02XKy+m0lDqi5OUxXO/vzyhAi8ZddjwaJdTP\nPvssYmNjobQT4Thw4ACmTJkCALjuuuuwb9++akINAM888wx0Oh1WrVqFQYMG1Xm99ejx8ePHY7zB\nQLNz1CiG7hsiwjk5tIh69qRVKXWAr6xk8lVKSsNkWhTZqHHLFiYL3nFHi0NcYWHclEolU7JE0eGj\nZe0Pkwn49FMgPh6mG2bh5S96Il9cDndlIFZMVMPr0XIIv/yCAd2KgRkP0bJVKm0XwigUdad4FRTQ\nU56by3SGVraE7CikpwP/OT0K1yStQ1Z3Hwyq8irNnUv+7OUFdDcmATc/QxLz6KM1+6hLYTeA5+PT\nT/nC++6jV2bBApJteYPKaAD//a8l6vb3v1cRlCtXaMD16UOhN3YsPXweHjX6GffvDzz3khPKypxQ\nLfZjY1nEWlDAMxoS0iHfq0vBxQX/OxeFr7+mSLzjDt6K/sH5wKqqoSWRkczxldIRSksZxfL1tfQW\nBiwjWC9d4n1auJBpHzfd1HHfrxHMmGEZT967N9M/Nmzg137hhQaaCVy8SGPQ15e6Qurice4cu1Fo\nNHTOubtzz0uD4R54oGZaR2tz+x0AUlaQSsV1bFJ2xokT3CMZGZYUmPR0S+vbiAiuU2EhMwM6KRol\n1IMGDcJ7772HnTt3AiCJfeCBB6BuYZitoKAA3auUt6enJ05KrXoALFq0CEuXLkVKSgruueee6s+0\nhjWhhtkM3HsvN/kff9DyqScZ2WQUcea5dfDIPY9Qv4rqwrbsbOCLL5zg1m0F7hizAy6bvqdV+cAD\ndS3IkhKS6bAwFi/edFOLvXYVFRYnS35+53GS5uZyQq1Wy5ode7UmtgUx9TLObToDk2cwuv3zVeRn\nPA8nlYhCdy+YTGoMvGcocGMP3qdvvuEpnzu36ZXlp08z/cfdnfvHwQl1VhazOkwm4IknLA7+oiLg\nhP8kXPKNRXAPLQZ5OwOiCPU3X2Lo7t00Fn/6id4VQWB8rj6htX49n3PwII3GPn0cPowrw/44epS1\nU8OHN32AaFoai/OlhhswGi0Gq7s7mwSr1YwUZWezAPaWW4C774agVNbokgeAJK6ykt6sgwebUXHW\ntXHoENOWR42iD6Ghe1NSwpT18HCLvMjPJ5k2GulIveYaAP+raklaXEyn0uLFFo/rf/7DmiOVqu5w\nJ42Gb3z4MJnqL7+w2K4NlFllJZsNZWTQxm9JBppUby0hJ4dfy2isavVYH377DebCIiRmeMFjXypC\nb66KmOzaRWWu11O+Xr5MbqBQkHhbF94eOkRnRZ8+tvlFOyMtjf5Bf3/WYTb1cqS1iojgV5cc9A2h\n+JtfUJ6SDy8XAapPP+XNMxqZxmk0coMuXconW8+X6GRolFA/+OCDMBqNePjhhyGKItatW4cHH3wQ\na9eubdEHenp6Ql+1cwsLC+FlFfbXVS1kz6YO11AomPx+9ChvUAOK/5dfgB93j4baNBQvDvoFEUYj\nAE4HOnECMJSJ6HNuE8a5nqbEmTwZ6NMHu3YL2L6d/x05wpXV30ePMhRUD5u0rg2TcOwYW7COGcMz\n5uXFOsf9+2kHdAYyDdDIjI/nGYiKql3Vb18cS/fH20lzIZZV4P6wEjzSdxu2XemL0XPyoNW606uv\n09FD8tlnXPS1a4GJE1FczOFeSiV1ts0IUvfugJcXzEXF2FY8AodeZQphZGQjFya1Pmpnj+369UxZ\nrKig0+7dd/n3Xr1Y2Hr+vA6zZ1c9OScHJ787hR8LbsLgs6fQNzICpdkB8FXkIaihcNqgQbzJXl4O\nO4RARttCFIGPPiJX+vZbppI2NBfl4EGmO584QaMvMJBH69tvgYK4IZjT7RC8K0spGKOiyOJSU8kI\nd+0iY7fFjkpL2Q86PLzhISJXEcxmdnpzcSG5jI2tv1mOKHIOy/lzItw9gO7dBWg0wF8ml6Hs90Nw\nVZZgePdhAHwBhQJiYSEulAchZ0cxAtKUUr0o03NUKn54ZWXdD9Lp6O49c4YKro2UWUIC/VnOzpSF\nTzzRvNebzWzJffEibbOQEPoVNm9mxsqAAVVPPHmSDohBg+jSFgSgf3/8sr4CP6QOh9O3/fBCbJWe\niI2FuGsXRBdXKKKimC+tVHLxa6fAfP89Wevhw2x80MHjlL/7jj0XTpyw1BA2BS4uDFzu3s20eclZ\nv2ULaziHDqW3X1VRAvO6/0BfYMIn8SMxRH8QHqVliLmuDz3RTk4kE/368SIuXqyZYtMJ0SihPnTo\nEI4fP179/0mTJmHgwIEt/sCRI0dizZo1mDNnDrZu3Yq77767+rGioiK4u7sjJycHxirC2ygefpih\nA3//Bk2sS6kC1IP6ouJSFnJm/Q0RVVIoJIQHTZ2XCT9TJgW9SgV89BGKK9T4KGMZLue7Yf164Lnn\nBMy6+1G4LcinELFBqBIS2Nfd15dDpry8KIPef5+Xl5DAVCI3Nx7mzhbdCA7meqlUlnSnAwdodNtb\nPmQUamHqPxgKQwXSrh+AeS4bMSg0BDuFcNx/P4nk4sWARmokX1EB+PggP5+RyBMnKPT8/amz6yAg\nAHj9daScqMAX73lBq2XdhGQo28Tx47yZISGU6O2UV1xRwa1ZWMi137GDxTUjR9KOGD2a9YOvvMJ6\nrb49vbDm/GSYL6fjO21/AP2h04ahTOmOl5NSUG9TmblzSXR0uiY2I5XR1SAI9D6dPs0obENbfMcO\nZgZ5e9PpPH4862MXLABEUQU/n5lQqiJw7+M6OiBCQphj4OvLzdy7t21GmJfHNx86lB7qRq3cqwOC\nQNvj7Fkum7VPRyLbu3bR4zhlCpB6shBeZ+KwJy0c/3MJQ0h3DcL1Z3GfeQ0FyeZMDsm55hoUDrsO\nl/fqcdJ9ItLXctovAN5MH5+qScG1wwjg+yxZQiu/DbtW+PiQvFVU1N8pNTGRZLtvX9ZbWzcSSk7m\nY4WF1Fnvv09D0N+f6iMlpSpIuWYNF7OqFgUqFbBhAy6WDobTgCiUq92RUzWPLNM/Gu9q30RZpRKP\niq6InD+fSt/fv27EMzaWoQUfH4dwVoSF8axqNLaP4M6dHAY5aRIzgKwhjXeXYDIBzz/PLRAXR/kx\nzWk/Lr21A5kmXxzynYIrN6yBeDwBMcVfcX6E1F5w2zY6Q7tASleTBrukpKRUe43Pnj0LVSv6T8bE\nxMDZ2Rljx45FTEwMhg4dikWLFuHdd9/F008/jYSEBJjNZrz22mtNe0O1ukkjKm+5BSgrc4f/FHdE\nzwEz6o8cweTefRD2XCSck/MR+b0CKBlMUy0xERqVFiWpuTiX5YaiIgqrkhIl7r+//l7cv//OfZKa\nysM9YoRlZkhGBjduQ6GV0lIe9NRURoX69WvaMrQXxo9nTYaTEwXKAw/QUtVomENpzzqhMWOAs2fV\nMBjUmHwLAO8FAIA/H8rANflHceZgH1y8GImowEDes6Ii4MYbsWUL1y8nh2SgwYwFrRYe4Vo4O3Pt\nG21p/euv/PIpKfTINNWsbyV++40GfEAAFUJ0NPDxx/x4JyfWwaSl8ftu2QL07atGeDcF4ksi4Kkq\ngZtnCdI8IuGuLIVzhEWYX7lCT7dCQSLu76+gRzApiQx92DC5X/RViMceI58IC6u/Pigjg8ZnVhbJ\ndHQ0eUhAAM/cmTOAro8HfGaOASRucewYPYDe3iTLixfbnobm4gJ4eeFYsgvWZs1Ez3cVePCh+gfz\nXS0QBDaQSEnhMbV2gh48SI+0Wk1ZMGoUcH/EH/gl2RmjsBcH1VNx6lQAPlOHQafuhzG+iZauPp6e\nqFixChufy4Fb7gVEF+4CTKMsg9Buv73hC1OpahZ7twG6dQP+8Q+SNlu8HuBcmuJiGhxDhlhKQwDK\nxvJyOrWqOgciLIx62tnZKtMgLAw4cQJ5ToF4518+KE1OwyJU4paIOJSZ+8Bvog8kn2J8PJBa6AEn\nJ2DnDhGRgy8y7VTydFhj7lwqNS+vts2VbCJmz6YjzMOjrt4rKWF2iqcn/x06tOGhhQoFbYjkZMqA\nX34BkpwicDrjb+jvdAbRw0pgcHPBzeHbeCNSUyk8RJF5S1L/c2uYTAzhGwz0GHWCbj6NMuM33ngD\nEydORGSVh+DChQv49NNPW/Wh1q3yAODdqtj1Rx991Kr3rRcGA0KQhWef9OdNEUXm9uXkQNBq0XfV\nKqDPAKDvi8xl0GiA116D2mjEQ/ca8Mq3JDMuLrbzhUwmWs0uLiTQJ09yI0pOFaWSLZbPnGH6WUOE\nOjGRTlAPD7amcTRCLQiWIgRRZOTKYOD3j4+3A6EWxeqiDpXKBQsX1jpHZjNuu/wGMk/mYKC7FsEe\nq4DAMPb3zM8H+vVD8AE6AJyd6Vyxqn2yicBA1qhmZzdhvYcPZx9nLy9YYqJtD1G0DC9TKPh7SIjF\nyO/Rg3uupISXCAAPP6HBmXd+Q4hHMZwfuAsJ2T0Q4ZYD93HjAHCrb9nC5RZFyq6ZM0FL5PXXeVP3\n76/bFkpGl4eLC2CjJrwGRJHP0+l4RpctI6l+6SXuw8cfJ/GpEcW9dMkywXPmzPq1tLMz8OKL+OGZ\nCijCfHDkqEAPYvcynvPAwKu2j7mrq+17o1DwfhQXk7NotcA1N4dhWPa/Ead2RppyIrTaTERE++Hb\n3Ecw5pnLNZhpQKQrFs/YA+W6z6C7AmCXiR4UB0JoaMO50xERFFlubnWbSIWE0AG0ejUfM5vZTnrw\nYPoMqhvJPPIIkJiIuJRInP3ZGRqlH7ZmDsJdPXfj2cdUgFWAvkcPi34a4X+Ok5WNRlo8Dz1U8wIE\ngR+Ul8eb08H7V6msv2xIo6FhfOVK0xqSCAKNmYcfpmPKxQU4nNUdRUHeOFceg38/5oVrovKB5aVA\ngb5qlCosY8utUVjIsH5SEnt5i6Ilt9/B0SihnjRpEpKSknDmzBkIgoDevXtD01ncBCYTb8aqVWSq\n0nWPGEFTNT+fLKq0lCfQusT3jTcAkwmTvXSImMTp5E5OHPSWmUmjXa3mS1eupME1fz5zrfv1oz6w\n1hWSQ6Yx576UCl5c7PjpRILAcO/bb/NMNCfN0Wy2pI5AFFlt9+uvVJQGAzJEfywXlkLr547nnqvp\n/OgZXoEwTzVUKiNULlUWTlhYtZk9ahSdBNKgv6akOgcHN3EuxKRJ1GYuLu3a2mfaNO4/JydguGkf\nDJ98ATfdACjMCwFBiSB/M15/XYnKSosi0U4ciUEVhShb/T7Ub7+KEff8FcJ1zH3R65kekphI2RUU\nZFVrZDLxR63mOZEhwwaCgmjH7tpFkTp8OKNVeXnkDbNm0TFgMFh1MfLyYhjdbLZ0Ozh2jJp7zBh6\nqYqKGDbJzsaYQQ/jq0NB8PICgj1LgJeWUWZPnty41/RqQk4OhmQfwuqHeuFgbk/cc3MhNK+/C+Tl\nwXD/Q/jzxzDc8fMqeJRnIenQZCj/ugDoXzd0F+htAHzBm2UrX9rBce+9TE8ICLCdfTJxInVzZiZF\nuVpNm6KGXtZqgZgYdPcAtH8ARrUH+i2bAwyeDeh0KCujwajRkERWVoiYN8eM3j2MJNPZ2fSeJSQw\nfSQkhJ2VBIF5NFeusCXkXXe117I0G1KnnvPnqUMbSos3GPh8Pz/y3/XrWZdZWirAL0qHPn2AGN15\n4EAiQ19Vw/RMJvpufLxFqASTJbS/YgX/LSjgHuzZkx/SCVAvvfvhhx8gCAJEUaz+FwBSUlIAADc5\ncGscAHQTv/suSU9GBt3F333HJuI7dvBkHT1KAb9rFxOuqiCKQHa5B9zcABeBcl+S/f/+NyPh3btz\nw0kOF19fFjdMnmy7SPW331ikEx3N4t/6ohf+/iQ6RUX2HfzVFpAm14aF0RNsHV5rCLm5wGuvVQ3u\netiIfuuXQXz3XZg8vKCIOwLFrJnIO5INv14ZOJfljuRkK0KtUEB48kk4795NxWyjCaYgtHFnojYO\nbdqCs7PVrJrF64FQLRB/EDg5hsUuGRlwefBBCH1jkZnJfSRkZ2HzSzugPCkiE1roMo9gzJjr4e5O\nQXnlCj06ajWnFFd/rYAAuhoSEyn4ZcioB7GxNbsmfP45axekaK1KxZBxWBg9185SMYNaTcs3JYVu\nw6wsyuS1aym7ExMBNzdMMWxE/xWL4ekJuGdn8nm+vsxvuMoJtdStw9MTwFtvofLcFew4fTMu9w3D\ndkMGbj97BnB1RdHmA8hJccc8/Z8wVxigzhDwyd4F6N2bXQxrYNIkkhel0uG8002Bk1PDjh2pyZGE\nb76hbh41is4ha6dxjx7UUwYD4OTkhkIFIBYw7SQ/n91Rss8X4/Zzq+Cz9DLw7/vp8t24kTk3H3zA\nD5T2s68vha6/Pzt+ODChBqhaG4tS/fwzW8XHxHCAqdnMr+npSd48ahTw15uK4PTCSha3+vsDb7wB\nEQI++AA4fNCEPjl7sMT/MygX3EZjpriYxMrPj4pv3Lh6iqAcD/US6g0bNkBowLXn8IR6yxYKhexs\nxskvX+aNyc3lqfv5Z5qZQUHV1k9SEjsEFRdTbms0NCglYiuFxQMD+dxdu+jpCwjgx9iaYJ2ezsvY\nuJHPO3688QFUHh5NbJbewTh/nt9bp6O8aGpE5vRpyhWVCtj4tR79TiegXOkKMbMA2d5RCCozwXXc\nEOw+HInsPK5zv7TN8Nz+E71YTWrFAWr19HTLwawHOTk866GhjtNq2WymUeXhUfeaTDFD8c3Hepwx\nXI/bjhvQPfkihPw8KBY+hPXBT2O7102YOUvATSNN2Fo8AqGiER6mPKwvnwnnw+TIkd6F6OVehnP6\nQNx9tw0bYehQ/si4qlFURB1XO7JmMrHjTFISeW3v3vxbdjbJhpsbYC6vwNYfsnHmVBD27VMiNBR4\n6CFtzfZ32dn8cXVlzpjZzFQqhQLYswdCSQlC78gB3H0B5zDm9J84wQbKVyMKCiD+6z2ciy/Cu6aH\nUeYXjqefBnpVVOBMWTgSCwLQw9eEvReCcYvWC58ci0Xc+UlQOatQaRCgcXXGjooR8PZmQHDsSAMd\nTgEB1IvOzrC0CnIcGAwMlrWmTvrSJepfiST+3/+RTMfEUMfcckvdchGdjv63Tz8lH5g1ixEYnY6O\ntGiXFLjlnENwb2fghx8osHNy6KkePpzFLZ6eVC4+PmTh8fG2yYIDoDnrLIrMlQ4OZtfZzz+n/3L6\ndB5jFxeubWGBGdsv9EWgthCDPXIgnD4Nw5pPcXjPXxE6xB+JSQoU9gyD94YNJFw9elgIWGgovXUN\nJXA7EOol1J999lk7XkYbQNq4Oh0bzgcGUuJLVVjZ2bxpbm7VhWVffsk/791L+Z6WxsPzxRd8miDQ\ngH/lFcqd1asZVho8mPmDtTMADh6kkSrlKkk5xl1l8vXFiyTHKhVDbdYoKaHzqVu3urlsPXvywO3Z\nA+h7uyErdCDyvEpREBiIr/q/igefC4FWC3iWj3HBAAAgAElEQVQ9CaRnAp99asYU7VcYPNmfVZ+T\nJzfNS/zRR7wJYWHsn2ojVeniRUaYKiupo9t6SGdTYDJxVkBCAp1EVo1wAADnrrkNf/xSBjdvJ7yz\nxYA5xz0x4PJeVA4eju4JG5B4/WQcOOCBm24KwqBb++DJNyeh2KiF5pwS5s+A3q6XEfzJy/h7WTkq\n598N52vHdcTXlOHg2LSJ4duwMNaAWMu3lBQqUTc3ys1//pNi9fBhykyF2Qj/z17HzSkpMF8eia09\nH8C5czY+ZOhQeqbPnCHRViiooceNYw6/5MW44QZ6tR95pN2+v0Pi2DHEf5uIhLPOEJR/IHfqvXTm\n37oYbz5SjGRVCApPu+DZZ4EE1av4Mk6FzHNaeHmYUH7T7QgsOYni4muRmwvccrPIfL2EBKY7Pvec\nQ/Zv1espo7OyKKMnTmz+e1RW0ttcXMyuoBERzCpIT6evrU+fmnWC+fkk4GfOAO+9Rz9cdDTJZlQU\ncOECOfGQ7t1gfsQMddx2wNyTyq53b+aC3ngjL9jV1eIhq51X7UCQ0gAzM5u2zoLAY7p1K+9NcTHX\n6bPP6Pfq3Zv859IlT/ip/wrn3Fzcd5szoj75D/wMJbjBZTt+TZ2L8f0yodNfBGZM5/r94x80SpYs\noUW/dSstmU6AFrXrOHLkCGKt43zNxOLFixEXF4fY2NgaBYrp6elYsGABKioqsHz58taNIB8xgslR\nTk4W60appMUzZAibQvv68v+5uUCvXujRgwclIoKKobKSudOff84IOEDjKSaGv0tRHKORyqawkCS8\ne3cS7uRkPq+iggf27rupgDpBsWqTsH8/uW1WVs1OGlLa+rlzXJ8VKywO4spKktjhw/k8jcYJeya8\niPAb9fi/9d6I6i2ge3ceTrOZnuOgQAFXPKIxOCOe3qumuO9Fkf17AgMpOaVCplpIS6Ps02p5Px2B\nUOflUceFhdE7cuedNfWct68Crv6uKCoGPDzU+Grw6xguRiKoqAAekWrklrvi7gVcw22pveHiCygr\naPyZTEDesUsILi6Gws0NzmfikT98HK5cabxgVoa9oLIZ/XN310Gvz+uA67ENSUSmpvInIIBEunt3\nS8u24mJL+6zERO4ftRro55uF0uMpyFcHYKgQhzOhVQWvVjCbgeRzangu/RCB2sKauXKS21ChaHou\nWRfG+fNMKR0QFI4LWVq4ORtwqrIv3ESu/759Idibw+UKC2PjhEuX3GFyIgnUBCiheOQhuIXqsdzN\nG4V6wNulAvg+gQZMcjJvpgMOcbpwgU50nY7zZVpCqM1m6mlpiEtYGHW7szPTEkSR6+TsTJ2zfDmJ\nZVISbY3sbOqI0aM5z00UeT+SMnXoNXUKoKyqGvfw4CHo04fr6gDdPJqKixfpb2zOOt9xB32XX31F\nb3VREWlXSQm9/xERVZHWEB3KnXV481tgVGE0blOexpwBp3HzCyIUvn8BisbXTHrPyIChUoRS5wNF\nXFzXJtQffvghPv744xZ94JEjR1BSUoKdO3fioYcewuHDh6tHj69cuRIrVqzAwIEDccMNN7SOUAP1\nC4c5c0iuvv2WBQNVpa63306u/e9/U4AlJlI5ZGRYXhoVxSyRvDw6S7Ra/u3YMXqyc3O5oZ59lhtS\nqoUcMaJTDwCyiWnTeJCiompWXpvNVMBeXlyP0lILoV62jMuu1XJNvL2BEdeqERTkg39PtqQ3fPUV\n5VJUFDB7toCYvzwKmNKAgACYVU5IPEXjpN5GG4LAEu7vv2eOQz2TKQYOZAgwN9cqR7mD4e3NfRgX\nx9QxiUyLIttBiSKN+OxsCqt779Xi56zHMWxAKW65RYM1C5UQBApHo5EK9/Jlfs+ICCDyLwOAzN5A\nbi5Kxk2vzgmMjWXNiIy2hhGAWOevRUUOkm9UhalTmQIXGUkx+fLLlpb/r75K0pGTY6nlXriQ/790\nCQjpG4jcwnHwSDyI3QNvRbduDLFfuMCIXmgoCfvPPwMajQpLl/og1DrcHhPDam+Fot7pt1cLzp9n\nBKCyErjhhu4ofHwlvvykEi49gvDxxzRudDqqu4oK8jgpGjpyJAtFQ0KAyCg1oPVB/CHWygUEOOOZ\n6+fC489fGKd30DzD7t0p59PSqLpbAmdnths8dIjvtX49//7II3T8jBtnoQslJZSHSUmUm6WlVCVP\nP23xzen17PpWWAhM7HMd7go9Sbb+yCO8Ub6+nYpMAzznzV3nzExGU0tKmJkxYQJV7tGj5AG7d9MA\n8fenPjp3DkgInYbdAwdi3t/coJDC17VybY4U98IHyYvhb7yCZ94OguOZebbRIkLdUjINAAcOHMCU\nKVMAANdddx327dtXTagTEhIwsmrSibu7e/WgF2tYjx4fP348xjdUOHHpEt2n0dE1w/0KBU/QuJqh\nbpWKyqG0lIfLx4fnIiaGJGbPHh6wp54iWdRoGBJauZLGfUEBpy2lpHAzBQVREHZVTJnCohYnp5rF\nHEolp0Bu2sRIrbXhuW8fhVJpKR+zTtezdtpJgws0GnqNA8PUACIAABt/4aFVqdhMvkd3kbknJhON\nI+liJk/mTwM4eZLK5o47HKLXPgCu36OPWjwmEg4fZvhRFDmpauRI9v7u1g3IylIgQ++GtCzLOgYG\nstb2yBFGc6sLTC7kUYFGRyM/ywkFBdzPUkRFhgyAXs4xY3i+KytpwHl60plQWUme6+bG+hAnJx61\nH36QXq1AVtY9+Pzze+CqBBLjgEhfPd55RYF+Mc7w9lfB39/iEczOttEOravkxrUSUrMDJycSmMf+\n7oO/PkHZKJ31ESNY23n2LOXEiRN07BQWmDGmTy7yi9QoKfaEVitg82ZGVC9fBpJvmoEhtzmIJ6Ee\nuLnRgWAwtK4Pea9e/NmwgURYqyXRq+1E8PGhzvn1Vz7Hz48Fi1pzCXDoFMSQUPy+Owjx8XT4nMgN\nBlY3cW6GA+P/2Tvz8Kaq9I9/kzZN9zbdC5S27PtakF0WAR2gCDMqOoiK+nMbcUHEZZRlcAV0xF1G\ngRF1RFS0igqWXQVkKVCg7KX73jTd0yT398e3aZK26Zo2STmf5+lDaZJ7b9577jnvedeWyNm8SFpF\nhSlJ+fHHTdWjAgLYeDIwkPNHnz4yTL5BzgVnwIB646N37lXCY+QgpGsG4bw7MKKeczsiLVKok5KS\n0MdYjLiZqNVqdKt24fn5+eH06dM1r+n1+prf/fz8oFarG1SoGyQjA+lL1+FAalf0v+EKBixv2pZL\nqaSlZdMmU1m8lBRamo37iNRU7lYBWmS0Wm5GQ0I4NqZOZVxhdDQXJEdJdGsLrOX6jRxpqodszv33\ns1Rn9+7cz+TkMKyhWzdTj5TDhznhnztHi8vly5ZdGNPSqExXVlL+3QuPMoBTkhhX00SfYFoaq/XJ\nZLRGOFK5ZZms7jyTlWXq/vvVV7SiDBjAxUGno5V98GBaGDZu5GbwrrtY2KaG1FTu8iorgSlT0Pnu\nezBjBi0KLbX+CDouxufb3Z2b5x9+YOyo0fj2yy8ci5LE8WpeFCYkhL0sNm4EtMWVSD50Bj4aX6jS\nK3FRMxTh4dzIxcRYr4cr4DM+cyYtfLfeSuPNjz9y/jImgo4cCSxcSOXwyhUq3z4+wH1Dj2PnxnRM\nDr6IwKvXA8HDMX48y70FBTlPA0q5vPVNfb74glWppk839ZSory+XTEYb3KhR3MD07FltbHn9HSAx\nET/ljcSqlIeg1btCoeB61lForpyLiqgnubuzVoCRBx5gCIhczpj1Cxfo3QoKAgZEl0D579eAqny6\nT+txi44bR49WYKBzRXy1SKGeOnUqUlNTW3RCPz8/aDQaAEBRURH8zTLW5GZmTo1GA1VrYiQ0Grx5\ncjLydb7Y8b0XVj+sQ0DS73xtzJgGC0Ib22q++CIHwbFjpmYmxvK8OTkM84iIoGJYVMRY19BQukYv\nXWIsfZcuzjNptQd33MHQCg8PTvorVnABABhrrVCYlNykJFrJvvyS1ljjUJkzh6EOYT6lGJr3O5B8\nnhqlXE6tshGKiqi0K5X8CMsiteGXthETJtBlfvAgleZPP+XY696d8W+urjTUpx5Kx+VjEs74hmDI\nEDdcd53ZQYxF85VKICcHMhkVaaFMCxoiN5cbXz8/unGNhTrc3Ew1pgsKmKg4aJDJ27NlCxU/hVyL\n+7vHw8fLgG8uDcHAoizkHuyF0DHd8X//Z7/v5QwoFJbKyv/+xznRWBQlJIS/G5u5dOvG+/X32w2Y\ndOxHTArfT82kiC6q8eO58XZ3d455zxYkJXE9l8kY9vHxx5wzrTWB7d+fVT/S0xnKIJOBFg1vb3xz\ncCC0kgFaAzCj72UMyjgPdL72OspmZrLKpYsLx1337qbX+vblz65d3PxVVtKCXV4O7Nteij4l7pg+\n2MUyntaMsWM5j7i5OVd3VKta5aOPPmr1Q2q1usUnHD16ND788EPccsstiI+Pxz1mJQwGDRqEgwcP\nYuDAgdBoNPD29m7xedCrF1x6yWFIq4Jrj0goft8LbPmYr1VV1Zt9ZjDQApORYWrLmZzMiWfwYLov\nsrK4c121irtXT0/2gDE3pHt6mlx018qE1RzMQ9vlcsrdxYW/KxT8KS3l/JSSQh3wwAEq4jIZ78PS\npQDWfw58vocr+oAB/EB1OFFDfPAByycplSwFWlraeDdFR8DPj6EgISGMPU1PpyvNOCdFRgK9lclw\nPfQtDl+JgXuIGsHBAywP0rcvB3dqqtCiBU3G1ZU/ZWWmbtUAvXEeHjQ0bN3K1wMDmZTs4sI43lOn\nAK8gb3QbPxoROUfhojuMjb/3RJfc01AMvx9wmghJx8DcK+jlRcUwORl46y0aKCZNokeve84hCl+t\nZrex6nBKwGHDpdsMNzeOR62W/779NpW8Y8fq90wqFPTuWfDQQ8jcHI+Szr3hW6pAeEA55ue9CXym\nviY7yioUnBMqKqz3OLtwge/z9WXoTF56JdKTNEjwjcak9FNwW7bM6vFbUyLRXjRYNm/NmjVQKpUW\nGemSJOHzzz9v8QmHDh0Kd3d3TJgwAUOHDkVMTAwWLVqEdevW4emnn8aCBQtQXl6OlStXtvgcAAC5\nHE9+0AvHduajez/AJ9vU9Sn1YDr2vLIJAwbJMPSV22q2QGfPclFwcaFb7b77qFyHhXFQuLlxsjI2\nkHNzo25uFqkCgJ8bPJixuWFhVAqNWfECSx5+mGUKo6JMC/XSpbRa9+nDjYunJxMfrlyhW9NLKoG2\nuBK/HA2HPj0GN3Y6BffZsyH164/0dMBXVs+CsXcvzToxMagovxtubvKaNvKDBztmwujJk7Q8TZjA\nOLQLF2hpkSS6gC9fpuzUao613r2Bm6bq4Hb8BHr6ZMOnf1d0VnUGNC4c4++/zwD/e++1aGQkEBg5\nfZrJsOPGWbpaVSomWp8+zY2bwWDaAI8dy7Gak2Oq6V7dBwxz53Kv6+8vQ3j4ZECahM2bd0BTpcGx\nip54YVgeAD/umgGHrDLhCEgSkzhzcrgGBQZSkc7NBd5/zwBDlR4Jx10QFyfH009Xz3/p1S3sjO6+\nEycslOqOgvk8aa2/Q7dujAo8eJARgR9/zLFbXs7XDQZOjb6+lrk0BgM9LIGBgGfPXliR1R1pOWr4\nF5/B0pijCCkvBmTV8YcdnLIyhm8olbRbBQVxTkhOrj90BqBY/PyAgVHF6J2xC6l6X5S6eeCkbDAO\nhxowzhbxHJLEB8HXt8F+E+2BVYU6JiYGAwYMwFjztkLVNDmO2QrmpfIAYN26dQCAzp07Iz4+vlXH\nNif00u+4KX498LsHg57nzQMkCW+8FAhNiQv2JGvx+tzL8Irpi/JyusyMu9iAACYvJCTw/8bEm5gY\ndjq8806W8Bw8mJ8zx9fXZADfsIElaEJCuIEVSrUlcjmtXObPQffuJvdR3750GV29ygUlVJGPW0++\ngP2Xo/E/7XxANwBXPaeg/Pt+UO4wuT6XL69VqvqLL7jl3bsXDz02DTvOdEFuLl1WCgW7Xpq7rOxN\nQQHLcBYUsPxQRATDVHJyuInr2pVK9V/+wvEZEsJIJvf+3YH/uw99jHXOnnqKi+rcuTTH+Pszc8xY\n+1EgqKa42BQPeugQFRCLco0BDGMrLKRHp7ycFSUyMhiDf/q0qSBHcTGVcKOVukbfkMkQ2M0XmZky\neHvoEVKQBJzVcscMAE8+yYf+Gsdg4JSVnMzqU6WlXEtkMka1PfIIH+sdO4DOmrNIK/VHcWUgPv/M\nDUqlHC+8ACrPFy/SN9+7N2NFOphCrVbTMm8M5TD+Xh/TppkcmO7u7LliTLf54Qca05RKtiwwVo/a\nvJljPigIuPsuCSd/yUJWpg4+CgWCM08B98yh9c1KR1mtlmFP+fmsFGKl2JRTsH07uyJKEpfSCRNY\narVHD+ufiY6mHavqSiEqiv2RqQuBn48BPuEe8Lnb0qhz+DBDRK6/vpnDdNs2umyDg3nz7Oh+sapQ\nb926FR5WutMkJye31fXYliNH+OQUF3NSqS6E6v7fc8hLyIO7uwJFnuFY9SwXiQULWDUiP5+lnb7/\nnoOnqoohuqGhTF4DGILg7k6PWmIi318fx4/zYczJMTUEE5D4eMYB+/szvs28GoiR+++nzOLiKG93\ndTZQXAxXNxmkPA20Ub3xw1WgjwcriFx3HUsapafXUqiHDWOZlk6dENI3EPOHMfTD6G3IznY8hfry\nZS4OiYm8TpWK462igv8/eZLJRdOmcfwOHQpIkAFjx3FR2biRO5ayMq7IKhUtgbWq2wgEAIeKqysV\nZR+fuopJVpapS9xXX1FRPnaM86Ox0V5oKJ9jFxfOndnZzI0oKWHln9GjgUeW+iJx1S508SpEwLB7\nqNlUd6vF2bNCoQZ1hGXLKNOcHHryZDJ6Q41x6ykpgAwSHvf4EN/63ordGQrAEID8/OpcJIWCWYxn\nz5pau3cwzMdsc7yMtRvBXr5MZdq4FhgV6uPHOZ7z8gBNbgV6uFxGlUcIKsoMePvyX/DikBEIirQe\nmpqQQIOIMRb4wQdb+EUdAPN8iaaGshobPeWVhkLSqhGmzEV0XxUeea8b+vUzva+igqUcPT1Z/GHQ\noGboSgcP8ibl5HB374gKdWBHCLCfNo2urqgoGO9eSQmAnr1QUNgV/3hEghqeyM+nUmd0Bxl3XLGx\npsodycl8OP72N75WVkYFLji44fs3bx5rKo8dSyujORUV/NfOXgq7ceAAkzezsugWvvVWWpfNS/B5\nejLMY+BAWrlG9wkH3uqKcQXJcLnDE+WB3PhoNHQ7yeVcdD75hJadmkoj997LwtlBQTXlM2bN4jOo\nUlnfENmL0FBuDtLT+e+ECbTQ5+VR9ygooBdEo+F4PXWK8dWXL1OxfuopIGTiRGo8AQHMRJo2zRQf\nco3j6xuA4uJCe1+GQ+HlRRduUhKfB/PnEKDbfORIVt+ZPJljztOTc9zvv7NUVkQEn+lnnuHYrKzk\neO3UiVbv0aMBn1H9MXpDCFfmoCA+gL9XJ4w7QzJDO2CMPa2o4OakVy8+31lZtHredx/nxD59ZdAr\npmGl+iusCHkAmk5BcHVlIZ8HHwSCg6troeXnd8jn3teXIYLnz9Nm0tKKWnPnUhdLSqK1OiqKa/u8\neVxLRo4ErpvgjoB/FOPld2U4XdkTOyp64fojLvirlTATgHqFMTTU2atA3ngjN9pKZf0VvMyprKQR\nMi2NtsyAQCV8w3uiUlMC9+HBiIiwvFcKBeVtrHPfrNyzm29mDM+AAXavACGTJGO0myUzZszA3Xff\njRkzZsCzVsR5aWkpfvjhB2zatAnbt29vlwsFAJlMBiuXax3j+6vv3tGjdAv5+nLyf/hhJtBkZnIC\naqgBpFrNMNSKCloHtFr+/uabDTQYscKlS0xmlMno2rfHOGiRPG2EJHHR/fBDzvMhIZThsGFcOGov\n5nU+DNTc07w8bnh69aIB9p//pA6p0zH5pL2wtTxzcjjO+vQxhRXt3MkGQsZiHV5e1JUzM2lNuXyZ\n88qDD3ICrC0rZ6GtxybzQuo7vq3+3rJjtdV3tqU8JQl4913GU44cSS+rcXh9+y29fAEBHJPjxtHi\nFxnJUDmr5fGcbJy29fg8f575IzIZm+j4+tLSf+AA5wRj+4XVq6vDCKpNh3Fx9B7IZDQYGA1Ajow9\n1yGADpKNG+nI1mho8Y6NZZrJH3/QYhoQwHGtUgEbN0hY9ZIMfn4M43jqqYaPf+kSjz1wYPt0dre3\nPFNS2Oa9uJhrWFISf7/rLlNN9fvuM41hI2q1qRNrfd7qBjGaztuA5sjTqoV6w4YNeOedd7Bs2TK4\nuLggPDwckiQhKysLOp0Ot912GzZt2mSzi24zagm5a1cGyRcX06Lp48N4W2OliYY4dIhxggoFD+vi\nwuM1++aDhkOtluPg+HG7b6zanYIC7l579uTvOh1leewYJzWzaop1qXVPg4JM4R1yORNI8vKc39gV\nElI35m7qVFoF336bE1V0NMfPdddxYXBz4/g2dq9zFgVF4DyUlTFedehQLoAlJZxHq6oYquDjwyIy\nwcF8HlesoHu9wflVjFMLevVizLRcTtGcOUOrtbEq6MGDVOZqwhyq5RcZaQq3udbWlJby5ZeMiEtL\no+z8/WmhBpj/5OXFcM1LlziOb5gqw8FDNKbVk2JWB0cKJWwPEhOpX7m6ck6QyxkgUFRE77FSWb+z\nxFiTvkU4yPxhVaEOCQnBypUr4efnh9tuuw0ZGRkAgK5duyKsFS3liouLcccdd6CwsBAPPPAA7rzz\nTovXjZ0PZTIZXnzxRUyyEuzfUoKD2dmwtNSkrBiV48aIjKTCYjBwhxUaymO0pLrfiBF04ctk1jNk\nm4pWyx12air7mjhDIXQfHyrQcjnl2q0bC3GMHFk3hCYxkQk6fftyEWnoXhkTEnNyTJOiM5KdzYRJ\nT09Gq5jLJCKC8gsJ4VgcOZKx5tOnU54BAaJYgqBtMBiYz5CbS+Vu1izT/OfqSm+KTkdP0wsvcL60\nyGUQNInUVFPzlYULOUf26MFNdK9eDLlZvJjGHXMGDaIlW5I6ZIRHm+DqyrUnIgJ4+WXOn0bZTZlC\nL2p4uCkUtEsXegYqK8XYNqe0lJEXKSmUqVLJzfT69Zw3brqJa5VS6fzhL9awGvJhZPny5fjqq6+g\nUqkwb9483HLLLQhthTTeeOMNhIeH47bbbsOkSZPw66+/QmE2Kxj/5lKP1mRvVwbAGLaqqrrx0PVR\nXm6qf1kfxjyc2pNic0lIYJK8pyeVyGeeadrn7C3P0lK6hSMiuAgD/A61N5tLltAaUFTERB1H3fHb\nUp7//S83XOXl3CRNn275em4uLYMhIfXLzNkRIR+2xVbyTEmhouztzUXyvfcsx15lJZXBTp2s16bt\nCLT1+HznHc7rFRUm97jBwE1MUREV7NauG46CPdchg4HGCEmi52X16vpznRSK9gnXsAX2kueBAwyJ\nVSrpvbr3Xs4BBQUM54iKaiSU00Fpjjwb/XrLly/H6dOn8e677yIzMxMTJkzAlHqaojSVQ4cOYerU\nqZDL5Rg8eDCSkpIsL0guxw033IDbb78dhYV1k4aWL19e87Nnz54WX0dLCQtrmjK9ezfjs5cvp+JY\nH8YmJq3FmDhZVua4ymZ9eHnRLfn++5TVtm31K4Y9e3IR8fW9dppRRUezcsfx48Bnn9FibU5wMN/j\n5dXxlGmB46JSUfnYuZNhCJmZlq8rlbTkdWRluj3o1o2K3PnzLF/49ddURoKDKd+OokzbG7mcFv/y\ncuafPP8846bNcXd3HmXanoSFUVZ5eaxs8vzz9BQHBHA8O6My3Vya3Ho8JCQEYWFhCAwMRG5ubotP\nqFar4Vvtv/bz86vTdXHr1q1QqVT44osvsGrVKqxdu9bi9dbWwG4Oly+zDmVUFFtmN9Ct3ILCQibn\nqFS06Fy9CosSMbamUydmdavVDdeEdETy86k0RkRwkZ43r+7kdc89rHJh3DisX88H9a676H5rDWVl\nvIZOnew/aVZWUnEOD2cy1969VJglicpLUxxD5eXApk0cg3ffbdnVTiBoDXo9x9WQIRxnCgXDsTp1\nsu15NBrGD+t0fPZbkqPi7Nx0E5/911+nMvLLL0ySO3SIVSjGjqXXSmymW89jj7HG8pYtjOONj7de\nB1mSWHnJ19d6da+EBOCbbxj2NHv2tXOPevSgHrJ+Pat15OUx5+y771gZ6L77GBLWkWl0z/Dee+9h\n4sSJmDJlCvLy8vCf//wHJ0+ebPTA2dnZmDRpksXP7bffDj8/PxRVd8XSaDRQ1Soeafz/nDlzkJiY\n2JLvZDM++4wD49dfOSCaQmoqQy7OnWP5zy5dml8BpCWEhHCn7Wy7wMBAxv2lpjJerT6lVqHggxgQ\nwFJde/eya+LWra07d2kpQ0j++U+GWNgTnY6x/S+8wIZBAKsBeXpyY9bUiej4cWD/fiYwffdd212v\n4NpjwwaOz9OnGcMfENA2hoLffmPS44kT3GRfixgTETMzWU1lwgRuaNavZ8LXl19ycyNoPe7ujEnv\n2pWybShtKy6Oltfnn6fCWB/r19O4tW1bXQ9OR6dTJ2DOHIbSBAYy3GP1am4CX3rJ3lfX9jRqc01N\nTcW///1vDGlmod7Q0FDs3r27zt/ffPNNxMfH45ZbbkFCQgL61NIUNBoNfH19ceDAAfSws7k1OpqK\niYdH00MNUlKoqEVFsTnVokVNt2xfi7i4AE88QZk1JbkzOJhuZa229UmHubm0dAcFsbrIPfe07nit\noaSEm4TwcCosWi3L3xm71TW1LmdICBcIYzdFgcBWHDvG5y83lwpFZCSfRVsTHs45U5Ja74FyZk6e\npHKXmcleTMYE7osXOWeJsBrb4e/PhMTKyoYbiiQkcDNZVFRP87Bqunfn+/z97dpjxG4MGmRat375\nhX/T602VMTsyjSYl2hpjlY+CggI88MADWLBgAU6cOIGjR49i4cKFGDFiBDw8PODh4YGNGzci3Mxn\n3Z7B9hUV3GUlJ9MS09TCJhoNS5oVFEEsfL0AACAASURBVLA9rCNX3LB3UmJDVFRwAalPkUxPp5x7\n926dRV6vZ1byiRNsAjNmTMuPBbROnpLE+rG7d7Od+MSJ3GC0xF2YmsoNijN6LIyIpETbYgt57t/P\najvDhnHz6eLCcaZU2t5ocOUKn8/u3R3TZd4ceer1DJFpbjWoffvYLTwmhuFtLi4MUbt0yVT+tSPg\nqOuQXs91yFzBTkwEPvqIxpyHH66/KVtFBTc9nTrZJ1zJkeSpVtPzmpXFTXhNOdcmotVSD7Nn87vm\nyLPdFerW0F4D5cwZut2VSoZv2Kr8UHo643X79XMMq7W9HzyDgWWg3N0tNx5tJf+2prnyNBgYFuTp\naaoZazAww//oUbp5Fy50TIWirREKtW1pqjxTUrhZ7du38ZyC/ftZ2i00FHj22Y6j4DWFpsqzooJN\nLq5cYQz0rFkM7zpzhl5PZ5nb2pL2XofKyxmS2bkzPS71UVbGhjqpqSzVWrvKkiNj73XdiFpNg2T3\n7rTqN5e0NCrjVVXAk0/SgGYPbFrl41rEmOVbVMSJzxakp7Pix+rVtDoIGJv+yivAypUMczBy8CD/\ntaX8HZGff+aEsXIlNxYAv/PRo7RA7d3LHbpA0B5cucI56rXXGP/ZGLt20aWdmcnPCuqSkcHk9pAQ\nzncA5//Vqynr9HS7Xt41yTvvsMzsypWMma6P1FRuLgMDmaQoaB5VVYyZfuMNrnEGQ/OPkZjIzb3B\nYNIJHB2hUNfDmDG0Cvr7N9Aqt5kUFDA+y92dD6uAi42LC5VG8wSPsWNtL39HJCODngqt1tQBzc+P\nTX9SUhg/2dTYaUFdfH0DIJPJ6v0R1CU/n2PRza1pit4NN1Ah6dzZsUPb7Ennzqx+kJMDTJvGv6Wl\ncR2orOS6IGhfUlK4ESwutq5QR0QwrKOggN1pBc2jooJrukrFDbex50ZzGDiQOoCLi/WqK46GCPmw\nQmUl409tVe9Tp2NmdmoqS/A5QsKYvV1DeXmsruHtDcyfb5lkY2v5twfNlWdODvDpp5zc589n8itg\najLQERu2NBVbjE3rYR2A7UI7Ok7Ih1bLGOnsbI7HppTDa6x5VUelOePTYKCCYZzfUlKAzz+n0nbb\nbY4R/mdP2nsdSkxkWduhQ4EZM6zPsXo9nwnjvOws2HtdN7J3L3+mTQNGjWrZMaqq+Py0RfJzUxEx\n1IImIeRpW4Q8bYdQqG2LGJu2RcjTdghZ2hYhT9vi0DHUP/30E/r27Yvx48fX+/quXbswZswYTJ48\nGektDTAzGFil/dlnWZhX4NgUFQFr1zKguhVNgzosO3YwO3PXLntfiUBgO44f5xy9ZUvLgiyvNYzy\n+vJLIS8BS+ysW8duKhkZ9r4a5yUxkSVINm+mW6IVtLtCPXr0aJw4ccLq66tWrcLOnTvx6quv4pVX\nXmnZSdLT2fqorIzdCASOze+/c7FIShIZILUpLqZ/WKtlfEhFhb2vSCCwDRs2cI7evl1k5zWFjRup\nRG3fzkBswbXN8eNsnXnlCjunCFrGf/9Lo97OnSxL0graXaH29/eHm5VMq7KyMnh4eMDLywsjR47E\nafPSD9UsX7685mfPnj3WTsKfwkJURPXBiROMVxU4HjodcKqsO9IrgxjM5gjB5Q6CJAFnkz1w2XMA\nM8YiI0WWosBpSE2l8ceq0adHD7b7M87X1zhlZayJb0xQrkPPnqxF5u/PbC+BU5CczCpWNncqhIUx\nuFivN9VdvUZJS2MXZZ2uBR/u1YvlRIztX1uB3WKox48fj/3791v8LSMjA4sXL8YXX3wBAJgwYQL2\n7dtX83qzYoPUaiArC2/92ANHT7jCx4dlXMS8bcIRYq02b2Y3JXd9CZY/WoDOoyKcNhPP1vLcuZNG\naZlei6XzUtFvSvg10x5NxFDblvZ+1pOT6YnWaoGbb2YN5jpotexSEh7udBNzW8jzlVdYl16lYte+\nOh37tFrW4AsN7VAKtSOsQ23F+fMsG6fTMQF1xgwbnyAjgzsxsw5IHVme9ZGSwhKIlZXAzJmUc7Oo\nquI8FBJSr0LdHHm2WX5xdnY25s2bZ/G3sLCwGmW5Pvz8/KDRaGr+79Ka1PFqq8fVj7jxKCnhJsTJ\n5u0OT0oKs6grKrxR6OONzs6pS7cJ6emsdFKld0Oub3fg2tClBR2A/HwucEplA2VC3dzYQUYASQKu\nXuX6VFTEyI46CrWbG9Cnj12uT9AyzJ+DNonSaUopng5OQQEjId3dqU80G4XCZs9VmynUoaGh2L17\nd7M+4+XlhfLycpSWluL06dPob4MixPfdB3z9NWsaRkS0+nACG/P3vzNEuGtXsVbUZsYMThbe3qxN\nLRA4CwMHsk51djZwyy32vhrHRyYDHnwQiIsDbrrJegc/gXMxdCgweTIjm26+2d5X0zHp35+l+TIy\ngFo23Han3UM+jh49imeeeQZHjhzBiBEjEBcXh6SkJBw9ehQLFy5EfHw8XnjhBXh4eGDTpk3o0qWL\n6WKvMVdGWyPkaVuEPG1Hc2QZFxeHu+9+GLXfXliYBhHyUX1kMTZtipCn7RCytC1CnrZF1KEWNAkh\nT9si5Gk7miPLd999F4sXH0Jl5Uu1XukKoVBXH1mMTZsi5Gk7hCxti5CnbXGIGGqBQCBoL2QyHwAi\npksgEAgE9qHdy+YJBAKBQCAQCAQdCaFQCwQCgYPj6xsAmUxW58fXt3V1UwUCgUBgG0TIh0AgEDg4\nxcWFqC/uurhY1JkUCAQCR6DdLdQ//fQT+vbti27dumH8+PEWr2VkZEClUsHPzw9Dhgxpdtk9gUAg\nEAgEAoGgvWl3hXr06NE4fPgwSktLqzuZmXj11VcRHR2N1NRUqFQqTJo0qb0vTyAQCAQCgUAgaBbt\nHvLh7++P9957DyEhIXVKkSQmJkKlUmH27Nk4f/48UlJS0LVrV4v31FbCBa1DyNO2CHnajubL8r36\njtLQGdr4783/TMPfuSWfaf77BE1DyNN2CFnaFiFP+9DuCnVVVRX27t0L/3p6gOv1emzbtg0qlQrj\nx4/HqlWr8NFHH1m8R9RXtB2iXqVtEfK0HUKWtkXI07YIedoOIUvbIuRpW5qzOWkzhTo7OxvzavWB\nDAsLw9SpU3HHHXdgzZo1dT4jl8uhUqkA0JJ96dKltro8gUAgEAgEAoHAJrSZQh0aGlpvUuEzzzyD\nhIQEnD59GgC7nD3yyCMAgEGDBiE+Ph6jRo1Camoqxo4d21aXJxAIBAKBQCAQ2IR2bz1+9OhRPPPM\nMzhy5AgAICsrC/fccw9uuOEGTJ8+HX379gUA9OrVC3FxcQgPDzddrHBl2BQhT9si5Gk7hCxti5Cn\nbRHytB1ClrZFyNO2NEee7a5QtwaHHSgGAyCT8ceJcFh5NoQk8UfueD2JHE6eTjouAQeUpa2w0/jt\nsPK0Ex1OnnacVzucLOvDYGg32Tq9PNtRVk2hOfLsGI1dqqqAzz8H0tKAv/8diIpqv3OfPw/8+9+A\nry/w9NNAgOhcZnMSE4GtW4G+fYGUFODsWeDOOwFRVtE6f/wBfPwx0L078PjjgIdH251LkoCffgIO\nHgRiY4GYmLY7lzNTXg6sXQskJwP33w9cd13rjpeaCnz6KRAeznnPzc0mlym4xsjLA1avBkpKgCee\nAHr0aN7nS0qAjRuBykrgrruAoKA2uUynxGAAPvkEOHAAmDUL+Otf+fczZ4AtW4D+/fk3B1IgW41W\nC2zeDGRlAQsWAF26NP2zW7YA27cDEyYA99zjdMagdr+Lp0+fxtixYzFhwgQ89NBDFq8tX74cQ4YM\nwaRJk/Dmm282/aBnzwK//gpcvQp88YWNr7gRdu7kQ5OeDlTHhQtszH/+w0n/yy+BQ4eAwEDgu+/s\nfVWOTVwc4OMDJCUBV6607blyczkRFhUBH31EBVtQl0uXgAsXAG9v4IcfWn+8LVuAy5eB+HhuOgWC\nlnDqFNevqiqgJc3UDh3iBv7kSeCXX2x/fc5MYSGwfz/QuTPnZJ2Of//kE86bP/xAvaUjceoUsGsX\n56YtW5r+Oa0W+PFHKuB79wJqddtdYxvR7gp179698dtvv2Hfvn2orKzE8ePHa16TyWRYu3Ytdu/e\njSeeeKLpBw0MBNzdgYoKIDKyDa66AWJiOBB8fYFu3dr33NcK3boBGg0QHAx07cqJaMwYe1+VYzN6\nNCfzkJDmWQhagrc3oFLxfNHRTmdVaDciImi9U6t5f1pL166ce9zdhVVQ0HJ69OD6pdMBw4c3//Oh\noYCrKzfSnTvb/vqcGT8/oE8fes9HjgRcXPj36GiguJhzZz0lhJ2aoCBAqeTc1Bx9TKEARoyg561v\nX45JJ8OuMdS33347Xn75ZURHRwMAVqxYgbi4OKhUKqxZswaDBw+2eL9MJsOyZctq/j9x4kRMnDiR\n/8nMBAoKOHiNg7a9KCyku9XLq33P20qcJtaqspKhNeHhtLpqNHxoHUxxcyh5ShKQn88J29297c9X\nWMhFo0cPm4SXOJQsbUlFBV3kgYGtH796PXDuHBftRhSZDitPO9Hh5FlSQoW6pcrdlSu0cPfs2exx\n3eFkWRudjrpJUJAptEOr5bMbFkZDkQ1xCHmmp9Nj2bt38/Qxg4He6IAAbtIcAIdPSvz+++/x/PPP\nIyYmBhs2bKj5e2FhIVQqFS5evIiFCxdi3759lhfrCAOlAyHkaVuEPG2HkKVtaWt5+voGoLi4sN7X\nfHxU0GgK2uzc9kCMT9shZGlbhDxtS3PkaZdI+NjYWJw6dQo+Pj7YuXNnzd+NTV16NDcpQiAQCAR2\ng8q0VO+PNUVbIBAIOhLtrlBrtdqa3319fS3+X1xcDADIy8uDzhi8LxAIBAKBQCAQODDtrlD//PPP\nmDhxIq6//nqkpaXhxhtvxKJFiwAAS5Yswbhx4xAbG4vXXnutvS9NIBAIBAKBQCBoNqKxyzWMkKdt\nEfK0HUKWtqWt5SmTycAQj3pf7XD3UoxP2yFkaVuEPG2Lw8dQCwQCgUAgEAgEHQWHauySkZGByZMn\nY+zYsYiPj2/vSxMIBAKBQCAQCJqNQzV2efXVV/HSSy9hx44dWLVqVXtfmkAgEAjqwdc3ADKZzOqP\nQCAQXOu0u0Ltalasu7y8HP5mheQTExMxevRoeHl5wcfHp6bqh0AgEAjsR0Nl8azHTgsEAsG1g11a\n0Zg3djF2SQQAvV5f87ufnx/UajV8fHwsPrt8+fKa3y06JQoEAoFAIBAIBHbALgp1bGwsYmNjsWjR\nIuzcuRNTp04FAMjlJoO5RqOpafRijrlCLRAIBAKBQCAQ2BuHauwyaNAgHDx4EKWlpdBoNPD29m7v\nyxMIBAKBQCAQCJpFoxZqtVqNP/74A8nJyZDJZIiKisLo0aPh5+fXohP+/PPPeOONNyBJEqKjo2sa\nu6xbtw5PP/00FixYgPLycqxcubJFx7cJZWXAsWNAcDDQu7f9rkMAZGUB588DffoAISH2vhrn5fx5\nICcHGDYM8PS099Vc2xQUAImJQLduQJcu9r4agaBxUlKA5GRg4ECgHs/xNUluLnD2LNCzJxAebu+r\ncXwkifNeSQkwfDjg5mbvK7I5Vhu77N+/H6tXr0ZycjKGDh2KTp06QZIkZGZm4vjx44iKisLTTz+N\ncePGtd/FtlfB8vffBw4c4A1fsQLo2rXtz2kHHL4AfGUlsGQJFZDQUOC11wBXu0QpNQmHlWdKCrBs\nGaDVAuPGAbXKVToiDivL1iJJwPPPA6mpgLc3sHo1/21jWivPhhu3AIBo7NJhKSoCli6lIhQdDfzr\nXzY9vFPKUq+nTLKyuMFYvRpwd7f3VQFwYHmePs01XKcDbr4ZuPVWe19Rk2iOPK1qJ99++y3Wrl2L\nnj171vv6+fPn8cEHH7SrQt1uaDRUpvV6oLzc3ldz7aLT0Vvg7c3J3GCw9xU5J+XlHMtublwcBfZF\no6GXoLKSmxyBwJHRajlWPT3F/GFEkrgmeXtzjaqqchiF2mEpK+M65OLCObAD0u6txw8dOoQnn3wS\ncrkcI0aMwBtvvFHz2vLly7Ft2zaoVCrExsbiiSeesLzY9tp5ZWcDcXFARAQwbRrQQeusOuxO1pyE\nBOCPP4AJE4D+/e19NQ3isPKUJGDnTlqqZ84EwsLsfUWN4rCytAUXL/J+DB8OjBzZLqcUFmrb0qHH\nZ30cPMi5eNo0hirZEKeV5dmzwJ49wKhRwNCh9r6aGhxWnjod8OOPQGEhLdRmJZMdmebIs1GFuqKi\nAl9//TWSk5Oh0+lqTvDiiy+26OKys7OhUqng5uaG+fPn45lnnsGAAQMAACtWrMC4ceMwZcqU+i/W\nVgOlogJISwM6dwY8PFp/PCfFYR88c0pLgcxMht04eMyVQ8tTr2cMZFAQ0ML8h/bEoWXZGozjOSIC\nUCrb7bRCobYtTjE+KysZWtSpk0PnTTicLCWJxgdPT+ZRORkOJ8/aGOXr4eEUeVE2CfkwMnv2bPj7\n+2P48OFwt4FLIzQ0tOZ3hUJh0egFAJYuXQqVSoU1a9Zg8ODBrT5fHQwG4PXXgUuXgKgo4MUX6YIQ\nOB5aLbBqFZCRQev0kiUd1lvQ5vz3v7Sm+PsDK1c6hVLd4dBqgZdeAtLTxXgWtC2SBLz5Jq2oXbow\nh8LBDRIOw6+/Ap99BigUwD//CURG2vuKOha7dnE9cnMDnnuOcfkdhEYV6vT0dPzyyy82P/HJkyeR\nm5uLPn361Pxt0aJFWLZsGS5evIiFCxdi3759dT7X6sYulZXA5cvcGV29yvhSUZ7PMdFoaM0LDgaS\nkrgZEpuflpGYSGVarQby8oRCbQ+Ki7k5DAnheNbrHTrJVuDE6PXAuXMca+npjPcNCLD3VTkH585R\nmS4v5/MqFGrbUlu+15JCPWbMGJw8eRKDBg2y2UkLCgrw6KOP4quvvrL4u7GRS48ePax+ttWNXTw8\ngHnzgF9+Af72N6FMOzKBgcCsWcBvvwF33imU6dYwfz6tLhMn0jMjaH8CAoDYWGD/ft4PoUwL2gpX\nV86ZcXEcc6LUXdOZNYuGnMBAwIZ6j6CamTO5yVOpgLaIQrAjVmOoBw4cCIDtwC9cuIDo6Ggoq2P+\nZDIZTp482aIT6nQ6xMbGYsWKFRgxYoTFa8XFxfDx8UFeXh5iY2Px+++/W15se8QGVVUBJ05Q0Taz\nnndE7Bprdf48M8YHD+4wrkiHj10DaLlKSODGsm9fhw05cApZNofiYnoJIiLsUntaxFDblg41PvV6\n4ORJWg3792/3OcFuslSrGRLTrRvLsnYQnG5sGutT63TUB+Tt3m+wQWwSQx0XF2ezCzLnq6++wpEj\nR/D0008DAF555RV8/vnnWLduHZYsWYLExEQYDAa89tprbXL+BjEYgHfeoUXUywt49tkOr1S3K3o9\nk2TUauDf/+YD9Je/AHfcYd/rKi1lyaNrwQL+44/Ali2ctJYsYaOGxjCXjyTxHvr6Ok2WtkPw9ttc\nvL28gFdfZchNaSn/D1CmPj7Ckihof+LjgU2bOCc89hgQE9O8zxvnhNrj12BgqTQvL8fbuEsSc6lS\nUzmPvf66ZYECSeLz6elpUvAkiZZVd3cmdwu4lhcUsHJUSxNfjxwB3nqLv991FzB1qu2ur52xqlBH\nVbuFCwoK6rzm4+PT4hPefvvtuP322y3+NmrUKADABx980OLjNkhVFbvEhYRwF26NJ5+kWxxgA4zi\n4ra5nmuVTZuAvXupWFdV8QHMz7d8j8HAYvn+/u2Tmb5zJ/D557QaPvusQ2fDt5jiYi4OoaEsWSSX\nczPTlFqg5vJ55hkm7HzzDT04y5Y5RZZ2m5Kbyzmlsc1Fbi4Vi4oK3o9Nm9iNdfJkhoJs3crXX3zR\nKcoaCpyQ8nI+/2FhllbAwkIqvHp9y+oDx8UBX3/N8btsGecZvZ5K0okTVJDmz7fd97AFBgPXHh8f\nxpdXVloq1J9/DuzYwZCPxx5jCM2+fcCGDXzen3++ZaFz5eVUQMPDHc4S22yys5lUePAgv8+qVSwh\n2FzUam5W5HL+XlTE++GEa0ujQXzDhg1DSkpKTXxzYWEhwsLCEBYWhvXr12P48OFtfpGtQq8H1qxh\nEtCAAcDixaaBnJ/Pv/fowXipfftYYig9ne8dMsS+197ROHWKykN+PnD99fzb3/5mej01FfjkE4aD\nhIUBy5dzwmtLfv2V15SSwp+O5pHIzWVVj+Ji5g7ExrLahLd30yxRRvmkplI+p07xs8XFjDNs7qRX\nWAicOcNElE6dWvadHIXDh9lVVaHgZqyh5JpHHgG+/ZbWrcxM4OhRloLctYuti728TEmLQqEW2JrS\nUs6nOTl1Fdzp09nFzs0NuO665h87MdFy/IaGco4/cYIhTr/+Si+kIymQLi7AokU0GFx3neWG2GDg\nNUdE8Dvk5/M7nT3LuTMzk783V6EuK2Pn5awsYNIk4O67bfmN2p/MTP7odBxfu3c3TaHW64Hjxzne\nBg6k8TI7m7Lt358dKCsqgP/7P2DMmLb/Hjak0RE+depU/PTTT8jPz0d+fj5+/vlnzJw5E++++y4e\ncvQWxpcvAx9+yMYgnTrxwa+s5Gt6PfDKK8AHHwAvv8z/z5vHwTF+PG+qiwtbkP/0k6lj4s6dtNTF\nx9vvezkrt9/OneiECcADDwBjxwKHDnHHrlazpNiXXwJXrlARzMri5LZzJz0HhYX1H1eno8Xv+ec5\n0TWHG27g+SMjO2aL+dRU7vi9vWkRVamA++/nvahdB1mSgB9+4Pg+cICy1On4uYoKhin89a9UCocP\nB3r3bt61SBI3tx98QGtGSYntvqc9OHWKlquyMo7ZhoiM5Hj+5huG2mi1/ExgIDcqBQXAsGGMaxcI\nbE12NpXpoCDgzz8tXzt5kmVkDx2igeORR4CNG4Ft25rWyXPuXHr2hg83jd/AQMbDpqZSgXckZdpI\n//7A448Do0db/l0u5+Z42zZa7o3VUcaNo+ySkhg6B1Cf2LHD5HltCOOaFhJS9x44I336UFfy9aV+\n1bcv8N57lOnLL1NGP/3E+dGcX35hScfXX6di7eHBDd7ChZwHS0q4NiUk2Od7tYJGLdR//PEH1q9f\nX/P/adOmYfHixfjoo4+gbUHb3IY6JWZkZGD+/PmorKzEypUrrTZ4aRIGA/DGG1QESkq4c5492+TW\n0etNikZJCUMQliwBHn7YFPN17BgtUACVudmzqdgFBACbN3P3dA03hmk2I0eaOsOlpfGh0utpsbzr\nLt6rnj2paMTE0AJw5gxrVspkVLofeaTucS9e5AbHx4f3Z9Wqpl/T1KlU7JXKjhlD3acP0K8f5R0b\n2/B7CwsZehAQAKxfTwtCcTEXxdBQ4Kuv6P5cu7bl11NYyGeuosL5225PmcJNelhY496sPXs4RjMz\nuWB7ewMLFnDBCQjgxuUf/2g4JE0gaCldu3LuPXWK1T/M0Wg4v547R0vjsWOsRDNgAOfUxtbhPn24\nUTbHxYWKVXm584XRSRLny+uvp26Qn89nvLKSr3l4UCGWJD6/W7ZQfm5udZVzczp3pgU3IcH+eUO2\nwN2dnrklS6g/PfccPR2XLgHduwPbt9OQkJ9v6RFRqzkH1hdiNGAAIwYKC+k5cTIaVajDw8Px2muv\nYd68eZAkCVu2bEFoaCj0ej3kLdh1RkVFYffu3TWdEhMTE2s6Jb766qt46aWXMGjQIMycObN1CrVM\nxoFfVERL2urVliXy3NyoHOzeTcXY+Jr5e8wzOw0GKl1dulDBiIxsk+oUksS1Nzub48nRc5RKS4Gf\nf+acOXVqMyqBGQz81/hghYVxh3ryJHDTTXwgASoYxvg+a5uXoCBTGEJLWjk724TfHDw9aXG2QkUF\n75+LCzB9kjfcQkNpRenWjfWqc3N5U11cTPespchkfOZ27OCGydnr4kZFAW++iYwMYPdPnGasRtHo\n9ZRpaSnHsZ8fNylhYVSye/QQZfQEbYerK/DIIzhyhHrzJPOIq8mTqeRUVpoUReNYbE03T7nclHTr\nTMhkQK9eMCScRHJpME7t9sXU2YBnWBjQqxct/ZMn830GA/+VpMbnR1dXwNG9+i3B1ZU/np5cr11c\nALkcmfJw/HplHIYk+8Ai9X3mTFPMeu0NiL8/Q5OclEZbj+fm5mLFihX47bffAABjx47FsmXL4Ofn\nh5SUlAZrRjfGPffcg6VLl9Y0d5k8eTJ27doFAIiNjcVnn31mkQApk8mwbNmymv832tglJ4cxUL16\n1S3OfvIkXa1jxpgW9tRULnyRkaaHZc8eKmo33MDJ4bvv+HPzzY1b/FrA6dMsAgAwtOsf/7D5KWqw\nRXmdL78Evv+e88k//tHMkKc//2Q77EmTrGdNSxLvVX4+XXRHjtBlFhNjmTl+9iwb9Uye3PSNTlkZ\n8J//UGm8775WF/B36HJFeXn02FRWUsGubqn744+mPNx77gGmjiqmdSYqiu63PXvoJYiIAG67rd12\neA4ty1o89xx1Yuh0eOX+ywjzKqalv0cPYM4chpwFBlKeBgPnEQ8Pbv5KS03ybkNvV1Pk6esbgOJi\nK2FVAETZPBPOND6NZGXRoAgA4d4avPxEHkMbjPNoVRXw0UfUuAcNorVw5MjGwzUkiWvib79xTRw/\nvlnX5XCy1GqBpCQc+UOL93f2RIXSD3PmVKf7nD3LHKuRIxnqkJzMUENPTy7cgYE8RkkJc7ICA/ne\ndqxyYjd55uXVhHBIYeF4bIkbyvJKIQWH4I3lGvh99THXnQULmEPi4sIwGgc3JNi09XhwcDDeeeed\nel9rjTJdX6dEvVkMkp+fH9RqdZ2KIs1q7BISUrcEi1bLB/+xx7iwzZzJB+LkSSockgQ8+CB3TnI5\nFTQjZWWMqwoMZILRlCk234ErFKYiDK0xDrQXbm4UmUzWAm/1iBH8MaLVmizSRmQyxuIZm7totVTu\n/vlPUwxvRgbL8JWXc/Nzyy1NO/+pU0ws8/DggrBoUTO/gB2pquJEZJTV7t00NU+aBNx4Y933b9tG\nJU+n40T2+usALOcyhQJ08RrjctcQmQAAIABJREFUIIODgd9/p9KnVlPjFnAx2LoVGDoUmD0bSjc3\n6LQS3M6cgMu7G4CME0y22buX4UvJyZT5iy+aPC9GzOVtZ6hMW1eKBQ5ASQmNACUlwL33srqCNQwG\n/lQ/5NWGQ2jziqBM2AVotjExbtIkvl+h4M5QreYm8Oabmxb7nJ9vWhc3bqRVxZnD5z74ADhyBLrK\nIaiQD4Ykma1tfftaPq8HDnARLC9nqExQEENA8vM5b8pkNGBUe+E7NEFBJn1LApSqPKhPXYVHdgaU\n78cBuhJTftS2bVx3V60Cpk2r/3i11zgnwKpC/dhjj+Gtt97CrFmz6rwmk8nw/ffft/ik1jolmoeQ\naDSamsoiNuObb6g4XblCS11pKa3YAHedRmXj6lVg9GgkJrLoRFQUc+iUSiVj0a5e5b/u7ra9PjCE\n+LHHuNkbO9bmh7c5M2bQe23MU2sxxnszfDjjpM0nZL2eN0Kng/5qKs4XhiLuVQPmPk8jIHJyOKF5\neDB+q6mEhfEzWi0F7ywYkzR792apR4Bx5gEB0G7+Eu8cGousUh88/LBZIrq3N+WoUHDcVzNlCu+d\nXG7Fu2Bs967XW4ZAOSk//0yr/IQJtDi1aK7esIEy+egjYOtWPNU3BgfmPISo8q0I7qIEMmUMNfP3\n5/hqqktYIGiEPz88Cnz0JwLD3RAdvh2ye++t/435+cBrr3EcLloE9O+P4GDg6aeBK98lY4TiZz70\nycmWn9Pr+XdJavrz7uPD8KWsLCqbjpiA2BzOnwdUKoxUn8IjcwpR6RdifS2Ojqac3NwYDvr++0jP\nlKFy/0m4+3siTJcC+bp1jDH39W3Xr2FPZDLgqRtP4/DlI0goisTGw31wS/jvCAz3YFKnMbfNWjL3\njh0sXdivH2PxnaT5m1WFesGCBQCAxYsX2/SEOp0O8+fPx5o1axBSq+TWoEGDcPDgQQwcOBAajQbe\ntmwLbqxg0KULla4uXSxjmkaPZrxFVVVNEsbWrdS1jhzhJn7gQBdW/0hNpZW0DXbhMhmT/Z0FNzdL\nI36LML83R49yB2teOkwup2WvrAxFeh98o3gAqW598N13rIKIfv3oOkpNBW69tennjYzkDrm0tOGS\nZ47Gjz/SenzuHL9zt278LleuIFvWGQnnPODuzbfV5HD+9a/cCGZkAI8+WnMoV1dTBcM6uLkBTz1F\nK/6IEW2ygWxPtFqGKAUHc7hNndrC3jS9enFSyMsDBg6EV/JpTL87D1DdwIXguec4XgMD+UDHx9OS\n2AqPnkCg1wNf/xaOuW5KZKTqERDYDVaH79mztDZ7e7M0Y//+ALgH7/1wd8CtLxWa2t6sRYsYqtCn\nT01YWKMolcALL9AoFRXlVBbFern7buDrryEfOxZjZgc37JwZM4brlkLBoPTevZH6yyHoQ4dCXlQA\n/74qeJaXU0lvbsMcJyf0xqHofewStu7ohbxh3fEf+VQsXelFz11+PseNNev0Dz8wwuDMGYbEdevW\nvhffQqwq1Mb60g3GKLeAhjolPv3001iwYAHKy8uxcuVKm54XMhnNUrt3M9tvzhwuclVVJgX5qacs\nPjJoEI2mYW75iNobB2SEcxVubrkwKxgNAM4+/7Qa83vTq5cpDs389SefBK5cQaVLF6S96YOKcq4R\nkgTI3NxYs7IhJInWGF9fy+NnZlJhnDiR53YGrr+eAzMigpO4XE7T09WrkKQIuP/bFVotMCiyCNKn\ncZD5+bIj5dKl9R9Pkqhse3vXjWXv3r1umIKTolDQgHbmDNf9Fu/XH3yQJTkPHeKYjYzkBjA6ut6K\nCNKsWMhSU7hxO3WKG/epU1sdsy+4tpDLgZBxvfCZy7/QNaQSI29qwAjQowd3i2VlDE3asoV/nzKF\nFRQeeqgmptAYsgeAa+JttzX/4ry9bbYutjWNrrsxMaZ27MnJDRtbZDLL5/j++5GcOwV7z4VhgHQK\nMYpPgCB/0zEqK6lvhIc7Z8KmGZKmGIj7HjIvL7qqa8d8+voi9NmFUFVwyI2c1g0IBdev4GBOxtZq\n7l9/PRsGde3acFiTg9FoUuKBAwewYsUKJCcnQ6fT8UMyGS5fvtwuF2hOq4PtJYnxYT4+NM2dO8dY\nUr2+3iLixo6qwV+sg8eZo3TZLl1qk3iooiKGbOfm0mBojzBKh0oGqX1vGqCwELhwAfjiCzoJFi9u\nwjO3bRvj3j092c0rLIwWmscf50FkMradb0WCRLvJ0ygrb+96A9fz8xkBI23YgPT/7oKXhwHd334c\nntePqOdgYOmn//3PZGmKiGjjL9A4bSVLrZaGtPBwGxjcG7kPkgR8+imw551EzPSMx9wBF1gmSqnk\nxq415QebSVPkKZM1nFgokhJN2GvurKqiwc4YrdYgFRX8wL59dJ8bQ47c3IDevaFb8iw++FCGhASW\npW9NUa3W0J6yvHiR6TZ+frSf1RtVmptr6kPh5cUPNAOdjvcoOBjw0hVxolEqOSGsXs0NdefOrGbR\nBqEM7SHPS5eA/Q99hsEZP6FfHwOUTzxiNUa1uJj52BERgDwthV7hykrg73+3bqFuZG5tT5ojz0aD\nne699148+eSTOHDgAP7880/8+eefOHz4cKsvss2RJNbSfOIJ1js2JgioVCal6dIlKlUyGZ+0Wsi0\nlegqS4VHgAcnJrncZm7vM2do5AJY5/yapqiIk4xZAk0NxcXUgIwDuqQEqg1v4MprX0KdUYK8PBqY\nG+XMGSrTJSWM9QM4Ybq704pjrD3uDBjHsXGiycnhDqN6wQwMpBfyyHE5XAqyUZRahCsXG2g6kJRk\nkkNmJv8mSZR7cXEbf5n2xc2NxiKrj3FaGpMH16xp+Lsb66cXFVmd8NVqID5eQrj2Kr7LHQNtdiHl\nWlZWN55So2E4TgdTPAW2RaHg+LVQpvfvpwdv0yZqc0bc3WmgMJYFLS+nhSgwELhwAenJVfjzTxa5\n+uYbs+MZrahVVe3xldqVHTv4tVJSWELegrIyPv+urhR0eXndTr07dtCCY2zsAlABN5t/XbVliAqr\noAHaz89UXUCvZyhOSAifdWdsbFUto193GlAKL5SXGFBYJGtwd+fjA0R20UOuUXNNKSujTJKS+Aa1\nmsZN8/FWe41riMREemj/8x/L8W8HGjXH+fv746abbrLpSTMzMzFjxgycPXsWpaWlFsmIy5cvx7Zt\n26BSqRAbG4snnniiZSfZsYMLo1pN8++oUZY1DzMyaLW8fJlBy7WrgVRVsdtPcjIt0g88QHe4jeIg\no6K4ppaVtTKZz9kpLWUtp717uRt99VVT1nleHlu1FhczBnjWLJZBPHoUA6RC7EwdCFn/fk2z7t9y\nC/Dxx4wTMVaW8fDguc+f59+dMTM9PZ0yqqhgVv7cuTUv+XX1wy/aSXCVqnDvmT0ArLSFvflmJtj1\n6WPyvsTFcZX18aFF31pZw47G9u2U6aVLbMBgrQTYJ58Ab73FCXzVquqaWpb4+gK9e8twLmc4hpf/\nDsXfZgMjYhheY94IJjub7eFLShq22nRQGirX5+OjgkZT0M5X5ERIEhXprCzWL01K4nxgbvmcMIEK\nyvvvU1k8fhx47jmEdHFD584c7jfcUP1enY5z8OXLjHl88knnMTQ0gWHDWK3V27tWJId5a/aJE7ku\nXLnCClNGystp6Q8KYpMrY+OXZcv42syZnD/ffJPyf+YZS2+fqysrVcXFsbygozeZqE1JCcdWTg6G\nRt2C9Z1moNQjGNEPeDCsyBo6Hd3xp08zCmD4cG5CYmNpSDDqaWPGMJyuuXz2GeW/bx/nazuGHllV\nqI8ePQoAmDRpEpYsWYK5c+eyykU1w1qRORcQEIBdu3Zhzpw5dV6TyWRYu3Zt65q6ACyzptdzt20w\n1I0JOHeON2HYMN7g2q8XFXHhCw/nQHjyyUYVrsOHmas0dWrjRSPCw5mEXVFx7egq9aJW01xQWkph\n7NoFTJqEjAzgh/fLEX22M27onQZZQgIV6k6dAE9P9HdNwZoFOZBN6gc/vyacp2dPU4Fvczp35o8j\nk5rKMThwYN1rzc42dSO7cMHipcljqzDwu2/h6Ql45VifZH7LiMapyFcwfToQbexxc/w4lemiIm4+\nnWGQZmVRCe7Tx6y8STPp2ZNzh4eHWecLDs3vvuPacPPNgNeff/I/MhmrrtSjULu4sIlY/sIwBAfP\nhcw4fdROsElN5abR25tyv8YU6obK9RUXdxxlrtUUFFAbjI425XvIZBzv+/YxxiA1lUphly4AOCXs\n3OmCmIg+GOnhwY2cTgdMnQoPUBdUq83yD0tKqEyHhzOGuKrKaSosNIVRo/iIu7nVMj7n5ppasx87\nxhKhtecQpZKyv3wZUtdI7PvTA2d3FeIveR7oGiyjsMvL+V6Nhtbo2uFzkyfbIIu/Gkmi0lFaaur2\n25aYyWikeie6r50JV9ex+OMP4MePuTyHhtbzuYICrl8RESzH+MknpkowycmmikjnzrXsuvr1A379\nlRaMpibSmqNWMx+ma9dWx95aVagXL15cHVNHjhw5YvH67t27W3xSpVJpoZzXZunSpVCpVFizZg0G\nm+8QYVmH2mpjl7w84Px5SJWVKOvcE8o318G19sPRrx8fnrIy7uABLmqHD1Np6d2bmvH+/UzSaESZ\nLixk+Uo3N3og3n238Y29t3crEqM6CFJ4J5T0GgqvPw5B7u5Ws2v/+GPgSko4flPPRLfir9H9oerN\nV3Q0LYLl5fCPjDRlYF+5Qqvi0KF1kxqdmcpKbgSKiznpvPGGZVhM//7AmDGoupqB8htvgUUgweDB\nCB4ZzUneSqvbrCx6yhQKrgc1Yb1z5tBqPXiwcyRrGuMT8/KoDK9Z07KHa+JEKrzu7kBoKKqqKPqj\nR6lQy+U8/NwHHmDIh0zGAFQjhYV8c1QU0KMHFArreTc19O3L+Sgjo02aRQk6CG+/zdBEpRJ45RVo\n/YJRUgKoHl3ExLADBzj/VQ84g4HGUoMBOPJnCHqOj4Xq/CGLNtBKpZkSlJREc/X113Md/NvfOpQy\nXVVFPTcgoJ61uUsXWkhPnLDeFlwur6nylYYIbHjJBa7yTkgpuwsvB241JXMePMiTDBxo+XmNhhui\nzp1NXtLWkJAArFvHuS8vr3kVrlpCRAS9/CdPAvPnIzCQe4bPP6d6VFhIA0IdAgMhDRuOyoNH4TLz\nL1CYl1UMCqI8srMtqk81izvu4HUFBrbM6v/BB1TaFApGJbQiCdKqQr1nz54WH7Q1LFq0CMuWLcPF\nixexcOFC7Nu3z+L1JjV2qW5T/alqEeILhqH7Z1F4ZokebqdodYeXF7B5MxWFIUOotEgSpPX/wfEd\nucgxBGLc2z7wvuMOumCbgELBNVij4UZH0DS+3SbD96cfRpfQoXiu3zZ4Vlvv/PyASp0r0HsA/pg2\nAOUAalJBjStARQUnKFdX1gYuL2dnv1Wr6p7o8GHWQRw4kCaK4OCWV6+wSItvYwwGk5WoqqpOLWPJ\nTYkd3R7Cez8Dvms4J430O8cNxtatpnJOU6ZQc05KYhb7ddcB0dFQKnno0tJaxpRBg5ik6SxIEp9j\nhYIWuJbWfJbJgLw8XPloJ06W98T5kjBc8BiCyH5eNeWkvb1Br9a+fbwnRuOAJHEnbYxJf/XVxi37\nOh1XpdhYKtYdyL0usDEVFZzr9HqUaAx46Q3uwSZMcENoxEMYvOIeRHRX1owhmWRA39KjyD+egjx5\nMBT3dQfunVv/sdPT6TLVajk/vPUWFbaLFztEuceKCuCVV+h0nj7dcg8MgHK96SbOe7UVYaAmt6G4\nyh2/7ZDBbd8mKLInwcvXBf0jiqhJGmtwrlvHe1A7H2j9elq/lUquUWYesBZhjDmWy3nf2hpX1zoh\nGR4ePH1lJep6ii9coHV6yBDEBS9E6YVK+L+TBCnjFPw9qjDq9mjIv/6KVmqFom68elNxcWndGDWu\nG5LU6hjsRqt81MexY8daFfJhZNKkSYiPj7eIoTZnwoQJFgp1vdmW+/czdmz0aFrVjAvSkSO4b7Ef\nggeFIkPji7Wz9iDo2/V8TaGg5puQwF1N9+6ATofiAwk4VtwTia6DIe/ZAw+NPcVQjwbKW0kSD1Na\nyucjLY1hVMZu5o6MI1T5eOIJwFWmR86JDLzw17Pocc94wMMDpaXA8aMGfP/6WWRcroCieyRWfRCE\nzp0B7a97kf/vT6GQ6RCYfx4ypZIKTEYG//3hh7qun4ce4muHDtGCo1IxZq5LFyqeBw/Sl99Y29xT\np6g0denCCiFmVtA2k+fZs8Cff8IwagyOqHtAkrjmubjQS/bYY8Cls5UY43kc8667ipvwEz0v589z\novXy4iT//vt0vSUnU3tesQK44QZczfNCSgowKFINvzdXcJPSowctB7feahlH2E60SJZXrnA+GDas\nVZV4Sh96Cot3zUBJeiEkmQvmjEjF1pB/YPp0GpZGjjRzWOl0NNHs2UN3eX4+V5nkZFoCi4p4/yZP\n5hx17hzDOoxjbds2xmO6unJRbqOOao5c5aOx89p7jqoPu8yd6eks09inD875xODll6nD7dtHPdDH\nhxbp/HwOuYFlh+Dz+gtQH7kAeWgQgm8cAbz3nul4BgPfqFRyvli4kO4YuZyeQC8vUw6FcQ3cvp11\n1adPZ2hSXBwT9CZN4lzRgg1he8gyJYUFjMLD+Ui+/36tN+Tns358aSnnuyVLcDpRQunJSxgUnAH3\nr/mMnyqNxm9VI3HI/0YsDN+OHvLLCAySwc1Nxs2zXM41wejl+stfTIriv/7FOUqv59rT2t4Hej3D\nzYqLuRmoXovae2yeO0cD+bBhZrmJV64wL0SrhTR1Gv71vx64449HoSsuQ7xsKn4PmYMnZl1ETL8y\nzodaLcdOQQHrgM+dy13Qhg1UeBcubLuww6wsjulu3Szz7Kqxaevx+nj//fexfv36lny0DrUvtLi4\nGD4+PsjLy6sp02cVg4GtTv39qVSPH29SpGJiMPsfFfh6qwHDx0pQKctMnwsKYpykwcCYIA8P4MIF\nKMqqEFZ5FXKdFhcuaoHoDC6Ud91l9RJOnqSb3GBg3txf/9oyOVyrzJwJbN7sgn7TIhBxbwRQbezz\n8gLGRaVhd1oSXKUukC5egl4fBOj10Dz0DPQ5aviVpkMb5Aulpxtdne7uVAIPHeKBzenbl654Yykk\nrZYTUW4uF4TAQCb3jBvX8KLwww9Ufs6f50zSHhml1e1u9+9lFAbA+WXKFOpzfn5Al8rLCC5PwtiU\nbwEfcEfn68vv6+dnKkGUmckN5aVLDB85cQKRL7yAyEgZ8MshTtAVFfx+06cz9mbdurb/jrYgOtom\nDXoMPXtDt70Kbi4GlLt5Q5OqRm6VFjt3uiEoqFb01/nzjN87cYJx7MYsr/79Wfu3sJDzS2IiZZua\nygywjRsZ91hQwAMaY0sEAmt07lwTrhFZwajEpCRTXxGdjtPaa69RwRlRWo5HivIQ6loAFJcAXhMt\njxcfzw6rcjnnPT8/zguurpwXBw7knGqsRlFSwjEdFMSapSNHAl9/TQPFTz9xvmhRp6S2JzycevLJ\nk1bKbJeVUXHz9ATy8nDxIvD5c4mYfmoNUt0L0NNwHsjKQrmhE/rLjyBRORyhATqEuwNwdeHaEhPD\nDf2AAdwoDxxIr+ndd/Mc99/PVq3du7c8x8McF5e6jXnsQO/e9eQBFhdzQLq54cI5PS6rVVAW56JA\nCsNAnMCpstHQ5xYA8+/jeDp7llEDajWNPkaX6eHDHI87dlgPxWktYWFNjkRojBYp1K1VpnU6HW68\n8UacOHECN954I1566SVs3rwZ69atw5IlS5CYmAiDwYDXXnut4QPJZLyTp09TKOalqAoLMev3lbhJ\nWQSXrrMhu2EaUFa9YP3lL9SAr17ljRs3DsjJgbIqH8EoATyr0F+5CxfyR8IrfBg6gc+aXm+qQGSk\nooKHksudswpOe6PX0xMUGMi9z5QpDGEvK6unQo5KhQdGHseupGxEXReCrl2vAyQ5qiQ55JIela6e\nUPgGQRnowQexoIBugvoyQh980NRm99dfuQr16cMVyNg2d/Dgxi0sMTFUpP382j22p8xsT2jMfenX\nj46ZPOTiDv1v8PX0o1D1euDmm6Hbug3w9IDrkCEM8wgLYyymwcBYj/R000G7dqUinpZGq4pW22Ga\nujQHn0fvxhO90pAQn48xnseRfkSP4PNHUSL1QmZmrfj8oCBOCv7+lGl0tCnO0MfHZHVxd+eqbkwa\nGzQIkMtRcdMcyMv1cAvyvcbL/Qiag7s7C1Ho9cwhPHyYCXeurlzSPD2BM4ox0I0aB5eMNBoRZswA\nwGF65gzgc7IQkXI5N3Pu7lRgLl6kIuTpyfE4YYIpUcvDg5bq5GRa83x8uHFMTOQ8YceEIEky5fXW\n5/BWKOgN1espo5QU/l7T2LFLF25WzpwBZs1CRSngVZ4LV+hQpfAEZO6AXo/BhuO4GDga857vgZ5/\nmwCcPUOvpUpFD6m/P+Xn40NBm9fnDAszKdcOSGMybBb9+9O6mJmJij6zobuqwh+XZmKIZj8MrnrM\nDdyD4TI11+L581nl67PPeFN8fWFITcfF4LHwrQpEmGuRQ/RGaAqNhnxUVVVBUUvTycvLQ5Adsv7r\nNb1XVlIx7tTJ8oE+fZpNW/z9qWj/61+Wnysv5248IgKSrx/0RxPgevYUNb3jx/Ht5UHYWjgF7ipP\n3HsvN+QVFfTyV3dxBcBnZ/t2RpDExtYtL+vI2MNt+dlnrLvt5cWIg4AAGob37GFI++LFtTYtRUVU\nQKKiajRuzYETSFv5CSr7DcGgmyLgcu4MwxT0eibUPPBA8y6qpISW28jIxpNwjAkgnp51Ol21tTwr\nKuiIqaqiEu3pScPI228D0FXhkdHHMHiEEsXdBiMgUIYLF4APXsqD5OaOx//pTa9tQgKfhYoK/qxd\na1nCLS2N7rrOnfmM9OjR9tnj9WCvcCSdjotJzYLy22/QvrseSxPvwJHSfug9qQteeonrpEJRPVZz\ncmjR8/fngHZ1pQw9PalsuLpS1gkJDP0IDgYiI3E5zQ2rV3NILVnStnsXEfJhW9pjfOr1VPasKTca\njSnCwJwzZ5ifOGYMMOD4p7SK6vVU5m68ERs2MH9Xri3Hx5M/w3UjJFrojJWtzpyhsaFWozMAnBPS\n0qiAelT3Z8jKYm3lFs4TrZWlJDE8+cAB7gEefbRhhTAhgb1aJImRgKPqqSZqMADxcWXw3PYZBvcs\ngzRjFuQv/hNefq6AwQDdypfhEt3VZH8xykWhoOVDo+G/Y8bYrHdFU2mpPDdvphOtf39Guja3x1ll\nJTdzKpWlXUqn45qfn1KC2OCD8Per7nhljCZYu5Y349dfucAFB2Nb6AP45rdQKLXFePGRfESMi7Rb\nfolNQj52796NO++8E+Xl5Rg+fDg+/PBDRFe7U6dOnYrjx4/b5mpbi1JZfxWC7t3perl0CZj9/+xd\nd3iT5fq+k7RN927poHRQCgVaNrKXLAFBERQUPOpPPSKKE9wKODmA4l5HOU5ERBkCIlZkyN60AqWF\nQkv3TJqm2b8/7n5NulfaJuW7r6sXpVlfnu99n/d+9gz+TalkaCE8nF7J3r2hVAL/eRnIzu6Lhx7q\niwEDgF2OU/CfXxmtdXfnvVcqeT4ePFiVUDs4NK4wPzeXGz4mptXSJO0CKSmU46VL3EfZ2Uyh6tqV\nUfCcHBaPeHjwVu3e7YUhQ7zQ36hhT0J/f3iO6IOev79rftN+8STEWm2lF6ZJcHdvuM+hAImkea15\nrABnZ3K2devoDHnsMepwgwGQSB2R7H0DftpI70tAANdmkdQf5aXAF5/qMSXmIm4Y6AjJoEE8OP/9\n76pkGuBBWdFy63pDUhKzW7y9Wczv6wucc4zH7uJZUBtd0PsGd6i0dKZs3kzH8yOPAFOmBEISGGh+\no7Q0Hqjh4VVDstXSkE6dIs8GzHtAhAiAqRxr1tBBs2RJzfTRf/5hvnRZGR3II0ea20337MkfAIDX\nGBbCOTtXRkB27ODZ5ubmgh897scND1Q819WVUZTqDFOrpRfW15cRGEtd6ejY7t5DjYYZnOHh/KoK\nRf2ZJ9eukeTJZNyDmZkMGFnWtUmlwIQZrsCMByplLTWuxDOaD3DebzjemN8ZEZGs2/b2Bo2Lbt1o\nYJw5QwOjentMG4bJxI61nTtTD+bnN6I7EXjsHjzIJfDjj/Qr3H47kwAAnu//+Q/13IIF7vj19Hg4\navWYEX4EzonHgEWL+ESJhF3VKuaBpK7mklWbPJDr6oEwO6nVrpNQL168GDt37kTPnj2xceNGTJgw\nAd988w2G1pK03RTUN9QlMzMT8+bNg0ajwfLly1vWi9rZubKHi0YDOJkAyTvvABcvwuTpBcyeDcmO\n7bjYeTquXBkOb28a8gMGcHP26MFJ1S4uJCf+/rznDdWs1YX33yeHcXBg8b/l+dsRcfIkFfewYexE\nJuDOO7nBSkro2RcCC6dP0wmtUJAkduvGA0UioRd2Tf/18Dj4Ow2o5cur9mMODCQLrwZjuRaS9KuQ\nhATTm/zPPyyi6d+feax20FFBGNAp5O1u3cr1mJTEg2HUKPOQrujQMpR98ANKCiPxl2QYImLkKCjg\ngaE8exVpqnz49N+B7ivvp8VSVta2HUtaCQYDv39LJ9T+8QdlnZlJY+6GG4A1X3hA0mUaCtyALsGA\nOt+EP/6XgbxrTrio6IT33yd5EVK3jVczIH31VSqdsWOB//u/qh+i07EINjsbg0fMQYIrWzQNHNiy\naxfRMVBeThX355/8f1YW1ZbQ2VXAyZNc86dPk8RcuEAyKZFQx1aeL2FhZIMVuHqVzlSdjqTyzkkF\nwGsfk7nfcw9MHp4wmap5eNevp4tRLucQjnqK9NsDcjnPmL/+4p6tby6BycSMrPPnAW1WPo5/mQG9\npx92RnXG2+9IKoOOCQksxZkyhfI3GgGtbyiSZr2Jt98GCouAzCw6yaZNA5WxVMqi0e3bqYxefhmI\njITBQB1lyx0IJRKmwG+QXoRCAAAgAElEQVTfzszHxviMTCY6xfKvlEJ34RLi3S9DP3AaDhyQVRLq\nM2e4Pp2dWct/+jRgKNPDI9AFUzq58QnCIDcLzJoFrP1IjeDwUvTu6YeGhnobjZUp2+2KOgm1VqtF\nrwpX7KxZsxAbG4uZM2c2nNfcAOob6vLWW2/h9ddfR3x8PKZNm9by4S4gqVu/HugeY8JT1/KgdfHH\n6v0jkPVLCRbK/0GEbDf8RvyGYqVvZUHhlCnkZ25u3Kz5+STEXbo0/4YlJXExhYR0/OnCBgOrqOVy\npnP06WNuD9mtG8Nsq1fzsDh7lgq+Tx9z++/ISOomT09auF5egEN+NnelVkvW3cAwlqtXgWPzPkRY\n/inEjguC+6plrHA3mSpK4OMaZ4K3I86f51no6sqhW5060aDbvp1rMSiIBt/TT/P5F/93EntTgnFZ\n5YlO4TmQy7vAz4+yvHzGEeeMMfguORevJJ2HbMsvlOW8eTWnhNoRcnJooKrVzJFs7pCsfftIYrKy\nSG67dq26BoOCKKZDbx/EqPOfoaBYirWBz8LTOwYmE5fVl18C+7a64+aieNzW7SwvrjoSE1kE6+SE\nzlIp1qx5DEDLjQHbhkOVmQYiasfGjYx49+3LetVjx6j7qncE27qVEZL8fD7u7k6VuH8/16uLS91Z\nbyYTsxonTwZ6dDdhwLdP8IVubtAFhOCd9Fm4cIFzTUaMqHhRTg4PPo2GnhAbg0TCbJY5c3hE1LXU\n1GrWYV++zPrAgRtW4gn1JCgLFTAFeMNkYjeOggKmP7i78xx79ll6YR0dqRsiI+nZlkgq9u2xY3RV\nS6X0vDk5UbeWlCA/n/qppIQRRVuOTt9xB6Pt9cmwVqSmwrlcgd7FO/DXtW7oe2fPyq6lJ08yGzMs\njGd8VhbgYtBDZSwFotyoXGtBuFs+lpa+AmSXAlun1ttju6SEhbi5ucCDD7JWtr1QJ6F2cnJCdnY2\ngipIR69evZCQkICpU6ciNTW12R9Y31CXxMTESg+4h4dHZcePlmD7dlrr5y9IcO2uRSjYdgipAUPh\nWXAE25Sj8GzgWrx19zmo+w+vDBMNHsyN9/zz3FwTJ9ZUalots0mEDmzVH5PJzF5FoX1ov358rI1T\nqtocUikjh5cvU3lXttKpQN++XPhJSTRUOnXiZnj7bcpI2MzPPEPvQHQ04GK8k569iAige/fK1pG1\n5coVFQEbfjRhYFYS8pwCEHQuG+4lJbRmzp3jKVQt/9kWIXSMzM+nrDp14gT18ePpYBZImFZLj9OW\n46GQuunRxU2NgWPUGH4Pi/hdXIDcjAAM87+ENJf+KDJcg79azQcuXLBrQi2EJ11cSIqbS6g3bGBE\n29ERePhhs60lrMFu3ehpCVElQ+ogwaB4DYLGX4V8SgwiI5n+sXs30CXWC1sO3oLpsRI43lFLz19v\nb/OB26lTByfSAvRoOP/6+obJRDsrNJRkbc4cRugcHavqT6MR+PlnqkEnJ3a0y87mcvr2W3rpHByY\ndRRukXYqtGkPD2eaUno6MHqIFnigkB9QVoYslQeSksgJt2yxINR33cV4fkhI1XxHG4JEUvOcqY7U\nVDbl8fWlUXJDWAgWd9uMw6W90OeJOLi7M4pcVkbDpKiIWRuBgTybZDKeN3PmUL6BgUxhHF+YChgA\nmUFHR01RERVI7944f4j2iLs79YMtE2qgYRlaQiJhrvXBsnx0v/o78i/oMXqyF85lUgQGA9fylCk8\n3++8k1EUwA0RowcCHu4sBqoN2dnMs/XwoJKvBykpDBB4eTHKaJOE+s0336xCqAGgc+fO2LNnDz5o\npYEPBoOh8ncvLy8UFxfXINSNmpRogbFjqRwiIoDgUd3g3q8bvF8FlG6jMKj8AjBiLuQ39IW8Gr86\nfZokJSaGByxApbRpE3MoDQYeoq6uXBM5ObT6z58niQkIoGXr60tP7YgRNGQHD25+/3JbgxC9zsuj\ndSvMW5FI6DVNTqbcLQ0InY4NOTp3Bj79lHumtJREumtX8wFQXMwUHIE4mvw7Q/L44wAYjvv2Wyq7\nxYurvr9SyRafly9LkOz4L8yS/gyHm6dQ+z32mHkcrB3chKFDWb3v7W0mihIJ11RysjlX8J13qLiu\nXg0Hir0xeKABM570QddufP633wLDxjhDp+uJ4BBAPiQQppR+SDtegGPlN2NMXrulhbcY3btTkZaX\nM9zbHCgUtCsuXKAcLMfn+vubw+1BQUDeQxOR8/olpKn8cFExDPlf8LBwcuLSOntWgnvuCYfD44tq\n54mRkShf/BI0OcXwGlHLAAkR1yUkEtar7trFdEN//9qjFllZPIc2buQ6dXc3pyFGRHB204cfsrvn\nc8/xvCkoIPE+eZJn1UMPCSlGclbwffcdMGgQfGZPQKdkrmeh7AgAvSOPPdb6QrACSktpVNSWQx0S\nQj9KYSGdEhj3IMJG/IMAn2CcyffB1q2UK0AbwteXsnjkEYrg+edJOK9coXFiNNI7OufHsbiz5DxG\njnWA/9SpVYZQdOvG/5aWMupgyzAa6ZwQ6qobg5AQ4LY1I2E664Nvdvjj3MVQREVxHe/Zw253RiM9\n3wLpNZkkcL99Ck6WT8GuDZRLDdnExDCXPy2tjj6HZkRFUW8XFLT+sMiG0KzBLtZAbUNdxo4dWznS\nfMaMGfjuu+/g3sLBGSYTD0y5nGTXy4vcSq2uv0/4ww9z8yUlMW9+0iQSYqFdoUrFx9Vqht9jYriR\nz58naezeHVi4kBvJ0ZGHcklJ1cV68CDztCZMaB/Dv6XV1cePk8w5OjL3/JFH6n++VstUmkuXeD/2\n7SMRiomh0WMZuPj8cxLn48epzKZNo/cmO5tWbnAwN/9zz1X1Sqans4G/pyeV3qpVNbmzTkdCGhhI\nD/q+fbw3N97YMsd1a1T+q1T0jDg7m/v4nz1LAg1QwRcVMe9freZBcscdzFMHaNjs3s1DJDycMo6P\np5fl3XfpcYmLY3cVW0JTZFleTtk0994tXUqjQy6nB2nxYsqyUyfu6ZgY8559+21GdwsKSGaEmuiQ\nEK65CxeYNm0w8L7MmlVVzxQUsMlKSQmzbayQ1dYotHeXj9bqENJeaI29LpxV7u7Vep1XoLiYTpqj\nR0lSYmMrJqMO5rmzcSOdOUK3tldfpX5YsYL6QiAdM2aQtHfpws5mlnpXo6FTws+v7UorrCXL9HRO\njtZoeBZZzp4zGqnvjh1jzcO//82zpLTUvN+9vc3By1tu4WyRF1+kDi4sZIevAweYQtqlC+9TairP\nM19ffmZtIys0Gp45bdVVsLk86aOP6MCJjaVMaluDAo4f57k5Zoy5rt1oZKrlF1+Q2/zzD9+3sJBr\nzMODz/X2ZkrR+vX8u0rFe9OSDmlaLeXcGn4yq3T5mDp1Ku655x5MnToVrtWaL5eVlWHr1q346quv\nsH379mZfaPWLjI+Px6FDhxAXFweFQlGFTDcXEgk3yYYNJG0ODtwkDVXUT5zIkFtREZVUSIiZmKtU\nXDw5OXxvhYI3NDeX6QlHj5JkXrnCHG6AHqzRo83vX1zMIR0uLvRsffRR/QvYFuHtze+p0zWuyLKg\ngMonNJSGislE5eXnV9MidnOjRZuVRWX3/vtm8iJMXI2IqFlgHhrKENPp09y0tW2wtWuZNujhQcLz\nxRe8luJi4O67myWKVoMlSdy8mQdqaSmVc2Qk16BCwcdlMq732bOrvt4y/BYczLVYVMTn6nR2kf1S\nL1qSQiV0QezTh8WdY8ZwXxYW0jnSsyd1QcU8DRQXMyJjNHJdyuXmCNTmzSyo/ewzyjsszNyaS8CV\nK3xvLy8O52wrQi3C9iGcVXVBrabxGBlJAh0cTA/ohg3AJ5+QLJpMPFNiY3nezJ5NParRcJ37+HCd\nX7tGgh0WVrXQXljP9oiUFHM3ruPHqxLqsjLqv8hInj0vvcTnHjrE/ajXA4MGkRf4+5sL6SdMYB1Q\naCgJ5Ntv8/lFRTwrhLlMjo58fW2wB5nqdCTTYWHkIwpFzVRWAWVlzC13cmJJyIcf8vtJpTQ4Dhyg\noeHrSyNHr+ePWs01+sgjNAL//JP60s+v5fJxcmr/gkSgHkK9du1afPDBB3jllVcgk8kQHBwMk8mE\n7Oxs6PV63HHHHfjqq6+a/IH1DXVZsmQJ7r77bqjVaixfvrxFX6w6srNJ2oSUg4Zwyy0kyLt2kQge\nP04FdN995qrqzEwqqUceIdEzmTiF+M476fHbu9ds5VfP9XVyIikqKWH6Q4sbqbcDunalcaJQ0MvZ\nEAIDGZY/ehS4v6LRxJEjJMDVjYnbbiP5yMszb26h8fyAAcALL/Bv1Ym4VMqwT32hn9RUfnZJCTd/\nQQEV4uXLPLBsMcf96lWuJ2GYl7c3Pai+vlRwWi3/dsMNZsVeWspD9do1Ghh+fpRfVBQJYHAw5due\nOWftDYmE+3fHDkaiunVjuFylMg/IuHzZ/Pz+/WnIlZYyfD5gAMl479587hdfcC2r1TxE/KrNgYmJ\nofwzM82tpUSIaAyCgoD589kY4ZVX6Lw5doyhdUF/enhwTW7YwDPG25vnWHg419uVK9SjQo2PPc1N\naAhxcXR8lZbWbBzh5sa/7d5NfXfyJGWj1ZqJWI8ePDcGDDCf26NHU5/K5fT4OzjwdTExzIJJTSVp\n7NvXvjt3OTmx4+z27fzO9bUddHDgOsvP5xkkrD2t1tx+v3t3YO5cymfzZhoxcjk/5+abue6eeYaR\n4shI2zc4GosGUz5Wr16NO+64A5mZmQCALl26VMmrbku0JDSUnc3+vYGB3DSNKQYScoNTU3lABgfT\ng/DFF7RQt2zh5rz5ZvMGNBr5u0RC8vPXX1xEI0fWJH85OfTYxsa2z8RWa4TaDAbK1s+v8UTUYGic\nN16lYnqfSsX3LyvjIRIfX7/yys+nl9DBgdXc1S3tc+eAH36gd+HYMbOV3KMHlW5T58IIaK1hD2Vl\nTN3IyqLC8vIiqZs+nV4ZjYaHprs7U2AEL9ebbzLs5ubG/L+zZ6kIR4ywfQOuvQa77N3Lg7OoiHn9\noaFcGzk5jGb07MlDWch5Ffb01q008nQ66olXX+W+79u3pq4RuoK05T0QUz6si/Zan5b47TdGT0tL\nqeNUKupihYJpHcuW0ZDeto0E5sgRvu7BB6kTnJ25ntu7AYs1ZXn6NJ1acXEkdNXPGb2e+nTDBnO7\n+L17+feuXSmnZ5+16ONtgawsdmxVq2lAK5U0cKo3LGhvtESelmfz77+zyM+iPXQl8vJ49sTEmJ0G\n//sf12RmJs/du+7iWfv002bnY1gY1+ZzzzX/+7U1rJLyIUCpVGLSpEnw8fHBnDlzEG5jPSgbi6Ag\nttWqDyYTD1KTiZ5p4W8SCf8udGv77jvmXdbm2bM8JOVy5l7XhU6dqhZA2SM+/9zc2P2llxpnaTZE\npktL6SWUyWisBAU1TeknJDCCYDQyt7jaPA3ExvKwWbmSh42Dgzl3MTe38Z/TWjh7lrn1o0ZRYRmN\n5t7IJhMtem9vFoSuXcvwW3o6Pe4XL5p7Gufk8OAsLyepa87MG3tHQQHvcadOPBQaIrE6HSNRgYFc\nN/36cV17eVHW777L9yksNL8mL4/DN7Kz6Z0ZOJCvq5YpVwnB4BZxfeDvv6mPJk1qsNtnk6DRcB15\neDD9oEsXrj0HB67V+fPpJIiIIGk8csQc5ave17qj4JtvKJddu1jUXT21s7iYul+ppMf+wgVGnZKS\nzP3sdTrKae9eOrwmT6aRHBxMXZuUxLx0V1eS95dfbp/v2hoQzmaVit/Nz4//jhhRtQNIQEDVQnaT\niVHUrCxGRHftosMnK4vv4eZGYyU6mvenMdBq6THXaKiL7SE1sUFCvXTpUixduhSnT5/Gjz/+iFGj\nRqFz585ISEhoi+trU2zbRpJSUMDNIpNxU+bkcDHIZFxUUVG0tjZv5kF9001Nz38W2iFLJFR69njA\nmkz08AYFkdAVFlLpNAclJbR4IyO5GTdtIrHs0oW50PWlcBw9yp/x40lAIyL4d5mMr68Lc+bQAhcK\nz3r0QGUv8vZCaam5WHDbNn6nm25i2LGwkERaJqPRIJWyQC4oiEpHLq/quV+4kIZJfLzNt9xuNXz/\nPdeo0UgyU1vbKr2euYDe3vzx9ORamDiRh6unJw/igQO55j/9lLmXQvFOfj690axgp9zrItMiri9k\nZNDpIJMx0vn66417ncnEPX7pEslESAjfKy+PBexOTlyfgkdx5Eg6Nio64MHDg39/9lk6C+bMYURF\nIqk6aKujoXt35jp7edVMtwIow5ISEsa33jJ3lxo71jwENy6O3usvv+RrjhxheoJwrvj7c3+XlTVc\ni6XXU48XFjKNtK68ZFuDszOdZFevmls01odt22hopKVRL5aU8D5ERNDAc3XlGvT0rOiwUgsSE2nE\nDBvGyN7ff7Nbo0TCtTxrlpW/ZCug0dPaAwMDERQUBD8/P+Tl5bXoQ5944gkcP34c/fv3x5o1ayr/\nvnTpUmzatAk+Pj6YPn06nmjIpWxlHDjAnNSrV3kAe3szT/LuuxnOyMvjprjpJhYRnjhBhdalC0mL\nJVJSeJh37cqFVJ1wHzjAgxlgR5Hq016bCoWCVndISFtWZzMl5qefmHfVHG+7yUQrVBg3HhtLa7is\njD9+fiwgHDqU96a6lVpSYi6QOHuWBPOGG0ggpdL6p+KGhfEe5eQwd9YWegILHT1ycpgreeUK5fvp\np4ySODvzYHzvPXqt167lwbp4MRW9pUHTrVvDUZmODjc3c29eIXqSlsauHiEhXLd//83wpkxGb76P\nD1NlhMEuy5bR+xwdzfc6dMhcvFNczD0+fz6J+4IFLd/LIjoOnJy49tTqpnnYUlNZaJiXRx31wgsk\nF+XlJM8PPkjyPNOi1Xl8PLtMnD9PIi0Uz3l6MhViyRLrfz9bw733ck8HBNSeRhkTQ4NkyxaSb52O\nzw8KogFz+TL/LpdTH1y4QJkvX05PdEQEz7nlyylfyynsteHUKd43mYy644EH6n++rUAmY1rG1avk\nNw05DPfvNw9mKy6m4ZKZSTktX045R0XVzU00Gp5pUil51XvvcX1LJOQI9uKgaJBQf/TRR/jxxx+R\nm5uL2bNn47///S961pZg1EicOHECKpUKe/fuxcMPP4xjx45hYEWMWiKRYPXq1VaZkNgcTJvG/OjR\no6m0PD0ZDpJKac1awsuLi8TRsfab/fXX5jyjqCgWOlhaeXl55lzKFtonyM3loi0tpRVXPcWhNVFb\nflVTUFhIhVNUxN+DguhB8fXl6PeSEh5EL75Icr1sWdXOHcLgA4WCZLKoiKkbjc1M8vOr3ZPRXnBx\n4WG4fj2LjXJz+b1yctgCEKDhFBtL0te7NxVYeHjHKjCyFubOJeH19TXnOv7wAw2VzZsZCSkvJ7kW\nBjIVFdE4EQ4RX98qrWUxbRo9MiNGkHxLpeZplSJEWCIwkPs5Pb1q14mGcOoUC+ELCpjP++WXZl1X\nUc5UAw4OJN6CHlAoqBdycupPPexIcHAgaa4Lrq70Nk+Zws5RgYE0qPfvJ5kePJi1Vs8+y+e9+y4j\nUBpN1WYGgYGNK0IUIt0Gg/3pZ1dXRuoag+nTKauiIvIQoaf10aN0MMjl9Tv6ZDKe23l55tbCgwez\nVaFW2/wZA22NBgl1eno61qxZg75Cs8EW4vDhw5g4cSIAYPz48Th48GAloQaAZ555Bj4+Pli1ahX6\n9OlT4/VNHezSFAwbxhunUNBDEBVVd87lnDm0Tr29qxYlmEwMEWVnc3EVFbH9XnQ0SaGQhzRunHnq\nZku/wrVrvGYPD3oi2pJQNxVaLUM7/v60fN3c+HtEBB+77z4aHl26kEBKpfSs+PrycMnJqUqoXV1Z\ncJeayseefpok5+WXGxdeS06mIh00qCppag9cvUqS3KcPSX7Pnry+0FBzvppGw9zv5GTml/v7k9gJ\nKTO9e9tG+yBbgYuLuV2lTsfIkEbD6EdJCZV2bi73enQ05bxmDSMB6en8f24u12NaGkPFM2fyx97a\nXIpoH0RHN71wLTOTqQeHDpFcRERQJ+j1PHsyMrjPBVJ38SL1gsnE6XWxsSRwy5eT3IhrlXs3J4fR\npbg4RjYBeo3DwujZVyiYdgiw+5a3Nwl3eDh1RGkp70lAAPV0Q4iN5fkldKfqaFAqzZ2iFixgelNe\nHiMy7u78mT+fa3jNGnPaTHU4ONCIOX+eBpFwhtXVitBW0eaDXd588030798fkyZNQkJCAg4cOICX\nXnoJAFBUVAQfHx+kpKTgvvvuw15h9rJwsW1QWW0w0MrPzOSmefPNphGU06eZwnHtGjdkRAS9Xzk5\nLGQUNqs1oVYz1SE9nR0qGjskpj0q1deuZWjN2Zne5tBQWv7p6eZ8tFdeMW/Shx9mgd4331A5Pfhg\n3akZy5bRy11czEOlIYWXl8dNrNEwVFWxDJuNlshTrWarRaFi/4knmFZUVkaFL3yXa9cY1szKIkH8\n7Teuz5df5vcYM4aDRewdrbE2f/2V4XOTicaIyUTP1IgRbHUpkbDn7L59NO5mzuRhKhBqoafq7bfT\nI2NPELt8WBetrTtTU7kmy8qYYuDvT9IxbRrJ3+efm0lIdDQjLZs20QExaVKDw+VsCm1xDpWXm8e0\nDxjAFpkCdu3iOPfYWPaF79GDBshbb1EfODvzsVdfBXbupE5wdOR50VAOdXugrc710lLKND+fkw7v\nuIOpGkIDh6IirmOlkrzqgQfIrewNVu3yYW14eXlBUTGJoqSkBN4WiU4+FS7F6HbsQ6PXc4F4eXFB\nWPapbAyEPtdyOQ/sceN4QPfpQ4LdGnBxYQ6tPSAriwpKq6WHMDTUXAwG0POSm8sD5OxZ/u2GGxoX\n8pkyhe3yBG9jQ9Dr6b1xciKhbU8I1eVyOWUTGmqedmiJoCAS7rQ0PufaNXrWtVrKta5wsAjKSAg7\nhobScy1MPhUwahTDlN7eNIZ/+YVrMTGR0RBHR9voBCOiY6NrV67FwkKeRwYD119ODkm2kO+fnk5d\nN3gwU8SMRkZaRVRFURFlFxDAc0Xo3gXUnbaYmUlHS1ISZRwWRpk7OJj19fWMggLzqPKzZ+nsEpxS\njz/OczU/35y2adkVpKOizT3UJ0+exKeffopPPvkECxcuxL333luZ8qFUKuHh4YH8/HxMnz4dBw4c\nqHqxbWR5HT1KL+qoUU1XTgYDC8i2beMmXbiQXgNbDLm1h4c6PZ050+HhLPisLhejkW0Jjx+nJ7Cp\n8rfsA94YHDnCwpMbb2QkoSVoqTz/+Ydrb/jw+g2CK1fovfbzY5jN1ZXeqbQ0Tkarr7OJvaA11mZZ\nmdmjP2lS3ZEOYQ2ZTOa1eMstTMkpKWFetuU4cXuA6KG2LtpCd2ZksOd5TAzT0rKymO5hMHD/u7vz\nfBH6zrdHf3NroC1kaTQyN/rIEdYZWU6HrAvnzrF4MT6e+kIqJYncudNc0GyL3bna6lw3GFgrduYM\n16Wl00uQXVwc16RKRYdXW41ftyaaIs82J9QA8Pjjj+PEiRPo168f3n33XSxatAjvvfceHnroISQm\nJsJoNGLFihUYWW3V20IzfaORYeKiIpIwe1wgAloqz7w8trmJjGxawU1HhTXX54ULTB8aOrT+TiUd\nFbaw12uDUslWi0Luui0eqLVBJNTWRXuuz2vXWAvQq1ftA0jsDQ3J0mRi3nJWFtvb2UvrufZCc9em\nKOfaYfOEurloDSWm07HdlbMzex82dECePs3iD4DpHPfdZ9XLaVM0R556PeXl5MTpcJcu0XJ/7TXr\nDi2wR1hrfSqVzAE3GFiA+c47lLGwVl1cmEJkL2SuObBVQv3ZZzQiJRJ2Aaje1zonx1xY09ye7K0B\niUSC4uJiJCcn1/mcwYMHw/YItSMAfZ2v9PDwgUJRWOfjrYX2Wp9Cn/PLl5mW9NFH9k98GpJlSgrz\nlw0GnjE338ye8I2dzHu9obFrs7yc0TcvLxpnqamUs9FIB9n13nJVgE3nUNsatm9nizKplEVh/frV\n/3whnUAIC19v2LmTYXCJhN55YZ1dj7JoTdS2xn79lSNzhTZtVmq8I6IJsLwf1de8Xs9CJqH108qV\njZsc2lZYsWIl3nnnf5DLbYjpNwg96iPjSuX1pXiEYVr5+SSUZWX2T6gbgrDPlEqmwKSnMwXjX/9q\n3+uyd2zYAOzYwdS3559nbjhQNb9cRNPQLoS6rsEumZmZmDdvHjQaDZYvX95q/ajLy+lZDQlhparQ\nJ7KsrOHXxsUBDz3EwsOmtrszGnno2nNbs9JSEjqjkaOshVHYzc0/1uman2N+5QrvW2Sk/SqA2r6/\nhweLTA8fNvdHdnauulbbu4jSXiCME27K0J6iIoY9o6Nr7tW5c+l5FtoaWsJopA5xc+O/BkPLr9+a\n0Gr1KC9/BOXlz9bxDDvdRHYIrZYEpin5zkIr1thY/u7ubh/jmFuKqCjgkUc4CVLosKFUmh8vKWG+\nedeujfdaazTc2/Z6blgDCgVlKZwnffoAjz5K3VfbaHqTibzJ0bFxdTomk7mpw/Ui5zYn1PUNdnnr\nrbfw+uuvIz4+HtOmTWs1Qv3BB6xK9fVl2NZkomIaPLjh10okLBprKpRKdm3IzGT7GHudpjZ1Ko0C\nZ2dg8uSWGQcXLjCdQRhm0pRJi6dOsa+lyUQDZ+jQ5l9He+Gff9gM392d39+yCrpzZ05K+/13FtI8\n+ywwY4Y5MmDRul1EHcjJAVasILl94glW7DcEpZKtoIRR45bttQDKvq4+705OwGOPsavP0KH2M91L\nRNvi0CG2vQsO5vlj2Ve/LmRksC2oRsPevE5OXJ+1TQPsaJBI+J3796eRm5NjblupVrPXdl4eDdxn\n67IVLbB1K7BxI9McHn/cNibktgfmzjV334iLo5zrO1f27wf++18+b/Hi+tvzmkxc43//zVqz+fOv\nD1Ld5oS6vsEuiYmJGFrBjDw8PCq7fljCGoNdLl5kmKyoiP+fN6/p36OpSE1llwBvb6ZN2Cuhdnev\n2Wqsudi7lxsvP2x4+EgAACAASURBVJ+tiZpCqK9dI7GXyShXeyTUf/1FJZOby6poS0KtVLKi3M+P\na8dk4qCGtlirHQVJSTxoXV251hpDqIuL6fHy9mbuZlPRs2fHKBQT0XrYuZN6ND2de7sxqVvCsAxX\nV0ZYH3209a/T1iCTsVOEJUpLzXoyJaVx6QrbtrH9aGIiPf3XY9E3QIfiPfc0/vlXrlC2ej292PUR\naoWCZLpLF3ZMu/326yPnvc0JdXFxMaKiogCwJ3VSUlLlYwaLGKmXlxeKi4vrJdTNxf33c+zwmDFN\nI3EtQUQECVNBAVtwiaBRcfgwiyIaQ3YsMWIEpwXqdMD48a1zfa2NoUNZFOLtzamblggI4GCRw4fZ\nkuh6sO6tje7dubbKyxtvwHbuTA/06dNsryVChLUxahTbjQUE1D05rjp69WKbtsxMtsYUQfj7A7fd\nxnSQxurJsWOZO9y1a+PGh4sgJk1ipMTZueG5EB4erEc7eZLnnC3VkrQm2rzLx0cffYSAgADMnj0b\nP//8M65du4ZHK8ztsWPHYvfu3QCAGTNm4LvvvoO7RV86W638byy0Wh7unp7tfSWELchTpaLnoSNY\nr82RZ2kpcyk7wve3Jqy1NsvLmSN4PeSa1geJRIKnnnoGq1d7A6gvh9rWunw0/Nr20GEtXZ8KBfe8\nPdfTWAttfQ6ZTIxCububC/E6EmzhXAdYU6JQ0Klhzw6hpsizzVvADx06FAkJCQCAhISEyhQPAIiP\nj8ehQ4egUqmgUCiqkOmOACcn2yHTtgI3t+ubTLq7X9/fv7Xh7CySaRG1w9PTFxKJpNYfT0/fVv5s\nkUy3FyQSRgU7Ipm2JUillLM9k+mmos0Jdb9+/eDs7IxRo0bBwcEBAwcOxKKKyp8lS5bghRdewIQJ\nE/CCPQ59FyFChAgRdgGlsgj0ftf84WMiRIgQ0Xhc94NdrmeI8rQuRHlaD6IsrQsx5aOWVzYwGbK+\n9xXXp/UgytK6EOVpXdh0yocIESJEiBBhHTi0W9qGCBEiRFiizQn1kSNH4OvrCy8vrxp9pjMzM+Hj\n4wMvLy/07du3skBRhAgRIkSIqAlhkqKYtiFChIj2RZsT6j179uDDDz9EUVERkpKScPTo0crH3nrr\nLURGRiI9PR0+Pj4YO3ZsW1+eCBEiRIgQIUKECBFNQpsT6mPHjmHChAmQSqXw9PREfn5+5WOJiYnw\n8fHBjBkzkJycjKtXr7b15YkQIUKECBEiRIgQ0SS0y2CXvXv34pVXXoGLi0uV1ngGgwGbNm2Cj48P\nRo4ciddeew2fffZZlddLrqceLG0AUZ7WhShP60GUpXWxevWKit+eq+dZ9cm8ofthe69teA01/7Xi\n+rQeRFlaF6I82wetRqhzcnIwZ86cKn8LCgqCl5cXRo4cibNnz6Jv3744f/48Ro4cCQCQSqXw8fEB\nAHh7eyM1NbXG+4rVq9aDWA1sXYjytB5EWVoXojytC3uSZ/3dTID2Go5T+el2JEt7gChP66Ipxkmr\nEepOnTrVWlS4cuVKJCQkYPbs2SgqKkIni9nf8fHxSEhIwJAhQ5Ceno7hw4e31uWJECFChAgRIkSI\nEGEVtHkf6vXr12PhwoXQ6XSIj4/HX3/9hfnz52P8+PGYNGkSYmNjAQAxMTHYunUrgoODzRcrWl5W\nhShP60KUp/UgytK6EOVpXdiTPEUP9fUFUZ7WRVPkKQ52uY4hytO6EOVpPYiytC5EeVoX9iRPkVBf\nXxDlaV2Ig11EiBAhQoQIESJEiGgjiIRahAgRIkSIECFChIgWoM0J9eHDhzF8+HCMHDkSTz75ZJXH\nli5dir59+2Ls2LF455132vrSRIgQIUKECBEiRIhoMtq8D3VERAR2794NJycnzJs3D4mJiejduzcA\n5qqsXr26xkhyESJEiBAhQoQIESJsFW1OqC3b5Dk6OsLBoeolPPPMM/Dx8cGqVavQp0+fGq9funRp\n5e9jxozBmDFjrHdxCQnAli3AiBHArFmA2By94+P0aeDrr4GYGOC++wBHx/a+ItuCKB/rw2QCfv4Z\n2LsXuPlmYPz49r4i+0F5OfDpp0BGBvDAA1yXIkRYG3v2cI8OGwbcfrvIBeqCWs39mJkJPPggEB3d\n3lfUrmi3HOozZ84gLy8PPXr0qPzbokWLcOzYMXz88cd49NFHa33d0qVLK3+sSqb1euDbbwEnJ2Db\nNqCw0HrvLcJ28cMPgE4HHDgAXLrU3ldje/jhB0CrBf7+G6hl0JKIZqCoCNi6lbrmu++oe0Q0DufO\nAceOAaWlwE8/tffViOiIMBqBr77i/ty+HcjLa+8rsl388w9w/DigVAIbN7b31bQ72oVQFxYW4tFH\nH8WXX35Z5e/ClMTo9rByZDIgNhbIzQVCQwEPj7a/BhFtj969gZISwNMTCAxs76uxPfTuDSgUgJcX\nYBFdEtECeHhQx+TmUufIZO19RfaD4GDKr6wM6NWrva9GREeEVEq9l5sLhIRQ94moHSEhgLu7uB8r\n0OZ9qPV6PaZPn45ly5Zh0KBBVR5TKpXw8PBAfn4+pk+fjgMHDlS92Nbur6jVAunpVNqurq33OTYC\nsV8l6I24cgXw9W2x4uyQ8rSifJqCDilLS5SVAVlZQFgYPWGtjA4lz8JCGnnh4e0WircneYp9qJsB\nnQ64etUuuUCby7OwkB7qLl06ZGqMTQ92WbduHR577DH0qrBm3nzzTXz//fd477338NBDDyExMRFG\noxErVqzAyJEjq16sLW48O4YoT+tClKf1IMrSuhDlaV3YkzxFQn19QZSndWHThLolqPOLmUzAyZMM\n0YwYwRBEc2AyAZcv0xPn51f7c379Ffj9d2DCBBYU2THafOPp9UBaGhAQ0DRvZ0EBcPgwEBUFWOTc\ntxgqFfDRR8yRW7AAiIxs0dvZtCLLyeF3lUqBhQsBf//mvY/RyHtYfY+kpADnzwODBlklNcSmZdkQ\nTp9mDmZ0NAvnGirkbIzeqQ0qFXPbfX2BAQPq9Q7ZpTxzc4EPP6y5ZpVKrufw8NYrktVqgf37GT0Y\nNozXYAF7kqdIqK0Ek4leaxcXc3pgZib1qrMz12hF2mqDKCwEDh0CIiKAnj2tepltKs+CAqZMRkSY\n94jJxLzqwkJg+HDAzY31SZ98wrP/4Yf5NztBU+TZ5l0+WgWpqcC775KwXb5MctRUmEzAL78Amzdz\nw7zyCsM9llCpWAgTGMgE/HHj7GphtDu+/JIEwMcHWL6cecuNwQcfkLA5OQFvvcVNWRuMRv4rbWRp\nwNmzwJkzDOlt2QI89ljjXmeP2LuXqRtGI4nCjBnNC89t2sQ94uoKLF1K8lxSAvznP4BGw89ZsaJD\nhv4ajR9/ZMj40CFg7FigWzfmSdclky1b2FGgLr1TF9atA3bv5ns//7x1jc3WhNFIfdtQ7rjlmv37\nb67ZsjKuu/x8Gm+PPNI617hjB++jyQQ4OABDhrTO54iwH+zeDaxdy3PohRfo4ElIAK5d434/doyO\ntsbg44/pgHB0BN54AwgKat1rbw1kZwPLlpEX3XorfwB+r/feAwwGduO57z7quJISyurMGWDo0Pa9\n9laCTQ12yczMxLhx4zB8+HAkJCQ0/k31erOC1mqbflEKBfDSSyRrKhV/srNrPs/ZGejald6RqCge\ngCIaj3PnAG9vdjkoKGj867RaHmpGIzdpbUhLIyF+6inmpjYGoaEkhhqN1b0ENofoaBK6khLgm2+4\n3hWKpr/PuXOUmeUeMRr54+DQvP3X0RAXZy7kPHkSuP9+4P336167tcm0MdDpaDyaTPbTKSQnB1i8\nGFi0qOGuOl27cs3KZNS3gFl3+PkBSUmtd506nfl3e5GtiNbFjz/SSD5zhkQRoLEMAHI5c4gbi8ac\nabaO7Gx223Fzow4TIPAxqdR8HvTqBVy8CBw9Cvz5p9n51cHQ5ikfOTk58PHxqRzs8uyzz1YOdlm0\naBHmzp2L+Ph4TJs2Dbt37656sfWlfOzbRyI1cWLjwy4Cjh7lgWcycaPMnMlQrbNzzedqNLSyQkO5\niewYbR5qO36cXrW4OGDevMZ3N8jKonege3eGtmvD99/TW6DXA7NnA9OmNe69Cwro9ercucVeVZsP\nXWZlMYReXEzC9+ij9PI1BcnJjDSEhZEoCnvg7Fn+jBjRtIOlDti8LOuD0cjQsI8PDbyAAIaG33yT\nVfHVkZIC/Pe/XIP331+73qkNJSVMPwsIAEaPto+Uj99/Z3tSuZzh4Hvuqf/5WVn8XoIHz2hkK8fj\nx7nPW8tzrFYDO3fyXowfT/JjAZuRZyMgpnxYAUYjMGcO93F5Ocm1YORlZnJ9NKVLVHY2z7To6Kbr\n4AbQZvLUaKi30tOB//s/s3FhNLKPd34++ZiXF42GOXOo4woLGdG0k65RNp3yUd9gl8TERAytCAV4\neHhUdv2wRK2DXSQSYNSo5l9UZCQPP6WSIYz63ksuN28kEU3DgAF1E+L6EBwM3Hln/c/p25eWr7Nz\n07zNfn5Ny1u1ZwQHU8GtXcu82+bkjMfEMJJTHXFx/BFBz0xEBH8fOZLrMiqq7rz16OjaZdoQvLxI\nKu0J3bvTG6/XN04XVE9/kUqpCxrSBy2Fiwtwyy2t+xki7AdSKTBpEtOQunWjQ0FAbUZyQwgKAubO\ntd71tQfkcuaNV4dUylQ3S8hklN++fTxDfH3b5hrbGO1WlHjmzBk8//zz+PXXXyv/Nnr0aOzZswcA\nMH/+fLzxxhsIs1i4rWp5qdW0uLy8rpv8T7vwDDQFSiXvXXOKUk2mju+hFlBcTMOjNk+ocP3tvAfs\nRpYNwWRiFMTLy1xAZ4W11lTYlDxLS+mxsuP+vjYlzwYgeqitBKOR3lVv7xoRCwDtsq9rg83KsyH5\nATYjQ0s0RZ42NdhFalFMplAoKge9tAlcXIBTpzg+88MPxbw5e4SHR9PJtNEIfPEFU3x27Gid67I1\neHvXTqbz8ljc9uSTTFkQ0XJIJPRMOzpyrX35Jdfa9u3tfWXtg6wsFhW++mrjax1EiLAFSKXcy9XJ\noMnENKQHHgA2bGifa7MH1CU/gM6wV1+lx/uff9r+2qyENifUer0e8+bNw6pVqxBYLecoPj4ehw4d\ngkqlgkKhgHtz2981Fxs3kmwcOWIuOhDRsZGXxzBeQACVoS1a9m2F48dZH6BQMAdOhHWRn0+5Cmut\ngxbm1IuDBymH/Hz+LqJBeHr6QiKR1PPjVO/jIloZpaV0xgQGsq2uWt3eV2R/OH+eRYsSiV07G9qc\nUG/YsAHHjh3DkiVLMHbsWBw6dAiLFi0CACxZsgQvvPACJkyYgBdeeMH6H67V8qaVltb++KBB7H0q\nl7NV22efVa32FtH22L6dXQH++IPtEQsLrfv+Pj7sZ5uZyfvfEQ8gnY5r+aGH6icx3bqZPdcVhcIi\nmoHCQq7V6oTZ25u51adOsZBn06aOb8CVl1PnlpXx/z160EPl4NC6bf4OHKDe2LjR7mWsVBaBKRt1\n/egaeFxEq2D3bq6xP//kWr52jXozM5MGo4iqUKnY3vjll9mhJyXF3OGkSxe20VWpgP792/c6W4CO\nMdilsXjnHR5mgYHsg1y97Z3RyLZOH37IQ7G0FFiypMOSC5vNtRKgVLIThb8/e3x27sxNt2xZ3b2o\nmwONhnmunTo1vvNILbBZeSYlsV9vVhZbHG3Zwi41taG4mEqunQs1bVaWDSE3lykNKhUwdSpw++1V\nHy8vB+69l0VJRUWsdm9Kd4Bmol3kaTSyx+7FizwwX3mFRLqoiI+3VkqfycTwu5cX93UryLgt5dmY\nHOiWPi7mUDcRWi3w739TT+bnAytX0nFx+DANZWdnrvfmFCy2EDYrz4MH6ah0cGB/+fBwYMwY6kOA\n571a3Sb6sCmwapeP4uJiHDx4EGlpaZBIJIiIiMDQoUPhZW8FJSYTc3P8/XnolZTUJNRSKavKe/dm\nCMfd3eZu7nUFFxdWU6en03Ps6UkjJyfHuoRaLm8XxddmCAyk0WA0UqbZ2XUTam/vtr22jobcXK5R\nd3eGMavD2ZkemMRE3pfGDjeyR+h09EIFBnIPl5Xx+7Z2bYxEQo/h2bMdX8Yi2geOjuyTnpLCs8Pb\nm39LSaGOVanowOjI50pTERRE2RQUkFR7eVXNl/bw4I8do04P9b59+7By5UqkpaWhX79+CAkJgclk\nQlZWFk6ePImIiAgsWbIEI0aMaPKHZmVlYerUqTh37hxUKlWVYsSlS5di06ZN8PHxwfTp0/HEE0+Y\nL7allteBAwwBDh5Mz5FEYi6MsWzPZDRy6ICPT7t76loTNmvJWqKszHwY//ADW73ddx+nVTUHQo9g\nLy+rH+w2Lc/jx4HPP2fbsptuonKzYfJs07KsD1oti1zT0uh5qS2tQaPh4yEhJN4ZGSTa1jQSq6Hd\n5LlrF50TY8eyN7xEQhmlp1Pnurq2zudqNPSCBQe3yiHdsTzUjgDqLsL38PCBQmHlVDsL2MxeVypZ\nUxMe3rhIZXk511jnzuaJyamp7M0cElL3LItWhs3Is7CQ9Tjh4eZUypwc/m3fPg6Duesutry1YTRF\nnnUS6ieffBILFixAN6FZdzUkJyfjk08+wdtvv93kC9RoNFCr1bj11luRkJBQhVAvW7YMI0aMwI03\n3ljzYpu6UIqKeNMiI2sf53vyJEdkAuxscJ310bWZjdcQkpN5L/v1az6RFvDTT8DWrSQyS5dalcTY\nhTzXrQN++40kY/ny+vuB5uUxXB8TU3cP5VaCXciyOTAamXbm4EB9s2cP8L//0bv1/PPN6w3eCNiM\nPE0mhsf/+YdRkqVLze0E60N5OeUWEEDPYDujYxHq9k0JsYm1qVQyt7ewkL3j77+/9uddvswIX58+\nrWcMthDtJs+SEqYXCgbJsmV0hN12GzB9ettfj5VglbZ5b7/9dp1kGgBiYmKaRaYBQC6Xw7se79gz\nzzyDCRMm4PTp0816fwBmxf3xx8Drr5uLYgTk5JBcKZXMGb10qWrxiskEfPcdsGABCYiItodaDTz3\nHDBjBlvq/PgjrdvMTFq4mZm8T01RHv/8QzKtVDZtzLM9oDGySEpiCFyh4B6oC9u2AcOGcf0//7w4\nUrw+XLwI/P13TR0D8H6UlJjll5AArF7NvN4jR8xpIceOsV7DcoRvR4RWy646wlTaoiIWzD78MCOI\nljCZmNOv0wFff81ptm+8Qe+2CBHWRE4Ox4qfPMlpnrUhO5tc4sMPGYWqDcnJXMdlZdz3Gk3rXXNb\nQ68HPvmk9r0KAGvWkG+99pq5+YOra+1t8FSqmvqy+vllMtGIPnrUbsazN5hD3bVrVwwZMgQjR47E\nyJEj0atXr1a9oEWLFuGVV15BSkoK7rvvPuzdu7fK47VOSqwNJhOtTXd33jiNxmxRlpYCt97Kqlwn\nJ04bS07m+MzZsxkSLyjg6Fm1mlPMhgxhiFyjMedGNcFbevQoG1WMHk2ect3DZGKRwuXLHO1b2xjS\n5GTmQRqNvFeHD1OISUmcPCeRMNQWFsb+4Xo9w29SKUpKOI3cwYEDqSo7MM6axV7AsbH0vHYUnDxJ\nZde5M6MtQgiyAomJ5Mj9w/8P4899AMnQoZzQVx3l5SR5L77IQ8Zg4EGiUrGoV6wpqIqMDI4U12hw\nMXA4fgp8GJMmVRSqHzrEKEBODsds33ADcPo017NUSqNm3DiSbIBpSFu2cG3aOTQaYP168uG5cy0C\nQZ9+Cpw4QZK8aBHX1d9/MwLyww9VleMvv1AeXbpwXV66RB1eV5cmESLqgcHAesFLl5jxGR5u8aBE\nwh8hWqLXc28HBpp5g0rFdevsTH4AkFvs2ME6nO7dqQtKS83G4pAhNKA7QupoejrPbD8/bu5qRCb3\nXD4yLrsh1L0YnZydeQZlZDD1xRLnzwNvv00d+MwzjMqVllJOmZkk7H36kDS9+y5fc/fdnLRo42iQ\nUCclJeHw4cPYv38/nn76aSQnJyMuLg6bNm1qlQsShrlE13bYoyqhBkBye/Qox01bvkYqpcL+4w+2\nQ7PMl83I4Ibw9uYumz+fpNnVlZW5Gg1JtZMTPaF+fsDmzcC8efQspaSQjD33HD+nAWi1PEdcXJhe\nFR/fvGF+HQpXr1IoUilJ9Ysv1nxOaCgFJZdzg7m7mz1+BgPzUPv1owV85530Ot95J/DUU0hIoBFt\nNPJtpkypeM+ePYFVq9rym7YNfv2Vcrp4kT99+zKd4NAhmCbfhA8/iYdMBpw7F4k+/1ldOy/W6YCX\nXjL3Cvb05L9ubiSHn38OtEY7S3tGWRmg10MjkePU3hLoel5E6oYN6DNVC1lWBo36sjLqqJQUyrJz\nZ2DgQBLsVat4kDs7U/59+rT3N7IKTpygP8LRkXqv8kzdvZtWrk5HI7BPH7LtvLya44r37CGhuXKF\n5CQlha/NzOwQRoeItsXFizzG5XIGPF56yeLBoCAavbm57Dzx6aeMIIWEkBMIbxAXxzcQxtJv22Zu\nf3nTTSTiKhXPN19fRpwuXSKHSEtjVLxbN+DmmxvFHWwKAQHcj7m5dARYQK8H3jUuwkj9l5BeSIfv\ny6/CEToayqdP08Nw+TIdZFev8vzWaIC//qLhrNVyf3t7s1Vunz4k2SaT2flgB2iQUDs4OMDR0REy\nmQxSqRQBAQHoVJs3sZmonpuiVCrh4eGB/Px86BuaViikdRQUkFCsWlW1ortnT/5UR0QEF/++fVTi\nLi7826ZN9BJ9/jnJ9QMP8L2FMc1qNYsOgoK4ucrLeRju3s2c1OHDa90kMhnXVWYm12RL04A7BNLT\neUgKhBmgwrlyhZvJ25v319GRCqhLFxY1vfkmvdPx8bx3x46RNael8d6vWwc89VRlyq9M1jGcAw1i\nyBCmKPn40GN/6RK9o35+kFy6hNDQj5GcIoWXhxGuyWeAAjkL5iz7bisUXMtqNWV6551UfFu2cAFb\no1tCQQHd5VFRvE57R7duwF13QXIxDWddp2PI/tXwK0yG9Pskc0FcaSmturw8KoHgYLbU0+u53iMj\nuc6XL+c67wDw8eFX0uurBZ969QL276eRoVLxMH3pJT65eueZqVMZZoqNZVGtqyvfMCkJGDCAnq6o\nqNaJmhiN9JwrlSRYNpovK6Lx8PLiUVNeXlFSVVxcdQ0tW0b9FBLCnv2BgXTYFRUxTWnLFq7ZKVPM\nEUDhMJdI6NDz8+P6dHDge/frx99/+YXkUa0mqezVq/YIoS3D3d0so2p7VSYDJDHdkJQ/HH5l1yBx\nUADFpVQEcjn3+4oVFL7RSJ0oOIBycujklMn4uL8/edawYdSZgoPTDtAgofb09ERcXByefPJJ3H//\n/fC3QnGSXq/H5MmTcfr0aUyePBmvv/46vv32W7z33ntYvHgxEhMTYTQasWLFiobfzGDgjWhKLq2z\nM/D00zzM0tMZanjjDRLrbduACxeYI7VsGb3QpaUky05OtEx37QJmzqSS/f57vgbgJqulKblMxre5\neJF797on1KmplK/JxLjbgw9Sab35JhVWdDSLlYxGKiNPT97nsDD+LlTtL1xID6pazWrh3FwWlID/\n+PkBUpMBPXpVVGwXFtJajoykAdWRMH48DZHkZK7fP/9kmkxaGjBlCh5/QoLzF4Au5/+A+ydf0/B7\n6qmqHlFfX0ZeTpygIbpwIe/PvHlUokOGtOwaBQM4I4P3cOVK+wzVGI3mELFEAkyaBKdJwGMFQNmr\nwei083dIjA4kxy++yHW7Zg3w1Vck1Lm5PMw//ZSkcc8eRsmqxKDtGz16AC8u1sB0+BCiQjwBU1/K\natgweu2Sk7mnXVzqNtYmTiSZdXTka267jbI/cYJertxcHtgrVli/m8KpU0yhAqib7rrLuu8vos0R\nHMy6w7w8oHcvE/D8qyS3QUHci66uZsPprrvYEezGG2kRGgyMqiQlkeBdvcpc4ZtuMrfMGzSI59WU\nKaw9Uam4vhcvNnedCQ3lZ9hrK0dLGQlQqSA5ehTPzuiElDFDEPP7MTg4aHkIy+Xc8wYD9b9Mxhvg\n7k594OREnZiaSqWhUtGTvXIledmsWS2aDdHWaJBQr1u3Dvv27cNHH32Ezz//HMOGDcOoUaMwfvz4\n5n+ogwP++OOPKn8bPHgwAOATQYk1BhIJifGBAwzFNLY3tl7P3J0//+QNnTiRBOPxx6k8T5ygpaRU\nssWeJW65xRzuAWom0dcBLy9GeQWUl/N8zc8H7rmn7rbAHRIKBZWTvz+1nJcXrVStlgpICO906sS0\nneRkJp8LREavR1lqJj5+uQRSH3/cey/gvWEDlVxFKFgiAXqlbgF+/pn38N//Zg7w5cs0fFassOm2\ncU2GRMLv9vHHXIdyOUqj45GSbMJ5v4cxUy7h+kvMpOxPnaJsV63iQSC8x3vv0UsdHm5ud2TNyVWl\npZS/RmOfU0gvXWL+n7MziwgtvKN+foDfGwuAyb1oyAwdit8zemLv98BNZ+UYLkSvSkqYArJ+PTd/\n9eEvHQEGA6JXL6BXrksXrqv4eHqWk5OpQ6Oj6WHw9IRKxWYnCoV57g0As/ehRw9GpAwG6on8fBpl\nSiXXkrUJdSP1ugj7gqMjU5EOHTDhnj1H4arI5l7NyGC0ScCYMTxzkpMZUZs+nWtPoWDKlkLBdeHk\nRAfNqlXAhg0kz0I7THd36juhZiI2los7ONjua1Gys4G1a2kX3KP9Dm5H/4K7kxP6LlsGjF9a+4ue\neorcKjeX6TRGIzBqFGWxcyflde0aOZiPD9Nws7KYKXDDDW359ZqNBgn1jBkzMGPGDJw/fx7bt2/H\nmjVr8J///Afl5eVtcX0NIywMuOOOpr1G6DPt70+FPHasOYQTG0tCodU2Lsx3661U7J6eDO80EqdP\nM+NELifne/TRpn0Fu0ZcHDt35OayCBQgeX7wQXoMJk40P7dfv6pyXbQIeO89JJwPw+mD/8DYtx+i\no51x882dqsaWTSam8ISEcPPOnEnl5uLCe2uPZK4hqNXmnLNRo/DHbi8kxXbG+ZQeiEms4MUzZpBM\nC50WXnqJdzWCOQAAIABJREFURTVC6oe/v/meWBsSCY3WhAReTGsP+GgN/PUXCVxJCTfxhAlVH3d1\nBSZPBsCnrFsDeLvr8EXSDRjssg6OISEkf7160RvTUZGTw0iJiwvJSnk5HRkrV9JD1akTqxUdeASd\nOEG/iJMTs/dqdC2TSoEnnqATZOBAPvH33+n9ao0hY/368SBXKOilFNEhsHUrObJWK0V8yDSMkG2k\nJVybQXbmDI1no5ERpPnzGcE7dYr7XtCZf//NvazXMzXJcpiLuztJ9qlTjPB1kJSubdsYcddogHhP\nd4yUy2lw1McLY2L4o1RS5i4uwIgRwNChlFNODt8wJ4e87upVnhG//tpxCPVtt92GU6dOoWvXrhg1\nahS++eabSm9yc1DfUJfMzEzMmzcPGo0Gy5cvr7UXtVXg5MRRzB99xBt1883cDHv3UrP36AGT3oC0\nizq4+vPe79pFvjJpUrUGCq6uzeqxKBio2dl2b6w2CUYjcCnNAT7jZlfmNl++TONiwICh6PXg0Dpf\nW1ICXDT2Ry/PQAQEyyDJ08PBqEdoiAk4fIQH9ahRNG4kEm7WPXvMuW2PPUYy17t3qw7RaGtkZDBq\n5ugyDL1vKYKjUQPcfDPUzm7Y9SkgLwe8PE3A0WNccHPn0iMA1JwW2tqIjra/3EFYzHrqOhh+Bw7w\nAKjeJebKFeqPfv1wyRiBggIuu7wMAyLdi+AwfDig09I7m58PzYRp+G0zXzp5srmUwF6h19OZ5+kJ\nRHX2517cvx+m/v2xM7c/zq/S4d5rSnj5ezKFSKerJNSBgVTLBoNF5svFi3zDwYMZwuvWraoXsTXn\nBkil9FKKsAukpNAgGzSo/nrV8HCeNXo9YPjXvTAU+iFV1h0O2s6IEp6Um8s3KyriE4U0BYB8oTq5\n69OH54qzc+01WwKRtHFcuUIK1KcPg0n1wceHvNfbGwicPwlI1tJzb/k9DQYKW6PhXhIUnIdHzRSq\nu+9mzvnZs+RfHp64pA6BZ042AiYPt+r3bE3UOdhFwNGjR9G/f3/IrJTHUt9Ql0WLFmHu3LmIj4/H\ntGnTsHv37qoXa+2G5UVFvMmurvQ8ffZZZVL8Lp/b8W3mWDjKZZg0iTUFEgm5c1Md4gCt4s2buVAn\nTuTHPPoo92lcHNssW9aHtQXaowH8Dz/Qus3KouPnvvtYiyW063znndoHmxmNbDBx7RrQ3SEFS6J/\nQXrgAEjGjUWkLpn9QY1Geqweftj8osJCerAaMzyihWgPeZ46xdTzkyfJU2+91dxR4ZdfmKqu1wM9\n/PIwLGM9but8BLIhg/hkwXNvgwONbGLYgwXWr2fxuZsbsOwpBcp1MmzY7oaICPJjqV5LD6pKhRRd\nOF6TvQy9kbqjXz8gKn0PXM8cYn5lhbx/+43dBgA6v1qz7qYt5PnTT9RxDg7cq9HhOqSdLsH73/vh\np40SyGTA4JCrWDdtHSTjxtZIp0tPp9OiWzdAUqpkiFir5akttNmyEYiDXayHlspS6MCo0/EMfffd\nuoPLJhMdnt98w+d4eLBGNjiYbc67dgUXb0YGXzBwIAn13Ln1R9QUCq5PG6gJaY48TSYGD1Uq/r5q\nVd1fV6cDnn2Wac9yOfXboEG1BHL276fTEmBam2WqbG0wGhlVvnwZW7zvxsbdPnCW6fHy63KEdm5j\ncmSBpsizQQ91nz598MEHH1T2gx4zZgweeughODaToMjlcsjrcMUkJiZi6FB6KD08PCo7frQaTCbm\n0paVmROcnZ2Bm29G8tXxcCyggi8p4UatSE2tExoNHSoBATUjOx9/TBKdlEQHqasrDbguXWgQG43c\nt1otmzVkZNBos/U6pdxc5j66uTEdtFr74xo4fpyk+NIl6h5fX8pU6AFf15mp19P48PICUlXRKH90\nMaKEpXHeYrEbjebfpVLzhL+kJBaehIWx2K6DVO1fucJ1JaSWZmWZH3N2prfw3DlAXu6E/Kt9EWS8\nhrhuRvg8ehNw000oLATWPpsH2cF9uHf0ZXgt+bdNHAq2hnPnuLZLS4EctSd++YURSWHo4fEjUsRf\njMfM0MMoUjtDLwccnXnO9s7aBWz5mSHfXr1w+TJteanUrFfawN5rdWRnUwfm59N7FR3tiE83+uNy\nGu3aTp2Aq8YuMC5+pmadkdGIsD++opE3axZPaJMJqcpAfHt+DLp+C8y5s9KhLUJEJYTaNiHrIjGR\nqfq1+QCFOmK5nEfFzp183oULNOi6dkVlznOp3hn/K70HZTIP3KsH6o1pNrbIcMcOWp0jR7KLUlt7\n0RqA0ImsPv+pVkv91bkzHfM+PnQux8VVjbYfSXLD1jOzMNQ/BTcZTZAATPd4/30Sh0ceqdnqeOZM\nAEDyKsDZDSgrc0B2DhDauVW+rtXRoHpasGAB9Ho9Fi5cCJPJhG+++QYLFizAf//7X6tfjMFiGo6X\nlxeKi4trEOpGD3a5do1Z876+vGkHDzLvybIZ+fHjZjOrtJQFAzodcOONmJ7LA0Lo5nTXXYyOD68n\n+vD118wwcHam19UylSokhClZHh48mL29SUAPHWIaibCAk5K4SF1cOBhw8eLGya69sH0720DrdEwL\nrS9KWlrKDZueTgLo6goEBZlwu+MvKPj9BFxnz4Rbhhu/eI8erOqvYNhOTuxk9Mcf1EVVlkX37iw6\nrKU/ZiU2b+aHnjlD7Vkt313o3tO/v31x7RGDtUhcewpurs7oEdcZ//qXeZT4oEFA6gU9RuZuhk/+\nBfziNBl/aEbhp0tD8UIOCc7u3cDpP/JgVIQiet9lTJuaZDf5am2JOXNYRNynD6OaQchC1v7zmKDZ\nieKULlDG34P1jnfC6B2HIfeF4KarMuTnA7NuMwHPr+Mp9eefSO81Ca99HASNhurooYf4/kPrznSy\neeTnUwf06gV8+y112YkT1JXBwTQ8hCyrhx+udlibTAxZ/f474/a9ezOMNW4c8NRT+OYlA7K7dUHq\nH1IMGGBE7IVNVJKzZom9qEUAoJH1zDNU8X/8Qb42d67F7IFqGD6cpFun4/l+4ADP5wEDKp7w2GPA\nvn04XDIAB3d7wNGR0aT582t5M52O7u6rV+kBi4qq5UkWz125kow0M5N5XjbS01VwwGo03J/1OQ7d\n3BgF3bOHZ7FKRUeXRMJ0cj8/6sjPj8TDLcYPPyoGYfDgAPgD3LuCd+LXXxla2LCBqR533EGu9u23\nmJlvwhfOdyKotztaeZagVdEgoT569CjOnDlT+f8bb7wR8Q0l2DQTlukfCoWicsiLJWoMdqkLFaED\nnD1L1te1K6eq9O9vLkCIiiJz1etpXlmEIMPC2PFqyRLg+2/0CDRkY8ULCjg4Vc2RMhgY6kxONqcF\nnjzJLlmvvGL22D78MNdRaKi5ucTo0fyxREAAL0mjsX3vNEA5GY1UTA21J1er+byJE+mxWrwYiPfL\nhOzlLfDp5AXs+ALY7wEoFCg7k4Kvj/SHLKYr5s/nLRs4kD8nTzK63qMHh1s6OEjqt3QADjpJTubO\nt2ypkpmJjANX8ObPfaGRuGDYMDqw7QV+2Ul4weN9aAe64MCFaHz00RIsWMCugB9/oMeF36/ANcMV\nS+Jy4Fz8B7b3WgKNhh6GXbuY4qZ28YZrcSFC/Mo7Rm/oVkCPHkytEXC3+jOMcjwL96wkpGticdbQ\nC7svjUZq9jAM07PjExtUSHhSHzkChIVBlalAZHoysgLikZfnjX/9q72+kXVgNLIYX5hiL8xxePdd\nGgwPPEAfRnBwHZ2MCgqoQD08GJYzGqmHJRKgRw9ETgMuVTgY/NVXyZrc3ZnL1BEHNIloFkJCaNDt\n20cfTH5+3c/18WHKAsBz+to1/q2wsMJRExQE3HADonanwcvog1KjT61q0WAANr12Dh6f7oaLnyv6\nlK+D51v1DL7KyqKHVqkkUbCh1nkGAwP1sbEkyBpN/aR66FBg6EAdyvYdx6UsZwTc2Adbtkjw558k\n5127ApevyJCd3QWenoBaCCKHhZm7PMXH0xDZvp2yWLuWhvJffyHKyQmvD5PUnLJo42jUYJeUlJTK\nyYWpqalwsFLcrXpeSnx8PA4dOoS4uDgoFAq4tyT0HBlJV69Wyw1SXAxDUCgkMkdIL19m/+iICPaf\nNplqVgampsKg0EOlioFb5kUoMzJhXPk9sPT5irgQN+Dx46wc9vCgZVdaysMjM5NWsODsc3Or2jav\nLnTuzPbXxcV0vNo6xo3jHpHLGzYAAgJoxB87RgOjVy8ApV60MAoLSXqdnYFDh5Ca7Y4zUm9kp1K2\ns2aZw73r1pnnLowbB3SLNtHy1eu5SWvLGwkJ4Wk/aJC5ILG8HHjjDZSlu0Cf4gCnQQOhUDQQgtPr\nGd/y9ubNamOYTNTFlb3MAwIAZ2cUpZfjlCoKhYV0+C1cCBQfTYFrWgo0JWpIigsxKtII/6uvoXzk\nBGiOu2Lnjlg4uzqg84BgPHCrA3r2bULryY6MpCT2oBW60SQnAyoVdD37wCRzQGkpUOgdBwfVfkhN\nBpgcnKB29kFn90KUFzkjM9MVFsE2Rk+mTwccHBDz8lLMU6uQWRiDiDtfbrevaC0IMxrc3KhqlUr+\nXybjfKzVqy30Xno6FaPRyCEZQUEov2UOHH38ISvMoz6WSpnHdOkSEBWFu+7i6/39gQAnL5JppZIW\njggRFhg8mB3wlErOAKsOtZpLMCzMXIut1fK8Nhj4OADmeL7xBiJLS/GGfyTyHl2OaOkl4EQJdCot\nZLpySPfvRYZ7T3z/+1DMVrvALVONU4quGFXfBXp78yKzs0kMbCjPy9GRZ/KuXazlbxTX374druvX\no6dECl3Xp1BS0g9OTvRjKpUk6G5ulPdvmzWYpt6A4OJz7L0vnMFyOT+spIQy8fc3VyfbYS/hBpnx\nypUrMW7cOERGRgIA0tLSsHbt2mZ/YH1DXZYsWYK7774barUay5cvb/ZnADATK0dHoHdvnAsYid++\nzoHrv/bhjrAD8C5MM08yqqjMzclhilOEIQWj97wKV5jwyMhHcKCkFKO9EuAELVcJ6Fh5+WVawvn5\nZqIjdGRzc2v+eggJqZouYsuQSJpWwDxuXLWsDHd3uvKzsmioVHTn+OP7TvjpSz8UFZlw5LAJly5J\n8fzzfEl8PDd+J3cVghP/Bg5kMWQskTBtp7buMJ9/zvWwYwfjVCEhJMdqNboF6TFPfwBXhvTHtBkN\nFN9u3MhQlZMTr7sN2yBptfSoCOH1gABg8uTOCHr1Vej/KcG5dd2g0wGD5KeBHZl4xHMftmmkcDfm\nYWfJEEjOy7Ggx1/ATxuRGTEMzgWLUBbWHUqlBCu+DMTMmeSP1z0+/5xrY+1a6ogzZ5BR7o8VmsdQ\n2ikahYVAbs4tiIkZhq7RqSjzDsFM/IaYC4X4n/I2GMoikZEhNzekcHDgqZKdDalOg4gYOSK8SwA7\n2eO1wWRiyDctjelwZ8/y923bzJGoKllV+fmsvM7K4pPLy3HK/0a8/+stCOj9Gp57OA1ef21mGM+C\n3Tg4wCLk68M9l51d09tQw9IUcb3B2ZkOm9pgMDCSkpZGX9sjjzCNIyyMPLdLF4tzTKvl+nNxgbdU\nAe+y08A77+DUoXJ8WHo3/HTZeHx8EdaeAVR5OUiQjAc6d8H98wbVf4GenhxYlpVlk10/qneobRCl\npdAZZUg6a8D6F3Uoj2O6R69ejFIJ/tLsbODd1TqsyhuNl91P4K5Nz/Isjokhe1+2jE+Kjub+XbqU\nbnI7NJobJNQ33ngjkpOTceH/2Tvv8CbrvY3fWd1pk+5NKXu0lKnsZUVEUASU4Z4Hj6Lo8aCigIhH\nUDkix4HjRVEBRXCBCxmCICCWvSlQOunebZomed4/7qZJ2nSnSdo+n+vq1ZE0efJ7fuO7v+fPQyKR\noEePHnUmFTbqDetp6hIWFoadO3c2+7UtKC1lMGxVtsLJs/kYe+FDuJdkITc0CKri47QwmoWVrF1L\nY9SuVE9EuPuiizoPcR4XEff+BOCHJCB4RPXunpVFLSwggLLZrbfSC3nddQzRffVVUz6cSAOo1aY2\nxDExQGwsLq4BAAGCQY/SbA3+2FQEvEAJZPZsrsOgrRvgvvl3akLu7twZ8/Otv0dUFA9ylcqkfnt5\nAY8/DsnBg7jxqTFAr0ZUsklJoVZdUUGruh0F6vR0Gk99hRx8+1YxegxSIjnZH4sWBSMsOBj/6Qdo\nLyQh+IO3AJ0OnUsKMbNLJb64OhLJyjhUnrsMlCYAPj4IVZfj5T47cHp0D3z+Oa00v/wiCtQAeOLu\n2cPNoKwMyM/HMZ9BKNIYUOLO6A1fXylOF3vjudnX4DfQHf67k1GcE4xel3Lg6ROCP/5wtajwBoBe\nMD8/ulbaeOe9K1e4X8pkdJnPn8+41cBALo8xY2p8RKMfWRC4Rg0GCCVJ8OumQXquGxLlPTHwAT9a\nrkNCuKYvXGAHUPOEicDA2t5EnQ545x3Ggt12G0vdiIiYodHQ8REQQKF6wwb2VhIE9oaLizN7cmYm\nXcTl5ZTCs7IAnQ478wfAxUWHdEMw/rySi5xyT7ykWo1KjQFx46OhGlajk2xhIb3kAQE8sCQS/txe\nSrZOnoz0JAP2XPPEnpKBKP+dxq5//IPniERCEezll4HfUxRQSA3YVTQIc3SfUXjKzOT56evLLyOd\nOvGxr79myR9bNhZrZeoUqLds2VJdLsS8bEhiYiIA4PaqbEynpVs3xglcvQpMnYq+m05C9eU5uEAL\n72spwMTx3OTNylJ4eFA5VQT5w6V3f8Ajz5Q48MADFi/ftSsNnYmJ1Iq7d+cCNTZVEoXpJiAI9A0X\nFjKr5I03MHasGj9t1aNUooOLwoCHVZsB/T8BmQxSKdehRKKlphsYyGSmwEDLpjDmPP44Mw/Dwiyr\nWDRVLZ85k5lXxqA9OxIcTL0g8ut1SBUGQ3tKDs84OQAG5fv5AQg0a/EaFwdfTyUCLg1BWkI5Zo1L\nA7RdmQULIHTa7fD3Aw4d4tBYc5N2SB59lAv8s8+okAcFIaZ3EH66FAmFlKkXBQVADE6i09lf4ZFY\nCTz8MAYIf+NXeTC0nspaDVYBUAHLyaGQmJBAQbCNlq1wcTFVJfL0pD47fjxlj8BA5p5YFDCIjKQm\nfPw4DHn5kJYUI9Q7COUe/ggMrMrlUgcwKeL4cSZvARS+a+y9tcjKojAdFkYT+W23OV31BBHH4unJ\nnLcdO6j4ZWbSai2XW4kV3rkTCAuDUFQMoUwD6bBhwKVLGK6Q4PSJTvCN9MHguVG49J079L9JEN1N\nBpV7Re033bCByrNEQoGxLWXXNQZvb6ifuBtphYB+D88fqZSeAvNoyMcfB06fdkWldyBujtIBCe50\nYQmCZZEIc959l/HVv/zCsNyQEPt8phZS526+devWqvqX1nF6gVoqtWi40vsxf1T+3gvSoiLIKspo\nLRkxwkK4evBBGkhDQhSI6GXyHZnHQ1ZUUPAuLWWEwoABLHNXUMDk4EcftV5HWaQB5HJT7UCpFDNm\nAN2igZTVWzGg9A+ETexXXR7g7Fl2Mg7znIOnxvrDKzqI2Z1V8/XyZRZv6d/fTLFxd7darV6vN93T\nRhEebsposTN5edQ5ArzK8FzoNhQq/DHoLmaVZ2bSAB8ZEY3ujzxCS3p8PKR+fpgDYM733wPfngMi\n4iigVH1gFwDPP09DbEeulpebSzmuSxegUyc3lghQqYCUFGTF3oBVH/kDbsDTj3NOnTgB9PjpT3jk\naACJHOjSBUHLhuFNHaex1bFUq3monj7NvaeNCtMAl8GCBfSa9OlDC+Djj7MSQlER1192tpkxTiIB\nJkzAT/oJ2JkwCxM99mLsvBgs7+4HF5ca4aTm9QQb0/8gIIAGlIsXqayIwnSHxtgvqOY0mDjRVOtd\no6EhVKUyRRbo9TSKeXgNRVTxebyVOAvpH8Rh7jMeiJs7F9fPBfoUU5mUy4G5wwHJ0cfhmXLeenkr\nmczUudaJaqg3FmMUlUJR95Ly9qa8a6z0ExpaO7UoLIzGx7Q0dxSPuweXBskQ/dtHkER35gPWkMm4\nkcrlbWrsGmzs0hrMnz8fCQkJGDBgAFatWlX99yVLluC7776DWq3GlClTMH/+fMuLbWkx/WvXuGK6\nd6cZxcenwZuVnAy8/joT0CsruegCAjjZDAZ6LtzdqYDGxpp6irQFWjqeFRUsUXTkCFsF11WxrlEY\n703Pnpbd0PR6ntAqVfWqXrWK3uDiYmDuXEslNzeXCXlHjvCebNlSdyy7RsMy5Feu0HrR0sYardns\nQaNhGNGhQ4A0Pxdx5X9i+Jwo3PJcDP7+m5+5uJgK3ptvmhT6M2fYlKR3LwEzbiyEVOnpVMkwdWHP\nxhmCwF4Oycm0ZL3xhikqqKKCLsy9eylsz5xJfSQjA/j03VKo8i7h3gfkePOn3ti9mzr8U0/VI9NZ\nmc/2oLXG8+OPWSJUqWQ9el9fGqIBVgJ46y3TxxQEJu0HBFAQf+21OnJFBIH1RAsL2W2xMdquncdV\nbOxiO2w5ljt20MDVvTvw9NO1rc/GqZWVRRnYPAd7zx72dgOA0YNLse+wK3x85QgJQXX+jk7HOb9+\nPUWIJ5/kFLVKSQk3DmMyvJ3Wuy3GUxCYQrJnDzB2LHDvvY27/NxcfuTISBY3SkvjfTh6lB7WoiIq\n4P96tBjlehf8tNMVo0ezIpAFOTksddy5M73PDsSmjV2sceTIEQxoZlzLkSNHUFpair179+Kxxx7D\n33//jUFVaeASiQQrV65svZbjwcFsM26kosJUELkGgsDEt3fe4eJLTa0KB6mqS11eTmu2mxsFaq3W\nrI5lFaWlFGZSUxl9Yq0raVvm+HHGUVZW0ir888+mkPSrV1nfMy6ukeVi/fy4cmua9mQy6JRq7NyO\n6tq9Q4bwvX18uN6MlJVxMV+8yN9LSihY1yVQp6YyZKe0lGW+hg1z3iIXv/zCKIHjxwGt1g/SoZOR\ndByIr2CTT4mE96GgwNR1EgBeX27AtVQdjh1TIC1dhR49GMVko8an7YaSElO5ys8/5zjeey8P0KIi\nCowpKZTx/v1vegsqK9ygq+gFdaIC69ZxG/n8cwrcdc4jmaz+jmtOzvnzVCYGDuSYGSO1SkqANWuo\nwCUlcRlfvszqpUoll7ZMxjW2Zw9Dl6q9R5WVHHjj2pdIml6Yu42Pq4ht+PFHzqtz57hezfuGADTE\nvP8+z/eUFEYI7t3LM6Wq3gAAIL/CE9l5QFEp52piIhXqTZuYs1xQwL1hxw4rAnVZmalrYl3FsJ2c\nkhKu08hI9iqYMaPhpm0ADWw7dtCK//HH3A+yswGtVsDl81p4eLsgOVmCrHIlNm2i4WLDBo6/xZ7p\n728pq7URmiVQv//++/joo4+a9YaHDh3CjVVxrjfccAMOHDhQLVADwIIFC6BWq/Hmm2+iX79+tf6/\n0Y1djBgrldd0rxpNJBoNi4ubtV8WBIYVLF3Kw8EYaq1S8ekqFZWmqCh6bocMoUBtHlcPsAvT22/z\nwDl4kCGZ7Sm22thRqaLCMszFYKCVtKyM4Wh1tROvprCQ5tfsbAakjx1r8fDBg2yqIZFwnKffpkPP\nznq4ertaLPLPPmMdUi8v3u5u3awrt3o9BX6lkkLU/v10/23Z0nC4piMpLaVCp9FQ44+NpbIXE0Nh\nW62mNdVYvjAnVQOPXdshKVTjvGsPuLoGIiGBemVN5a8jI5EwqW7XLjpKVr5pgEQiwbFjEixdaqrm\n2KULqjskKt0rEVR+BZGKa+h0nRQBASOQlUXlsb2GfKWl0aNTUcH5N3MmqySkp3Mf+PNPKholJbQ8\nx8SwxDTAw3LwYDazuuUW/u7iAmorr75KKf3uu62Yqto/3t6+KC6uI5lapEmMGsVS5eHh9VfKqqxk\nmNzKlSar9fLl3GNLSmikCAigYJ6QQHlg7lzg++8EFOQbUFIqRViYpHZBqTNneOC5uDA0sI3W9ff0\npLczIYHrtrEhkWfOcD8AGIKYmgokXdFDmpmJHm7pyLumQoW6K7KzOTRXrrB/hbGMYbMpL6c7wsHh\nIc0SqJsrTANAQUEBoqu6Cfn4+OD06dPVj82bNw+LFy9GYmIiHnjggep25+Y0urELwL7A775LNej5\n5y2l2fPnqWZ6eNC1EBODsjIKwFev0v1vbFPauTPwyCO88f37c8F99x0toeXl7CliLWbS2DNGJjMJ\ng+2Jzp0p6O7bx4QkcwORXM7P7ubWCFdRUhJ3N7Xa5GMCBfNffqFFIS2Nbjx5aQGw4BX4FhXVUoSM\nAmdkJN3uvXpZ3wi++ILCk0oF3HUXz3SptHEauKOYOJFxu0bLSrdupml97hyFvRUr2MkPYC6Xbt8B\nPFf0PM5Ie+N3l0lIlt9XnTQiYknnzsyh+OSVFEhyXFBQ6YntOe7IyZFh1ixOtbNnOdcBwN+9FPf5\n7cDontmIyK/EO++MwJkztP63oZC/JmF06Lm4mOrtv/kmvUCDB9MYV1LCx996i0s6KYn/Z9z7pFKO\n4xdfUFF5dGgS5ImJ3EzPnOHEjopy5Me0OxSmGwrJEGkMt93G48Ozjsi27t1ZWXXVKk657GwK3j4+\n/J/p03ke/Pkn56xEwv1SpwN0lQLKzl+F4Zo7ogIFrP8iCBGRNe7N4cP8XlTEid5GBWqpFHjiCYpI\nTYmimjiRRgkvLxp2tm8H1Ppc9DTsR55bV3gUFiI9y4Bvv5Vi1Sra0iIjW1jtcudObiiRkUzscGCr\n4wYF6srKSihqzMycnBz4N9PU6uPjg6KiIgBAYWEhVMa2gUB1Z8SuNf00zWXvXq6q7GwK0ObX3Ls3\nfy8rqw6Mv3CBa0Clomt96lTep86d6aosLqYVOjIS+O9/qcFmZHDtWKuEEx8PLFtGLe+mm9pObemm\nMGBA7ao2Uim7ICYkcJgbTHaLjjaZuu64AwAFxzVrqA+p1caay8DEiNPAjiy+6J49FgL1PffQ5RcW\nxmuqaxM4dYobaF4eD/0ZM/j6ztxxOz+f1peYGG5Ycjk3uz/+MFXv++knCtQHDtAt6XklAE+HRmBE\nwRFIBot1AAAgAElEQVQMmjMQZybzc7e30CNbMsPrZ1yICMRXV4dA4SPBmTOeeOcdjvHTTwMvvUTL\ny4Derhi2JxPS1GTgxvuru3i2Zzp3pjBy5Yop3yA2lvLv/v1UYI2hM8OHmzxBv//O0LcePbjlbt7M\nPfavv4BJY7ogCqBlIjycXZ86mEAtYjskElMn4roe79qVz/H1pex1112ccidOcH/s2ZNhXcbOxkeP\ncu4OiSlHWPklpPv0QFaOC15+UYvVa1wt5bdhw7gB+/o6PPa3pUiltb3uDTFnDnViT0+eRQEBgG9X\nP/ST56JCWop12inQ6aXQapm43FCAQaPYvp0XmpRE96ED61fXKVDv3r0bd999N8rLyzFw4EB88MEH\n1c1d4uPjcfTo0Wa94dChQ/HBBx9gxowZ2LlzJ+6///7qx4qLi6FUKpGTkwOdTtes1zfnUsgIlHx+\nHKoIP0R2626p5wcFMfvIYKhWj4xF3vPzucCSkihrZ2WxJ4GrKw+NhQsZX/ndd7TK1KVbyOUUyjti\nWdTGNqdJTAS2bFGiS+xShI6vRHCwK6JBi8ChQ9zIjh9npbdp0wDX8m6Mty4uZryNGQEBdCk3xJw5\nVJS8vIBvvqHOtWBB/a1WHYkxIbGggFbB5cu52aWlUaHLyqKQnZJCA8mXX1YJ3MpwZCjHoHNYZ3g9\ndTdGtb3GU3bnkv/1GF/xLq66ueKo63hoqwTEQ4coLI4dyz3h6FF3nJmxGH26V0Li5qQTx8ZIJDwA\nax6Cq1fTSyIIFLCnTuWaUigoVPv70xp47hyX7KBBTGAEAI3Mk66VFSvoymtDNWdF2g6CQG/niRMM\nOYqPp2fl0UdpSNmwgcYYhYIJiN27m+Kv4+IoVB+/4I5JN1Rg73rA11dAidaluh9ZNd26cUFIpW26\nik9zuHSJZ9HAgaYQjjlzgLIyGTLjHsUP31QiHy6QlPN8N89/ahHjx/MGRkY63CNQ5x1/9tln8euv\nv6J3797YsmUL4uPj8fnnn2NoU5NFatC/f3+4ublh1KhR6N+/PwYNGoR58+Zh9erVePbZZ3Hq1CkY\nDAasWLGiRe8DACt3D4DrgP+hqFyB/wgKBFX9Xa9nDJWbGz++tqqcsZ8fw6rXrKH1JCODf+vShcZT\nT09msVZWMm569Gjr76vRsDJWUJBDulO3OsbxkssZZuHm1vQkN0Fg0tLrr/N+fPONFMHBrvD3p6tJ\np+Om99tvrJwyd26VJ0cZyH/S6Zrt2omL49fatbSe6fUUlpwJg8HUurWykuPs5UVLaXk5FREPD8YA\nrl/PZLjsbGadq1R0pY0erULvJ54EfKXOqy04EeXlQLp/LL4atApSQYb7Brrg22+5DyiV9JQIAhOV\nGTIkxb/+5WpRjVEQuP4bFerk5Gg0XGbu7lzfmZlU2nr1sgyPys3l73I5LfgAoze6dKGA/emntFkc\nPGjKOdm6lSFLmzYBixZ1ZTYTIMYjiVhFp+O54+rKn5u6naWncx4avSbvvUfLtJH8fFOYovlZoNMx\nN2fbNsDDQ4LH5k7EK8PK8c3P7oiJkViX39pQt86KCn5u4/ltHOfGHq0ZGTTsqFQsn6fV0js1d64p\n1/if/wSWL5dAL3WBTkeZaPVqU65Pi7nxRnoG3NwcrsTU+e5arRZ9qgqRT58+Hb169cLtt99uE0HX\nvFQeAKxevRoAsGbNmha/tjlhYcD58x7V8VEArXzLF5cj+0wWHr2rDMohvbBqFSfQc89RCNbr6dbM\nzmYC18KFtJKePMnk8+ee4+s89pj15K61a+n1cXenZTsoqPZz2ioXL1KIc3Vl3OSOHbTmL1jQtMSC\nw4e5qHbv5u+enrQIlJbScSCVsryOsRsb0tKAXw4BMTHQR3eDHi5o6bY1dSoFV5XKuQxjej1j+Y8f\nZ1ndu+/mBvXttxz/2bO5Z3t6MhF682ag7FwyohVncaz4ehT4+eCGG2jVlkhamu3RvhAEbvKurpYC\n76+/Ahs30sgx+iZ3SKW0pH72malZgURCue+jZZmIK9sP137dUVLS1+K1P/2UStqwYcy7aKtC9ddf\ns4RYQQFDrR5/nEnaxcX0qBrLiAFUgH/6ieFIej07oxUWmpTA7t3pPTJWUVCr+aXRmPVrqCFI68q0\nwO+/Q+4ipUm8g1n7REwUF1NYS07mGvPwoGV5cAOdvmty5gznZK0OpmDZVBcXzlNzBXnDBu4BaWmc\n3yWlEoya4IF9CbTInj9vEXVIE+2+fdB26gbFgBinXv8JCcxP8vNjLo5MRoNiRgY9vXUZDI0UFFC+\nKS6mN1qn4xjm5fHx//s/fhUVcUyjo7ne31tRjG7nfgey/ShQ2WKQnKSJQp27lIuLC65du4bg4GAA\nQJ8+fbBz505MmjQJly5dstsFNpvKSjx1TzHOZaoRESmpHu/ERCBjXyK8S9Ox8+0i+M0IAOBfXZg8\nKIixuD//zEmSkAAsXkzhpH9/YNEihu7278/v1gTqjAwKlxoNJ1N7Eqj37+ehmZ/Pqhhdu1L5SEur\nXaKoPtLSTCXroqOBnl0rMWKQHqpgN/zyC4VFY/UAGAyUsgsLUfH9z1jm+19kFCvx2GMtE4TVatbP\ndjby8ihMR0Qw32L2nXoMji5AQoQaeXlSHDlCK4pCQW3f20OHR2Sv45g+Fv3lntifdz1OnJDj9Ok2\nH8bXNAwGTkyVyqrLRBAY6rNjB3D99TyUpVIqdy+9RAU8KYkKTLduXMd9+/JljWFde/cCjwuroTKk\nITxPhkGdlgNgAoVGQ2E6MpLrZNYsUz3rtoQgcP8rLqYQfP48FbnSUlrqMzIsnx8dTYEbMBkTPDxo\nobruOtbr7d3b1GcrOJh7alamgD6h+UCl0iKDLDUV2PrYDgw8+wWrpshktSr/iHQcrlzhWWAw0PM7\nejT3xaYI1AoFDTRGA4ogmOS4xEQKzdHRDAcx192uXKGnpbKSe8bIkZQJcnKspvEA//sfkvcnIylF\nhpOzl+ORFwNbt+x/eTkvrhkbzc6d1GMzMpg/5u7Oc1mt5mMNCdQlJSalubKS+11SEtuOA5SnCgro\n2bp2jTkoDz8MhG7dwOQfiYRv1qi6uq2IIPDc8PJqsXehznz01157DdeuXbP4W3h4OPbs2YPnWtgp\nbv78+Rg1ahSeeuopi7+np6dj3LhxGD58OHbu3Nn8N9BogFdegedLT2Ng4lcIDDQ91KUL4CLT40he\nFALcijC0fwX0ei6yHj34nOBgZgFLpbTG5OczPOHQIVM96voC6h98kFaZadNqxFeZUVLCOo1r1zpf\nuEF9GFsqK5XA7bfTih8d3fTQlrg4arQ+PkBhjhaDU75B6Zc/IMpwuTpJZO5cs3+oKqxeWChBZlVS\n3ltvMV7YvH5oe8DX1xS3J5UYkLTkU2D+fAy9+iV0OgEhITwg5HLmcPn5CggJETC5bxJcFQZ4KwVE\nRJis/x2G//s/1r8zhgTVoLKSwnREhKlviCDQU1JWZsolSk1lUmdFBRWuwYNZ5QPg764ugK8aGBAn\nWOy/bm40uCQn07rtJEaTJnH0KC3TxvJ/bm7cywYMYDxkp070zCUksMLHX3+Z/reykgpHWBjHs1cv\nKt8PP8y1bF4PPjwcGHDxK7g+/zQztzWa6seOHQPKSgG9QYLcHDt+eBGnpHNnzh2JhHOqtNRS2Pv7\nb+CDD3gm10VAAOfhoEEMizM3in7xBc+xXbsoWJozYQIFzv79uQe4u1PZ9vPjfB8+vMYbCQJSUyXw\ncGdSYw0RyrakpzP7/6mnuCCbyKhRXKf+/pRToqI4zoWF9IzWpKSEFvstWygDhYWxdGbnzizXOnEi\n17lKZWry5ObG53p7c+8NDUX1WQ7U+NlRfP89z43Fizm5WkCdFur4OuqBqlQqvPjii81+w/oauyxf\nvhyvvvoqYmNjccsttzS/wUtmJgOlgoO5w8+cWf2QWg249euBHl6Z2O85BbcNCsDqUTRoGeOyzp+n\n1eqee2hpCgjgZDPWah8wgEmJdVlHo6KAf/2r/kvcuZPWLEGgBeeWW5r3Ue1N794MRzC6wadN4/fG\nlgrLzmbyR1AQFZLMTCBck4TTR4Pg5qLHmQ8NeHtbjXK0xrIhBw9CHhELr6+UOH2aY7dtG9//ttta\n49M6BpmMc+/IEUAOHd76JhL/mxaJfqm/YvV/pyI52x0rVrCEW0gIUFCqQOoDLyH3SDKefjAQH/+m\ngEZjZbNvz+j1XKyRkcx+y8+vVXpHoeCY7N/PDHQfHx6shYWU53x8aAhdt47KysWLlM3j4ymfb9vG\n5076dR78z+2DrFd3i/eQSGj1njWLwmhbK59XVMT4cGO3302b+LOHB+dkeDi31bIyuord3GiF6tuX\nz5HLebgKAhXCl17i69QZj7l3LzcCY9nMqqDKvn2B7V3HQ+4iwdQZ8lrJxyIdC6WSoQVaLeehVmtS\nVvPyGA8tlzMk83//sx5BIJEwd82aSNG1Kw1mHh6WBQauXjV1+iwo4LYSF8cpW2cazxNPwFC2D99e\n7IagmMDW9U4nJnJD8vSkta+JzQWuv55rzcXFZJg1jrO18M2ffuKXwUCFYswYy3buRvbvZ8GGa9co\nmEul9HZVdzSePZsHl7+/463TAK3lxvat6enWY4IaSZ0C9aRJk3Dfffdh0qRJ8Kgxa8rKyrB161as\nW7cOP/30U5PesL7GLqdOnapOelQqldVVP8xpVGOX0FAG7Zw6xeCoGqiC3ZFfHlVdq9L842m1LIkn\nCPxavpyalkLBybd0KTXTqlLazcbX11Tnuq01+DIfr6bmBX76Kd12BgMtBW5uQJSLF16ZrUN6kRK+\nXQKse13Cw4Hp0+ELYHlVuM2nn5pi6tobLi48NIqLFfDvEljV1iseHr5u6OnHjW/pUnr8DAbgy13B\ncHEJRtYFzt/KyrZpIW02MhkwaRKl3uuv545fA4mEVqo77qDFxCjw3n47x9DHh9ZrhYLjar71HDnC\nGGupFNDpgnDvvdOsXoZE4rzdNhtCLud6LCykLcLHxzRGWi29dsYmGJ6eJp3F6NKWSKj3XrlCvabB\n+TdlCl1MsbEWJYGiooAVq1whCBPb5doWaToymUnIMz8fFAoawowlbZvDrFmURf38YOHNXr2aIdFX\nr9bu5GcuhFoQFIThK6chpojzv1U70vbuTcG0qAgYN65ZL2GlMXGduVCentwnJZL6z1yVipZ+rZZW\n+nXrqHz071/1BG9vU1yIM3DLLYz56dmTG1cLqFOg/uSTT/DOO+9g8eLFkMlkCAkJgSAIuHbtGnQ6\nHe68806sW7euyW9YX2MXvV5f/bOPjw8KCgrqFajrRKFgwI5OZ7W6+/z5LJ/TuXPtw89oUcnJ4cRQ\nqSxfojHjXVFBWf6bb6j93n137ZyaESNM9TI7Upyrp6cpW9vPj0apH34IhWZoMEb0EnD7DFmDGdwu\nLqZGMnp9y+r/6nT08nh7Oz6BzGDg3ujjQ2HuwQeB996TwGNoP5T+82N4qU0TMTycVpLz5zk/V682\nZWe7unbQoh4zZtBVIZfXeTPLy2mEWLmSwvN99zGUISaG67FLFybcXb1Ka5QRYxKjXm+Drl5OiocH\nk5MuXuSeZG5hl0r5uTMyuIbd3DheTzxhuT96eDBWtVHcdBMXspX71V7HWMS2KJWcs5cuUS9rzh4u\nk3Hdf/IJw73uu4+/e3lRXlWpWJfaWOatuJjzv67YaLsp1f7+tPgJQitL7mTCBJ7ZCoWZcGyF0FCO\nXUkJFfOgIJ6vdrjE5mGshWrswNcC6hSoAwMDsXTpUvj4+ODOO+9EelU/ycjIyOpExeZQX2MXqdkO\nXlRUVN3opVlIJHXOeF9fy/jnlBRaW3r35t6+YAFdmT161C2YZGTQJRoczLAHo8CcmcmM5D17GHuY\nkkKDWU3PhkRSI5mhhWRk8DP06OHEExcMlendm5aA8HB6fb/4AoiIkOLQ38BDj9b+H62Wh3xgoMnD\nbqzCAPA1Dh7kgrfSrb5ONBruR0lJrJYxzbrR0S4YDAylOXaMrrGHHqIr8/BhWkkSRiowejSv+dw5\nblqBgaZmNAsWcO619+YiDVJPBpCxK/DJk1R0ExO5F8TH00JlMLAE4cmTnAvmDSJiY4FnnuEh4cwN\ngFpKeLj1fAi5nOv2zBmWyUtNpdHB2xtYsqT+IhxJSRy3Xr2s7E2tmrEl0hGIjGyZYbG8nI6t3bu5\n5jdtopD+5JPcjzt3NgnTu3fTMyqVcj9oyBim1bJiTl4eI0+tNYBrEXaMK5PLKcvUR0oKFZOuXXke\nXX89lZHyclZLq08QP3yY4ztqVMPvY3NsVEWowVcpLi7GhAkToFarMXPmTHRqYfHA+hq7xMbG4uDB\ng4iJiUFRURG87OCzTk5mmaeKCnqMZ82ikNyQzvDllzx4Dx+mEGu0Zl28yMVjbNwzaFArLKIapKXx\nUNNo6L2wEuXiNHh6mpSZ9esZT33+PJXsQYOsK4hr17IVrDGWzty1l5/PBezpya6K77/feIUiI4P3\nKCiIC9mRAnVRETfvyEh+VpWKjQhKS/llLC/2/vsMP/D2ZuUZo9DXq5dzhKM5M8auwC4uvPeFhezg\nd+AAx/KHH5iXolBQ2F6/3qRQSyT1HwYdgaNHaX3+5hvOV7mc1WhOnbK05puTmMix1enY1tmZPL0i\njUUOST2WO6VSjaKiPDtej+0QBIbIHTvGc6hvX1O1Kl/f2pEUe/fSwHH+PM+eVavqb+x57Bjjjl1c\nuK/84x+t9lEczoULLLuXmspxjYriGO3fz71i3bq691CNhv0/3N2ZEB4TY1nrvq3QoHqzZMkSnD59\nGu+++y4yMjIwatSo5icLwrKxi1wur27sAgD//ve/sXDhQsTHx2PhwoXNfo+mkJ9PLdLNjROhsQQF\n8f9cXCzdOz178rHoaJbYe+WVujsp2oqcHE5Id3fGL7YV0tK4aHr3ZljMU09ZF6gvX6YwXVLC5BBz\n3NwoXBYX02LbFIU9LIz3KzOTHS8dibe3qULE+PEU9ry9+TVkCL0dAC0A3t4UsqscPSKNZPhwbuxx\ncVybPXtyDuTmMtEuK4vzqaLCKXoEOB0338z55+/PNevjQ2NBfa2e8/K4T8rlXO8ibREdAKHOr+Li\nfAdeW8sQBBpVwsI4p598sn7Dyo03cr/w9uYekdeAHmEMGa2sbF/lc62Rnc21Hh5ORWTZMub3GY0S\n5lV+aqJQMJykqIihnG2oN44FEkFoXN2SjIwMbN68GRs3bkRJSQlOnDjR2tdWC4lEgkZergX1dfOr\nrKSLJzWVsZSNLf9WWUkLtVpdu4WmXs8ve02KykqGTaSmsjpEY50IzR1PW5GSwjI8AQFM/K2rSdrZ\ns7Qk9urFMNmaQnN2NjfFHj2aXo5TEEwx3S2lpeNp3nQkJ4cZ68XFjPk3ujTPnqWFMCaGYSqOjvtu\nLZoyllotwzUa02SvspJjJpczMX7bNgraEyZQoP7wQ77eP//ZsJeqLWGrta7R0Kt09Cjn4JAhdbcQ\nNnb4/PZbCiF33dV+xtSWeyetv/W9lvM/3pKxcPQ5dPgwO3dedx2Vxob21CtXKDOEhNCj3VDU0tmz\nNAQNHmwfJd1R41lWRit0YSHj0IODuf4/+4whH/fdV3/iaEEBPfxdujQ9wbSpHR6bQlPGs0GB+r33\n3sOmTZuQlZWFGTNm4M4770Tv3r1tcqFNpTkT5YcfKIBERzPOtEMma9WBozcygBVr1q6l9v7CC22z\nEYYRW4/n6dN0Kbq7M6avuqtcB6CxY5mRQTejRkMPh4O2JqfH3ms9L4+5JPn5LCVorF/fXhAFasvH\n27JA3ZpkZXF/Ki5m86O6QqNsSXseT2sUFHCvyclhFaeqQnE2oynj2aCDPCUlBatWrcKZM2fw8ssv\nt1iYLi4uxuTJkzFixAh8/vnntR43lsIbO3YsdtugM8VvvzEU4NIlZveLOBe7dlGIzshoW+Eq9mD/\nflrj8/Np5RCpzdmzHB+AsecizkFiIoUJd3fW2xcR6YhcuEBBT6Gg8UjE9ly6xLBNLy/HNzNrUKB+\n7bXXEGdDteqjjz7C7NmzsXfvXnz88ceorKy0eFwikWDnzp3YvXs3xtqg3eyNN3Jj79bNotSpiJMw\nbhy197Cwul3HHZURIxgG4usrWl7rolcvk3uwunGAiMPp2pWGjPJysWu4SMelRw+GNFZWNtzKW6R5\ndOlCD3dpabPLcduMRsdQ24o777wT7777Lvz9/TFv3jw8/PDDiDGrHzd+/HgYDAYEBwfjvffesyid\n11xXRllZ07r5dRScxTVUXs54c2cu99cYWmM8NRqOS0erLtaUsaysZAy1GM5VN45Y6zod7017rCkt\nhnxYPi6GfNRNZSVzqhqT42EL2vt4WqM195qmjKfd89gLCgrgXRUoa2zeYs7mzZuhVquxceNGLFu2\nDCtXrrR4vFGdEmsgdttybtrjgWsr7LUJt2U6mrLRVpDLxUopIiIKhbhHtTbOste02iVkZmZi5syZ\nFn8LDg6Gj48PCgsLERAQYLV5i/H3qVOn4tNPP631uo3qlOik5OczgD4qqv1WZ2gKgsDKJK6uli1f\nOwrGz+/m1vq1yjsqWVmsnBIeLq65xpCby/KUkZHieIm0T3Q6dkINCqrdelvEdhi70oaHdxzvYasJ\n1EFBQVaTCt966y3s3LkTM2bMwLFjx9CzZ0+Lx4uKiuDt7Y19+/ahq7HCejsgK4vNV0pL2dzg9tsd\nfUWOZ/9+4OOPqVk+95ypoH5HYc8edt1SKFjFIzra0VfUvkhMZCdMnY6dJ0eMcPQVOTepqaybr9Gw\nq9vEiY6+IpH2gLe3r1PVqv7wQ5bM9PfnfBc92LZHp2N1k6tX2UPh+ec7Rsit3T/iQw89hPXr12PU\nqFF48MEHIZfLcfz4caxduxYAY6hHjRqFN954Ay+++KK9L6/VyMig5cfTk+XQRNhtSiajJpuS4uir\nsT/nzlGZKCsTm160BikpnFsyGeeaSP2kp5tq9otVZURsBYXpuhvD2JtTp9hEJCen4cYsIs2jrIxN\nygIDWVu6Ru2Jdovdo06USiW2bt1q8bd+/fqhX79+AIDDxv7A7YyePVnY/epVNicRAW66iaXyvLyA\nAQMcfTX2Z9IkbjoqlX3qk3Y0Bgxg85GSEs41kfrp25djlpUF3Habo69GRKR1uPtuNmaJjxcrf7UW\nSiUwdSrL4s6a1XFCPuxe5aMldMTs1dZEHE/bIo6n7RDH0raI42lbxCoflo/XNxaN+Xzi3LQd4lq3\nLU5d5aMtkJPDFpoeHmzl7enp6CvqWHT08d+1C9i7l+2wbd31qaORkgJ88QUtUbNni9n2tuTqVY5t\np06MuXaGLHsREVtgMACbNzNUbOZM9rEQsS8lJWxbrtEA997LMB1nx+4x1D///DN69eqFkSNHWn18\n165dGDZsGMaNG4c0BwWW/vQTcOIEsG8fkxdE7Msvv3Tc8S8qAj7/nNVgPv4Y0GodfUVtmy+/BC5f\nBnbsYOykiO3YsIFC9a+/ijHXIu2LS5eAH39kXoGVYmMiduDgQRYuOH6ce0xbwO4C9dChQ3H8+PE6\nH1+2bBl+++03LF++HK+99podr8xEWBhLmikUHbOcm6MJDe244+/mxuzz/HyOg2j1axmdOtHC4erK\ncRWxHZGRTPp0czN1qxQRaQ+o1fSQlpZyDxGxPwEBPP8Eoe3EujsshnrkyJH4o0Zz+7KyMsyYMQM/\n/vgjAGDs2LEWpfckEgkWL15c/XtjG7s0FUGgq8fVtX23w3bWWKu2Ov62Gs/CQiApiS1VO2qdVFuN\npV7PaioqFRXljkprrHWdjmPr69t2DjxbIcZQWz7eHmOoMzOZoNujBzv5thWc9VxvDpcvs0JI9+6O\nq4vfZmOozbsoAoBer6/1HHs0dpFIWJVDxDF09PH38QGqit6ItBCZDOjTx9FX0T6Ry1kZpKOzZcsW\nnK0n5kWhUGDevHlwb7ctYeVVQnP7IiiIXyKOo631ZrB7p8SNGzfW+T8+Pj4oKiqq/l0mk7XW5YmI\niIiIiLSYf/1rKa5eHQLAuvSlUKzCLbfcgj7tVrPToWELt4hI+8funRLrw9PTE+Xl5SgtLcXp06fb\n8QYkIiIiItIeEARAEB4HYN2t5Ob2rX0vSERExCHYPSkxISEB8fHxOHXqFG688UZUVFRYdEpcuHAh\n4uPj8fzzz+O5556z9+WJiIiIiIiIiIiINAmxsUsHRhxP2yKOp+0Qx9K2iONpW8zHMyqqH65e/Qx1\nWagBVwAN1b907qRDRyY1ijQNca3bljablCgiIiIiItK+0EKMMRYRaf/YPeRjzZo18PDwgI+PD+bO\nnWvx2JIlS+Dl5QWVSoWuXbs2OQZbRERERERERERExN7YXaCePn06CgoKEBsbi4qKChw9erT6MYlE\ngq5duyI3NxeJiYkYO3asvS9PREREREREREREpEnYPeTD36xdWXl5OVQqlcXjly9fRkBAAIYMGYKN\nGzdCrVZbPN4e6106EnE8bYs4nrZDHEvbIo6nbbEcz7iGni0+Xt+j4ty0KeJ4OgaHJCX+8MMPmDVr\nFu644w588skn1X/Pz88HAOTm5mLy5Mm4+eabsXLlStPFisH2NkUcT9sijqftEMfStojjaVvE8bQd\nzjiW9Xd3dL7rNccZx7Mt4xRJifU1dpkyZQoGDBgApVKJ3377DfHx8QBQbY1Wq9Xw8/PDqVOnWuvy\nRERERERERERERGyC3Ru7aLVauLi4AAC8vb2h1ZrKCRUXF0MQBGi1WuTn56Of2H9ZRERERERERETE\nybF7UuI777wDX19fHDhwAGvXrsXYsWMxe/ZsrF27Fs8++yzCwsIQHR0NT09PvPjii81/I40GyMgA\nDAbbXbxI61FQAOTlOfoqnJPKSiA9HdDpHH0lzo1ez3HSNlTzV8QpMBi4R2s0jr6StoE4XiIitkcQ\nuK7Ky1v8Uu2zsUt5ObB0KQ/XceOAe+9t/YtrgzhNrNXFi8Drr/PAePJJIDbW0VfULFplPPV6jl+W\n3pMAACAASURBVM25cxyXp58GOkDCSbPG8p13gMOHgeho4IUXAIWidS6uDeI0a92cdeuAXbuA0FBg\n0SLA3d3RV9RoHDKen30G7NzJ8XrpJcDDw77v30o449wUY6g7EF99Bfz8MxAQwH1IqbR4uCnjaXcL\ntV3IzqYwHRgI/PWXo69GpCEuXgQqKqgpinHzlpSWUpgOCwNOnBCtU3Wh1wMJCRQ2Ll8GCgsdfUUi\nDfHXX9yj09O5Z4vUz+HD4niJiNiav/4C/PyArCzg2rUWvVT7FKhDQ4EhQxhGMH26o69GpCEGDeI9\nU6uBkSMdfTXOhVIJ3HQTF/uUKW3KimdXZDJg2jQKGmPHcoMUcW6mT+cePWQI179I/UybZhqvsDBH\nX42ISPtg2jSguBjo3x/o1KlFL2X3kI/Tp0/jkUcegUwmQ58+ffD+++9XP5aeno677roLFRUVWLp0\nKcaPH295sU11ZQhCh3CPNxencg0Zr6MN369WHc8ONpebPZYdbJwai1OtdXPa6P1y2Hi20fGqD2ec\nm2LIRwejnnXl1CEfPXr0wP79+7F3795anRKXL1+OV199Fdu3b8eyZcta/mbtbONp10gk4v2qD3Fs\nGoc4Tm0L8X41DXG8RERsj43Wld0FarncVKmvZqfEU6dOYejQofD09IRSqURxcbG9L09ERERERERE\nRESkSdi99TjATokLFy7EoEGD0Llz5+q/6/X66p99fHxQUFAAZY2MyyVLllT/PGbMGIwZM6a1L1dE\nRERERERERESkThwiUE+ZMgVTpkzBvHnzLDolSqUmg3lRUVF150RzzAVqEREREREREREREUdj95AP\n886INTslxsbG4uDBgygtLUVRURG8vLzsfXkiIiIiIiIiIiIiTcLuAvUvv/yCMWPGYPTo0UhNTcVN\nN92EefPmAQD+/e9/Y+HChYiPj8fChQvtfWkiIiIiIiIiIiIiTaZ9dkoUaRTieNoWcTxthziWtkUc\nT9sijqftcMaxFMvmiRhx6rJ5IiIiIiIiIiIiIu0JUaAWERERERERERERaQGiQC0iIiIiIiIiIiLS\nAuwuUB86dAjDhw/HyJEj8fTTT1s8tmTJEsTFxWHs2LF466237H1pIiIiIiIiIiIiIk3G7nWoo6Ki\nsHv3bri4uOCuu+7CqVOn0LdvXwAM/l65ciXGjx9v78sSERERERERERERaRZ2F6iDgoKqf1YoFBat\nyAFgwYIFUKvVePPNN9GvX79a/y92ShQREREREREREXEmGiybV1BQgAMHDiApKQkSiQRRUVEYOnQo\nfHx8WvTGJ06cwAsvvIBt27ZV/y0/Px9qtRqJiYl44IEHsHfvXsuLrat8iV4PbNkCpKYCd94JhIW1\n6No6Cm2mvM7588D33wMxMcBNNwESiaOvyCptZjxbg507gb//Bm6+mfephXTosWwsGRnAl18CISHA\n9OmAvG77iDieTSQ/H9iwAXB3B2bN4nczxPE0o6yM87C8HJg9G7DS4bg+nHEsxbJ5LaCyEvj6ayAz\nE5g5k/tTG8YmZfP++OMPTJkyBaNGjcKXX36J5ORkJCUlYePGjRg5ciSmTJmCffv2NesC8/Ly8MQT\nT2Dt2rUWfze2Gu/atWvTXvDMGWDrVn7/4otmXZOIE/PBB8CVK9y0U1MdfTUiNcnOBj7/HEhJAd59\nF3Diw6Zd8eWXwMmTwLZt/C5iO376CTh0iIrigQOOvhrn5uBBjtOhQ8DPPzv6akQczcmTXD8nTwKb\nNjn6auxKnSaNb7/9FitXrkS3bt2sPn7hwgWsWbMGI0aMaNIb6nQ63HXXXXjzzTcRGBho8VhxcTGU\nSiVycnKg0+ka/6IqFeDiAmg01rWhnBwgMRHo3h3w9TX9vbIS+OUXoKICmDgR8PRs0mcRaQXKyrgQ\nQ0KAyEj+LSwMOHYMUCr51Rzy8rjZh4QAY8c6rZW7VUhMpMWtXz+uk5oUFnID9PMDbrgBkDYxV9nD\ng/elsBDo0qXjjK1eDxw/Dri5Ab161f25k5KA33/n+Pfvb7v3DwkBEhJ4T1Uq272uozhyhGt/zBig\nUyfrz0lJAdLTgb59W3e/DgykYiiTcV20B1JSgH37gKIiYPx4oKmGq7pQqzlOggAEBNjmNUXaLioV\noFAAWi0QHGz5mF4P7NjB82jiRKBmpIMg0CNdWsr9sh6vmzNi906JGzduxJNPPok+ffoAAF577TVs\n2LABq1evxj/+8Q+cOnUKBoMBK1aswMiRIy0vtj7T+9WrFJr69uXNNKLVAs89RytaUBCwfLnpJu3d\nC6xZw4Pwttt42H31FdCtG12oTRUs2hgOdw1Z4+23gcOH6WL9z3+4QZeVAWfPAqGh1hUmQaBAeOQI\nMGUKF2JNVq9mSIIgAM8/D/TubfNLd6rxFARuXD/+CFy+DHh7AzfeCNxzT+3nfvgh8Mcf/J9//QuI\ni2v6+2Vncw327Al4ebX48p1qLOvi55+B9eu5TzzzDOfdmTMMP4uN5VwEgCef5BwWBOCNNyyV+pag\n01EAVamAzp3rfarTjeeJEwzj6t8fmDSJe/ezz3IslUrgv/+traDk5gIvvMCxjIvjmLcWBgNw+jSV\nle7da12L041nQ+TmAv/+N7BnDxWEAQOA//3PdBYaDMDmzcDFiwybbIqwLQjAhQs8a/v0afK56Yxj\nKYZ8tJArV2hg6dvXUig+csS0tkeP5pm0YQMQHs7wkPPngddfp+A9fTrlMgfTlPFsUPzXaDTYsmUL\nkpKSqq3GEokEixYtatbFzZo1C7NmzbL42/XXXw8AWLNmTbNeEwAtGtasGjodUFBAgaKggDfKeINd\nXXljBYFWpnXrKBicP88Nu3v35l+PSPPIyqLFs6ICKCmhQO3hAQwcWPf/ZGYyZkupZHjIe+/Vfo6b\nm+nemytc7ZW8PG5UWi2FvBEjOLetYRwbmcy6BbsxBAR0POtUbi6FB52OhwcAfPwx525iIoXFiAjO\n3/x8frelxUUut63F2558+CH33s2bubaNY1NeXvc8Ki2lF9LDg/tEayKV2iQXwGkoLeW8dHHhz25u\nlkpCYiJDhzw8eA6+8krjX1siAXr0sP01i7Rd6lLwXVw4X/R6Gs02bAAuXaLyGhtLZVmn416Ql2ff\na7YBDe7ut956K1QqFQYOHAg3Nzd7XJNNMbh5IGf6XKhO/gGXG8dSiDYyeDAwbx43mqFDmeSTlMRN\npYHECkHg0z3lFfA5/SetcoMGdRx3t40QBODaNcrCXl4AHn6Ylqvu3YGoqNr/cP48kJzMe1fl5tbI\nvVAp8YZnQQGkfftYf6M5cxiOEBBgO1dnK1Nezo8bEdEMr7NeTyFPp6PAMmgQNX5rzJhBC4FazdCF\nNkZBAaO3bCHPa7WcjyEhjdC7brmFB4CnJ3Dddfxbp04Mw1AqqcRLJLSkHjvGeZeczDe47rrmhy85\nAcb9z8uLH9MaRUUcnqAgK9tip060rvv48EWUSnoSL12ikmBtH42I4Do+cwa49VabfyYLBIEerZIS\nYNgwy3OjldDrOTX8/CjvlpRwboeG2sBZGhFB71TXrhR2JkygAg3QOn35Mt9Mp6P1WkSkNejTB3jq\nKW4OQ4fSm3fmDODmhkqlLzJLfRAcFgm5Stkk63RxMddLcLBjRbAGQz769u2LU6dO2et66qU5rozP\nP2e+REAAsGRJA2F3Wi1w7hzj52rG/tTgl1+YEzQi4yvM8foe7m4Suiyb4y53EM7gGtq2jcZlHx9g\n8eIGBMfMTLp8KyoYsvHCC6ispDEl50IuhkWkYs7L3SHxcK/nRVoPW46nRgM8+iiwfz+n4hdfWNcv\n6mTVKv5zRQVdaD172uS67EVjx/LKFeC11yhQz50LDBnS/PfU6/laFy9Sr/j3v5shyGg01IJCQ2tL\n+FevcpJXVgLXXw888UTzL7aJ2Hqt//wzo+M8PYFFiyg0m3PtGrB0KQXqu+5iaL4F5eUMEwgLA/z9\nbXZdNuP4cYbnGAwM3Zk50+Lh1tg716xh/mNEBKfGa6/RsTFpEnDHHTZ9K0sSEuiGLy8HRo4E/vnP\n5nuqmoEznEM1EUM+7IROB5w9C4PKF298Hox+n/8LIW65iLnOC9K3VtaqrmONrCzuNSUlLMgzYYJt\nL9EmVT6MDBs2DCdOnGjxRRmpr1Nieno6xo0bh+HDh2Pnzp02eb/DhymkZWUBhdv+AObP50lgbYBc\nXOh2aECYBrjfengAupIKlJVXDWNlpU2uuSORkEALV8C5P2B4sp57A3B89XqaDjUaADTCJicD3lF+\n2JnTDwZXxwjTtiYvj4KdhweFkytXzB48coRWz08+4XhYo7yc0o5a3a5DXK5codAmk7W80EVZGcc8\nJIQh+xUVDfzD4cO8D59+aroPbm6MpbZmLtdqKaAZQxvaMMePc3oVFVkvvJOcTKuRhweN87Vwd+c4\nWROmy8oo4D3/fI2Jb0e0Wu5DUmkjJkLLMRrEg4OZO3jhAvcAlYrLvcmUlABvvkkDRHJy/c+tqOAF\neHjwAuwoTIt0cORyICYGFf5hOHdWgI+bBvmlrtCnptOiYb631kFqKvchL69mrhUbUqdAHRMTg5iY\nGOzbtw8DBw5E9+7dq/8WGxvb7Dc0dkr8448/kJWVZWH9Xr58OV599VVs374dy5Yta/Z7mDNjBkPG\nhgwWELR9HU/eH38EVq7kYXj0KJ+o0QBpaQ3ePCNTpnDfKZ8wFV6zJgN33y26yprBbbcBBr2AKQXr\noPKX0fRVV3xkaSmF6spK4P77AUGAX+U1TBxRjMJC5tIYvZhtneBgYOpUuq+GD6+RZ7l+PTX733+n\n1RMw+eCLi/n7Qw8B8fH8Hh3d/Av58Ucm1W3d2vzXaEXi4ujB9va2YgVtIl5ewOTJVNJuv70RxpH1\n67lf7N5NKagmgsB79OSTwDvv0PT40ENMxHnggZZdrIO59VbqaTEx1qOEevfm32UyWlirEQRW6Sgp\nqfvFT57kyXjuHNd5fYpjazFgAPf0yZM5GVoZiYT7V0EBc7UGD2aUljE3q8kcP05NJju74bU7ZAjd\nCLfeSuvTQw8Ba9dS+RMRsTWZmfTUvfIK81DAvXb6pHLs7Xwv3OOHQ67y4uaxe3eDCmHPnqYaA8Y8\ncEdRZ8hHUlJSvf8Y1ST/s3Xuv/9+LFiwAD2r3NHjxo3Drl27AABTpkzB+vXroTSLM2yxK+Ott7jJ\nuLjQQqRW06K0bBl9BqmpjOv5xz8AUD757jtWb5s4sf0V/XAq19B//0vlJjQUePll3pea/Oc/MCSn\nIuVcMQ4Pfxrx/XPgs209JaGXXqrtd7YzdhvP//s/VqhRqzlvvb1Z5eSrr6D38sa2AYuRZfDHtGmA\nr1qwTMRtCmVlwGOPMQQqK4tCoQ0qeDSG1hrLU6eAXbu4zAcPbuGLGauj+PvzPtSMid68mXuLIFC6\nXLjQYYluTrPWv/8e+PZbU4yXry/Hx2yOai6mIOXRV+B/bh+8BnaHwteH8XoNVDKxJ44azzNnWLxn\nyBBGDVmg01EIkUiYC/Tqq7S033MPy+Q1hMHAePGiIu6/335bd/lCG+I0c9OM+kM+FACsl/VVKtUo\nKnJsMp0zjacgAL/9Bly8IGDKJD0iOsvphf75Z675O+9kLop53Mbs2TQU7dvHM+6VVxyab2KTKh9G\ngTnPSqal0gYf7sSJE8jOzq4WpgFAb2aF8PHxQUFBQa33alHr8bg4lmuKigJ++IGaT9eu9LWlptIs\naCytJpFg3Tq63g4coJGvDeZrtQ1KSxksqNFQc7EmTH//PbBhAyrKBFyWXI/zR0oQfuwAro/ypEkx\nJcXhArXduO8+1uoNCDBlhG3bBiQmosigxMErqUjz94dMr8UDxW/zFB49mt/DwoBHHmnY/FpQQEti\nVBQP586dGxXP5sxUVrJ6olxOvbpnz2bu0xcvAt98Q+m8vJwVVDIy6DLX64GPPmKoQnExkz3PnqU2\n3ohQsnbH9u1U9saOpfno8GEKfKmpnF+uroxVTknhvLzuOvyRFIFtyhcwS/4vdD2fDv8bw50zztrO\nGAzAe29VYMDlzTj3ZQl6bbgDPlFVyfPbtlGB69+fMdBRUSw7Wl5Oz0hjqAqjg17PuWtMxLxwgdVr\nwsN5j9pgcQLbokNdwnZxsViUwJwrV4ANXxhwQ+Ia5Hz0FyIWT+GZtXcvN+RbbuETU1J4jnt7Mw70\n2WeBceOoEObm0pDTBgo+NGi2GjBgAJKTk6u7GObn5yM4OBjBwcH46KOPMLC+cmZ1YOyU+PXXX1v8\nXWpmAi4qKqp+T3PMBeomIQgs0eLnRw2ppISaeHY23YujR7PT0513Vt84X1/eT1dXuxnmOiaJiVRu\nQkPpIq+pJOn11F4ByDTFkLnrMPLcx/DvJAcEV2o6HUnbkclYscSIVks3WlERXAUtisJDodcDIYY0\nCn1BQRTyYmIo+A0fTn9yXZSU0CKYl8cD+qWXKIi38XgamYwxqdeumXoPNIv33mN42JEjNBP+5z/M\nXp8wgTkYhw5RUhcECjNGIaejlRWsqOCeGxBAa+eYMbRMfP01D06tllU9rlyhJeqnn4DrroNSCXQu\nOAKd1BUG/wBaV9twRRRbIZEAfcv/Qo9LP0HuJoPbb+7Aw1V15X/4gcH/R45wgoeHN32+eXgw7OPD\nD/n/GRlUAjdvpoB9+DCTFttqqUYRu+PpCaj1OYi8dgjaruGcp6Gh1A5dXRlSeOedtG706UNFe8oU\nWj00GuYBCAIVuWHDHP1xGqRBgTo+Ph7Tp0/HhKrUye3bt2Pz5s24//77MXfuXPz1119NesP6OiXG\nxsbi4MGDiImJQVFREbxsKcVKJLxhR4/ShV1QYOqu2KcPtaHJk4E//6QQ0rcv7rmH56O/f+OVfJFm\n0KkTBzk316SxmiOV8jnHjsHFzwf9wjUoVYcjSJZLd1B9pUE0GlO98bq4cIHW2+uus944xtkxCtie\nnnD39cM/71ehpALo3zMYyIik9j9iBA9aT09uaHo9v8wTkPR6hjCkpbG7qJ8fy2mZC+9tGKmUldnO\nnqVjqtmGNj8/bvxeXvSsqFT8+cIFxkcrlVRKbrmFSRzmXLzImqtDhvA+tGcUCpOHIzKSc08m41rW\n603KnXHtVwVbX3cd4H+3L9TfSKD2826ba7IVkEiAWXNVqMiRwcvTANdQs31v1Cj61qOjmyZICwIV\nH+Me2b07X8tg4Bzv35/n4/nznOM6HeMg+/e3SzhIa+Lt7Yvi4nxHX0a7JigImLfEF9KVPRBafB4Y\nMZJzy82Nc6lvXz7Rw4MKd26uaV4lJ5vO7ytX2oRA3ayyeTExMTh58iTi4uJwzGoKd93U1ykxLS0N\n99xzD8rLy7F06VLcUCPLqEmxQYJAYcDT0+RqrazkTVKpGE/99dfsirhuHQ/JRYu4+SsUrFlkbD9r\nMFha54yFx+ugsJByirN7yB0ea2Uc25IS3pfAwLrDNvLzmaDQpw+EzCxoNm+DfPRwKG6fXLew/PXX\ndIXGxbHeuDULa0EBk1N1Oh7sb77ZbNeSw8YzKwtISYGmqALaTt3hHW3mHq+spHVJpeKm5O1NyfK1\n1zhRn3iCWiPAmLX33+d9CQ/nONxxBxO0aq6BVsbhc7MuLlxgt9XSUmaLxcQA+/ZBuHwFhbfeDY/+\nPeFSmk+FJDracswKCujKrKyk+2vlSru5Me05nhoNoCnRQbXubcbWXH89kzDd3bkmly3juCxaxKzk\nnBxaquPiTGEGBgOTE42GEJmMQrhU6hSuX4fNT0FgsqZGw3VrnF+CQI+Sj4/Vs0mnA4pSCqHSXIO0\nS2ceUILAs2/3bgorjzxCgeaDD3gGPvwwPQeCwJhWV1caMMrKKFy/9ZbJzVMjDr4pOGosGyqN19zH\nHL1vOc3eKQgoKeK54eWm4/z08+M8OXCA30eP5vm0bx+wcSPX9tixtFovXUqPdb9+zAeoYYC1Fzbt\nlBgSEoIVK1Zg5syZEAQBmzZtQlBQEPR6vUWIRmOpr1NiWFiYzcrlYft2uhsVCiYDRUXRNAXwoPPz\nY1mAoiIekkOHchOXSvnduEGtWEHB48kn6ZYwFrYeN47JHhIJsrMp03TvTq/Yxx9zv3nxRYfNAedH\no+GGfOaMqfvZwIEUfMFbcOECxzE8HNzYq7LtfzjXA98WjUT4IS0WBvwN91B17WYtgsDEh/BwU7Z7\nzRjW/Hwu2v37eW9t1RLanqSlAS+/jLJ8DdaXTsWB4GGYN+UK4kKzeeC6ufFzJSezNrVUyrmbmYky\nmRKFG3cjsE8sz2XjvAd4wN52Gw/PpUtp5X74YVMDk45AUhIXtnEcAW78cjmQlgbDBx+gIKAHtC++\njL+D/bH5feqDi8afgedXaxl3/swzFCRTUylI/vknrTLttILCtWvsXq8szsIS7QkE9Y+gV9BoXfDx\n4UZZWMj4XmOd9MxMhm0tWMBDVSrlmn/jDf48bBiL//fuzb24o5Z2k0ish7dJJLU9dYIAnDkDXZkW\nr33dBbFbFqOnfx563D0EePxxjv3u3fQe/PkncNNNFKZzcrgPG0MuJRKenxqN6YzU6017hcHA/zt0\niF7eadNadQhEnBtBAJKO5gOvr8DV4wXY3XceHnzAgMjv/sez6J57qJz16UPDhNGQmZlJA6fBQONP\nZiY9WF5ebUaQalCg3rBhA15++WXcVtW1Zvjw4di4cSP0ej02bdrU6hfYbC5eNNUrvnaNB9oHH/Cx\nRx/ljTp1ipuQURh74gkGywcGcqPJyaHAolSyNEBEBIXpiAj+Pm0acjReWLSI86J/fyryMhlltcuX\n28w8sD9Xr9LS4uHBuL/4eP5exbffsnJTN8N5vBB/GIG3Dq0OPTAWVgj/cxO0536Bu5+Ci9K8CoBR\n092xgweQtaSmc+d4j/v351x55hmnsH41icxMoLwchVoPKK9dQKB/GhQrlgFdKhjv+Oij3OE++YQW\nv5AQID8fJa5+OLqvGNu7jEDIB6x40bvfMHjeX8HYVmNVgEuXOJHVasa7dRSBOj2d1rgKjqPwyKM4\nexaQq69DV8MBSDUaXJV1Qepfxdi+OBu5gf7w9WUUQ/nX2+Dp48M96MoVCoGHDvG1unXjftKlC/ef\n9tTeGjQm/PknoHQLwPGgHrgx7bxlp4UxY4DPPgN0Ouh3/Y6TyuHwuWRA5yh/jldVQjgA4OBBbqwG\nAzsb9ezJcJmUlIbDkJKTuZf369fuxrjRHDkC7RurcC1DQM65myFoC3Ck1Bfdzp5jvVxXVyoqf/5J\nL1RaGs9JpRL49VeTOx6gUeL0aZbXS0tjyJJRqcnN5b0KD2eJvttua/P5FiKNJymJUyAmhlPi8GFg\n++IzGHQkDQZ3L3S7ugOFX+sANxkt0zt2cP3GxrKiR2Ehwzzc3KiM3XAD94GQEMpu1sJAnZQGBeqA\ngAC88847Vh/r6swtnG+9lVZJPz9uqlXl+ACgOKMEpaNGImhVb0hcXUwbQ1AQYx5XrmQ1kNJS3uSK\nCmDwYGSXecIQNgABVxMgHTQQ8PREXjqf5upKg3hwMPebCRPaXHM6+xIWBgQHoywtHwUj70SwSxmk\nc+ZUP7xpE5B0thx35axEhcEAXNzPEg0KBSZPZr33CT7Z8FQpqvyZRbXf4667mODg5WV9g4+ORrm7\nGpqcEigfexjy8PDW+7ytRZ8+MFw/DFkJFTjpPRW6onJ4+igANwmVBYBC8dGjFBI1GmDkSCTFzMK6\nMh30rp7Yvo7nYZ8+cixYEG/5+hERphjXm2+2/+ezEwaDKVnRwwN0Q1ZWAm5uKE/Oxg+bmE8jlfbB\nQ7PfxujHL+Da/K9wKawbkl27YfQgGq+7dweUfUYA33/N/cSYfBETQwurvz8VlmPH+LVyJd+0jSII\n1Bnkcho6tVp+nOJiBTLuXoCsUaUI7GKWUKhQ0Ert7Y2kU+X44FM3VBQ8gUWlGxH1wO2WtUnj4hgX\nrFAwNj0hgftGQzHVgsBxLSmhy/iNN0zW1naAsUW5v3/tjugaDfXfsDDAu6AQ507pkVcog0YD7PCY\nhDGef0N6/118skTCMI+ZMylE5+QYbx49tkZyc7n3SiR8fOVKyzdVq3nYnTvHXA1RmO4wpKTQ7qDV\n0vF5//3UyTK9usDg6QNDhRZ/e49Dn0HFEH75HZKUFJ7XXl70/kVGcm2fPMkmROadpl95hRO6DSUk\n1ylQP/nkk3j77bcxefLkWo9JJBL88MMPrXphLSYigvWMjYwZA2RnI6vIDUu/vw4lb5zCnIn5GLlg\nGD543+TR7tEDFLB1OqRKIrApbAEieisxIsITSxcDxQWPY3C3Atx3two+Egm6dKGn7NgxvmVoKPd7\nY5hge8fYS6Rr1ybW6fbyQsLUV/CPuRJIFHL8858S3GtWFzg0FDjnKsWPhonwKTmNCEVWteVq9Gg6\nGGQ5syHZ4kItxtyaYkQi4eENMLRk61Zao+PjAYkEBa5BeFm6AmUuWgw444NHRzZ/HOzFX38x1Cw2\nlp4zmasrtobPxZZDQFExoFAY8GLBC+iccg09Y7vgtlIgOckdgW6h8AvI5oEol6NHrCtGTnDFyZOc\nt15evJe1UKlYxaK0tG2GxDSSTZtYzCA5GZg8LBvz1dvgFR2NA3nd8eKvN6PgF5O3PavEA0K/OFQs\njsPpH4ExvYE5c6ruhwyQ4GZgzDDmbxiV9e7dWWtdEHhQZGVRWW/jxe3//JNFIaRSNqG97z4anLy8\ngH0HZPjhR29kZppCxrt1k/BJK1bgsHQ8KjzUqHQPRME/ngPiarx49+4MCwM4lnl5PFwbE+5RtYfD\n1bVNbsTJyWxF7u3NAjHmMsWaNdwHOnWiLPzjj/SeT5zI1Ihjx+ise/XFoTgcmAY3aSqK5J3QZ1ww\nes6fAZhvleZ7ZGAgQxwrKiyVPJmMXxUV1sdeLmduQGFhu1JcRBqmqIh2B1dXOksBOoaTkoJxof/r\nOHxUip93umHTaQM+GjwRaRUDIXN3waygi8ADjyPpnBQRU+ZAOcfKiysUba7Lb51JiQkJ9HoNkQAA\nIABJREFUCRg4cCB+//13q//YpPrPNcjIyMCkSZNw9uxZlJaWWsRiL1myBN999x3UajWmTJmC+fPn\nmy62qcH2WVk0G3fpwgxyqRQJCcDbD56AUpuDHrJE3HSnN1YfGw19QAjCwmhUykwsxgM9/8SnR2KQ\nkB4KQQDuvRfYsoXJzhoNvRLLllkmHv7+O8Nxi4v59wcfrIr/dVJamrxw9apJO50+veldip55hjmD\nMhk9jl+8epUvGhuLS7kqzJkDeArF0KbnYNoNBYifH4vefSSQ7N3DQR4/ngdtY3jiCZohS0t56oSE\nIDGRGnVZGQ+kzz5r+hiY05LxFAQaMH//nQra2LHWn3PPPTy/jJUEQ0JoiL90iWdjWBg3Nm9vINBP\nhwjdFaQXesJbXoZXSp+BOlrNHIJFi6pf87ff2Fht8uQaXpWiIpofja0IbUFeHkMdoqPrXRytkViT\nlcXqga6uVJ6NcgRgapqammxAdOER9FKmAq4uOOk3Fqk5XOTBwRRgZs1iBMcXX/BevPBC7RB+q5SX\ns859Sgp/Hj26kf/Ycmwxnn//bSp1PGMGhegvvzT1aJgxg965vXs5dRQKzsvMTMpnU6cyXPrYf3di\n09oSRHrkoCz2eoSN7Y5pPjshlwlc09aENp2O7uLsbIYdhYXVf7GZmbRo9+jRKlVqWjvxa80a7gcX\nLjA/a9Eirm+DgY0MAwOpAHt5Acnny3DlvBZ3zyjHRz+EQKHgct26Fcg8loGfX9iL60JTMbrHNVrr\na2IwmHo2DxjAN7pwwVQ9SCJhadMLF1hu08ZxjGJSom2x53jq9SzJn5IC3DGlHOGlF7iv+/khO5u2\nq/PnAYNOj94eSYh0zUS2QY2xwysR4q/H4co4BIdI8MorLUiLyM3lwRkZaYNuXbWxSVKisb50SwTn\nuvD19cWuXbswderUWo9JJBKsXLkS4xvT2cmIedydEb2eYR8XLgBqNS5VhOH9gwP+n73zDo+yyv74\nd0p6750k9BYCSJVexcWuKCLrKthdsayAP9kVdEGxIyLW1XVRUFDBAiJFMID00EJCL+k9mZm0yZT3\n98c3k0mZ9DfJJNzP88xjZNo75z333nPPOfcc+PgAXbsYkXemHLMMn8N1fzjuuroXx/Kmom/KZWw6\n0weSrx/+6zIeeY5OOHaM84q7O42cU6c45+TlMaJY1aAeP55K8cEHdD79/DPw+OPNk1FHIDubTgtn\nZ4YZG2TPHlqtAwYAjz2G6693wJ49tHFn31Ro9YT27Inof76EkSOBb/7nCMdiZ7z3bQh2J2Rg3txi\nTNzzGT9Pq6U1WVrKjdPhwww5zphROxYaFkYvtadnpRFucVypVO1/RkyrZXl0Pz+KaNSo2hPMH3/Q\nI5iby8IJ/v5Ma7QUPwgIoJ3q4MD/d8xKRU5yKjxV5dCF9UFBSF/4FF/gBz3xBLBoERRhYZg6lVG3\nSiwn9l99lat2aKg15HLiBFf7yEgeXHJ1bfyPlCRWUUlJ4YB68802LfC+fTvTdI1GevimVMluuesu\nTvwepnxc1voiMT8Ikd5aaBRqBCiyUF4GvPGiE4ZNpefOkuag19N2696d5yZWreIG7cknJIRHKPjC\nHTuYdnb8OKtcXLrE0ObgwfzyhATWtg4P54G7xm4S25j//pcqsGULU28jIuhYuHqVurp2Ldc1Jyfa\nXd7eLGxSVARAkhCDU8A7O3DkK0f0zE/Fn8Xj8c+b9Ojiugv4b8VuVqmsnnNt4euvaY3r9VT0Xr3Y\nGryudSIoqEOnKPXpwzPEajWHXHo6pzClkoV3fviB61FGuoStXxXDAQas+sQRJg8T3NxVCAykmI5n\nKpCc4YhIXSGk6/1h84TInj0MM1jq/apU3HkqFNTHwYOp4LY2f2fP8sYnJXGnNW+e3eqvQGZKSqB6\n7z3MSE7mevL9Fi5IFVFNf393DBrETCCTWQGtDrhS5AF3l3J0jfsfos0XUT7hWZxUjkNJSQsM6k8+\n4ZcoFMxKaMdyjg3mUO/duxcvv/wyrly5AqOR7TYVCgUuNcqCso2TkxOcaho8VVi4cCF8fHzw1ltv\nITY2ttpztTolFhXxBNuoUQwlWrzd585xMTOyXMtvvzuiyMzF76mFMRimjgdWdgM8PHC9Ig1DlOug\nuHQRecWjsVW6A9G4DJ+IKPTv7wyFgkbjgw/yfNGPP1oNmpoEB1tLLHaS8r11EhND+zUrq7IAR/18\n9x3dghVeujvu6IohQ2jj+pTrYdpSDqWLKxSFhVAqgZHDTTi85hKKy/UodAiAs6EI6bnOHDiSZL3X\ne/ey/FNyMgd0cDBX+qo89RQn/YiISm+rvz/XioICG21860Oj4U2uR4ebiqsr7da0NBrFtqpPnT5N\nw9/fnz/d3Z12g78//77tNj7Kyqj+HgfOofSHX/FN2mhcP74MUQ88AbyyhPK/coXXbwmpWzh4kK3N\no6JoTHt78waXl3P3+NNPvLjERH7JwJpx+gbQavlj9RWHH9uQqCiqjYNDbQfnyJHcAB997She/9Ad\nFzUByHGNxF3Ds3BL+sfo5pMHv6uDADwMgFEESyrDoEEAJAlH/yjG2SQXOBZkYcd9v+KBe8qsJc72\n76cHxWCw1v61xEiZnM3Xnj1rNbTtjF69qDo+PtbIvr8/C3MUF7PiYlAQcygHDmS1DwcH2mvIysSE\nre8A8akYcyYXucpAmPtHwXvCDcChHdYvqSsF5upVa5nNtDR6otavb1xL7Q7I2LGMhiQlcV6omoEx\nbRofBgOg0wLn117ClVx3ZOm94N/VDFdPFf79b+6J131egkBXM37VjsaUaCVsJm0VFVEfk5KYlmTZ\nXZtMVh21hcHA+SM+np+hVnNOEI1frg3OnqXOeHkBP/4Ic1o6zB7eUGu1QFERFO7uePFFBiX/2CXh\nX/rlyDD4o6/pIoKlHAS6F+PC+WOY+fa4lh0jsXjE1Op2T6Fr0KCeO3cuVqxYgcGDB0PVBrlo8+bN\nw+LFi3HhwgXMmTMHcXFx1Z6v1inRbGZeRUgIvW433WQNR3l6sgxbYiIwZAi639wHh77l5jk82gEI\nHc5yen/8AcdpIXDcuBEIdMd015OIcnGAYU0O/Fy8MGLiAvj3D6lc44YPr7/QQdeudOaVlPDvzoyz\nM4tINJphw+gmDA4GgoKgUFg3k3/8EYS9eQ9jgOIkJj97A1wADAjMRG/PdIQozwEqNXxuvQvTHvEC\nzj3GlA9L9MTT05prVVcBcDe3Wt0BPTy4oc3KasK9iotjxQwfH9ZFlCmv2MGBqQOpqZSJrXnh1lu5\nJykpqeyBgbAwpt1oNNa/r1yh825gPxdgYyKW9k4GHlnFcdKvHyvYSJLtBhAbN1JWZ8/ShXvxIj3+\nFpkOGUJXurd307sdKRTAM8/QYzt4cJvnZF9/PWWkVtvONlEogOueGYv7y0/jwEUnDLvDFVMjU+Dy\nXjJ3yBXXm5gIvPceNzGPPVbhpP/pZ0T9by+cL86AsbQcvYeVAIeOUDdLSynT2bOpN0lJzPkfNYpf\nPGQIvXxeXnbdQerRR6kSwcG1AwsuLnxu3z7q5osvUs4lJRwyyed8oNL1w7iMw+huuoRgRRYGdO8K\nDy8Fx7FF4ceOtf3l99/PnW9eHm+UVlv3azsBCgVleOkSh21Np++lSwz2qFQKvPhRJIoOJeJPjR+K\n3R3w17/yHkkS0N8nHSePKtDF8QI8XOvw8EycyNBXVhZDZJLE8enoSI9JXSiVvDAPD94PO9dfgcxE\nRHAd0GpROmk6/psSjOADP6L7zBsQU9FPokcPnp148R8GmLeqMN7hT/RRnIUUHgmfIGc8crMBmNbC\n63j4YTrVIiLaXf8abOwyfPhwHDx4sFW+fMKECdi5c2ed9azHjh1bzaC2mcuyejW9al27cgaqmsR+\n+TLzEmJjITk5Iy2tohVmzXMTksSwa34+EBWFDc/sRUj8ZmTp3OA6dTSmrftbs6upnTvHxlL9+/PQ\niOVzcnLo0VEomBZS1dtdVsY1uLXPd8iVa6XRcPFsMNJnNlcmVBaUueDzz/nPc+bQMDl/nnPyqlW0\n+1BSguwX3oE5KwfBNw2hlQjwfuXl0VixNCg4fhzZuxOx7Up3OI4cijtnKFvnLNJrrzH+aqlNXpEa\nBbRN7lpREfUpJYX2cHw8daVPH9oXH33ENVGlAt4IXUEF1OkYkhs5ksq1cSO9SxMmAGFh0BUroVBU\nGEk//ECPqZ8fsHhx7dxpSeKYcndv1dBuW+YBXrjAcm8hIQynb9xI5/299wKuLhI3F0VFwMCByMpT\n45FHmHYTEcGxO3YskP/kv+DhVA5tehEM3fsgJO0IrfcnnuA9iIigcvv51d4tWWTq5tZqKTByyNNs\npmqcP0/dO3GCDmJLVSu9no7k33/nMP/b36iby5fzZzuWabDc5w3Ww1SrOfCrHhy3gSTRjnZzqxIQ\nKivjXB0c3G4eqbbO+zUYKLbz57mOfPQRHfXR0fRkT5jAPZnZzEpklmFrWPEB0radRjAy4fzCMygf\nMRY6HfeGCgWsk3dODuc2g4GnIKvMa/WSnc2109eXKSHN0F+RQy0vbSrPoiKguBincwLxxpuKSr3y\n97ceFTEagXFjTJi4/f8Qte9rqLqEcy2aOZNh7qrrSFmZ9QC8nZSwlSWH+ujRowBo9M6fPx933HFH\ntTSNwTKFJWteqE6ng4eHB3JzcytTTOrl0Ud52sXPr/aJ0OjoytrECtRzBkqhsNYq3b8f/qnHsDl1\nAPxcSpFSNBr9U+vf+FSUAkZkZG0d+OQT6kdiIr/C8jlxcXT+AQyJWtLJ8yq6aRcWckGydTjNnjh2\njAawkxPwf//XwAZRqUQGQvDjlxxsV69SXjt2cNEsL6eh4uVFJ56joyu6vfE8hVHlIIy0YQOKvt0C\nZXgo3F77J12Egwbh898G4UIxoN8M9O1vu/BHi5k6lTuhiAhuv1uBwkJ6mbt1q10x6MIFGjW+vsy1\n7tOH9+DiRcrM05M6dPfdACImUfFCQ62nDZ2dmTC8fDnwz38ivdsYvJT8EJRKYMECoPvtt9Nz6ulp\n29OvUNTdzdIOMRopl/oc6j/8QJmnpXGsnjnDaHdUFDBpkgLo3RspKcDPnzD3urycZcsCA1mI4ttv\nga0XH0d45hEsuj0JLgvmAJo7eZOcnKzVE86fp8fv4YerX0AHkenmzWxYFhpK/Zw8mfNbz558ODnR\nI71vH1Vn/XruJ0JDmT00824PGA86o8QlCI4+bnCu0eDLFlu3Ur7+/sC//lVxkNTZuUO1bc/O5u/v\n1at57e5NJhrQX39NR4Pl6IGlV1VMDAO0cXFUJUsaUng44DJ1AqKSTgKe3VAa3RfLXmEUbNo0YGav\nisnb0ZGT95tv0qCu2SCmPgID6eEWXJu4uwPu7ujiSoeE5TzJoUM8T1FeTp3PzlbBb/ZL6BpuALQa\neitqhvo1Gho/ubnAjBmQ/jIdFy9yDu/Vy27s63qp06D+xz/+UbGDI0eOHKn2/K5du5r9pUajEdOm\nTcOJEycwbdo0LFu2DF999RVWrlyJ+fPnIyEhAWazGa+//nrDH6ZSNVyXtLGcP4/yd1bhP6kPoECt\nQIKxP7oWB8NJKgP+jOdMVV7O8MLYsUD//rh0iWe3DAYawDXnlpAQnkWq0LtKuna1OleqphtcuWLt\nILt/v/0b1EeP8hbodLQXLEZLTg4PcPboUd2Q+fJLOuwyM7n/8fbmRmT8eDo6oqKYK/zVV5TP8887\nIyameofD5HX7kHA+AD6n0hB5ZwbCxnQFduzAmDOXkaa7CZJ3aONzso4f54o9YgTLlDQ0aq+7jga1\nStUq3rHycqYMWUp0vvKK9WtOnGCY9+RJ6kxEBPXOwYGLpJcXjfClSys8VIbeSJ/yN6QUeqCH2dua\nP5mfT8s8LAxlv/8Jc/RcGI0KnD4NdNfEM+IzaRJnscxMlnGIjmZVio4wq1Xh++9ZScbRkQ73Ll1q\nv6ZPH+qcmxvll5TE22uJEJ09yyogiYnWSncjRjB3OCSE00FgbChSgqYj6283I8pVUf2wZn4+B0d4\nODu4WlaHM2fo6k1P50C31QHPTtDrOUyKiymrnj25aGo03Cu88god8gEBlFFZGfXz+HE6C3r1ArxU\nJUhcfAHn3aYjrCwF/fwjUG3LVlbGkIufX0X9UsrWxwfQpBdD+9EmeHWpODyQl0fXuK2DLHZEQQGd\n8Fot074rGsE2iVOn6HQpLOTf48ZZm8gtXGg97lBQwPlgyxZufiIjgcWL+0L1/vvAiRMoOH4Vqcm+\nCAxWYu9eYGZxPBW9qIj62a8fB0tEBB0HLR3r8fFcICZO7PwHiq5FjEYeqjh2DB6urvj3MzehVOkG\n7Vc/4vfDA2DSd4dZcoBezzV/zUZ3XB3zDoYNNmLYYAfUKoiXmkrDwdcX2L8fJ8Km4913GaV68EH7\nt4WAegzqusrlyfKlajV27NhR7d+GDRsGAPjoo49a7Xsr2bSJro9Jk+itUyg4qTz2GFSaIvhoryLV\nIRY6yRsGA5C0eB0Cy3fwdeXlvOEVrtn0dCeUldE7c+5cbYP68cetB0uqpnAMGkRvD1Dd2dKzJ22X\njAyG9uyd8eM5b1o8JQDDjm+8QVvMw4OOD0tUx7InCQ5m+ntoKH9vbCy91mFhNIKUSsBokKBc+zVQ\nsJen7aYx2So+/FYEnl6Dy+4xUCkiEHbuHPDaaxhRUoboXpdgeGl548oVlpUx1yQnh27ffv0aV8as\nFWtjlpXRVvDxoQ5YKngA3GwplSySMmQI5VdQQLmtXk2jMSDAGu4tWvsjUv79A8pNauz4ZSruNqzl\nDVm+nBbhwYPwmH073E8qoFQCw3ppgDc+4AedOkXv1Wef0f1tKUvUwQ4GpKZybOr1tGttGdQ33UTd\n9fCg3Pv1YxS8wqZDair/W15OwygqiuN8wAD++623Mtwe65+BsB9+ACaMrn6wMCCA8o6Lo3X+4IOc\nS0aPZkedceO4W/rgA9unUe0AlYpO9D59qB4rV9KQzsujEZefz7FryeO3GH+rV1s2xkDsADcccJ+M\nmJKdOOIzFeEG1+oG9ddfsxOtZfeTmYmbi6/gs5RpmOq0GyHHfwX2FDIcGB5uTbsym7lTP3SI87kd\nHVSsOJ8FDw+emW4O7u7cnw0YQDWaN49D0sPDuna4uVHOCgXzq4cNA5L3p6L0kTfhHuIBXLqEYEmB\nG30fxdbM6zErfA+tcrOZk/GAATyMfPasNTxjGQDNobCQ+mypDLRyZbsfGGsb1NUckVXx8PCBVpvf\nxtfTimzZwu7TiYlA//5w0Ong0KsXPI/+hDHeCkguLrhU6IehkTkoDw6HUumINV8pcHV3CoLeeR/d\nh/pSmS31S7t2pQfuyhXgnnuQm0ubXaWiLdERaNbsHR8fL1vKR5tTWsokyZAQ7sanTePMtG8fkJ4O\nVVkZXhy0FS+E3QfdBWcemtNoAU8HrqiOjkBxMSQ/fxSVqBATQ+O4sNB2h0xX17rT0WxFLT08gCVL\nOM91hH4E3bvT7lIoqjs0iosZ9i0v56CwcP/9nLv9/avbrk5O1v+/8UZGfXxMeegZvx2ICKF7bMoU\nQKXC4Ocn4lP3cfALUOK2wQrgQCqQnAyVJCE0+AxM4fSYu7s34GSxVFxQKnmRza7bIx+enox0xMUx\nF7Kq7T56NL34ZjNtMj8/Prp3p6F45Ur1KJq5UAujpIaDyoRuJzcCzpf5mz/8kDueRx5BgEqFFRUl\nA5VlDlRYjYbjQ6HgSl1ezhskY1WTtuKee2inhYZW5OXbwHI4tqiI/18zVWjIEHZxV6s5zkNDq0eb\npkwBJl5fBuW8JVCUOQKJJzgoLCkzSiV31mPGcGPo5mZNMHRx4WAJCbFrg0OtZlbA2bNc8wICuBau\nXUuHZlXnemAgf+KhQ5zDTCZuFBVKBXov+yu+3TALQ0eoEBRc40sKC6ljRiNX0E8/xQhnZwz1i4Py\nrjug+FLiB1qatlh26VlZ3PAFBbEw9sSJdhNJ6dKFHvrTp9lVuTl0707ZFxZyram62bOg13PuUCq5\nKTToTbhbWg/3ABeGOn19oXR0xN036nCX+36oPvmUHzRpEidlS4MXyxrXlHKYtlCr+TlFRbwgO7kf\nrY8RdeVX63SdTAZardUBUFbG8VgxJp/rtw1TAwwITTmAYPdifOr0JA4Zr0NICBCb/ivMniXA2Yow\ntuXgq4sLC0VUGD8jKgIn5eW2K2naIw0eSrTFww8/jE8//bQ1rqdeZEm2t7hPk5LoDr7pJiqFVsvj\nqIWFwNy5MN9zL3ZsKEBmYh5uulkJ32M7uehddx1w/jw2X+qNDbsD0a0bc09r2homE89E+vrab4O5\n1jy8cKGi3PHgwQ1XUSoqYtQ7MrKGHA0G4LnnKMgJE/i3rYn5yhXG5LVaGG69E68XPoYLF5jBUauc\nX3k5B7GfH70we/awdMbUqdbSGc1EbnlKEvPMnZwazmraupW2REQEF19XVwAFBbj4ziZcyvPGQN+r\nCPhmFQ2SW25hGUFb7tr0dN68bt34t7Mz3ZAhIS3zWDWR1tRNs5kq5eVlzRhYt44y7NePambLUWww\nMJReVsZpo9r5K6OR8ffsbFqbr79eO5JhMLDOb1ISXYi33ko9PHrUmvsUG9sqERA55SlJ9LY6ONR2\nCphMrIBy/DjPHXl5UU5/+UsVmWo0tMyjoymrtDQ+AgNZBSg0lF77F17gayMimFNiaQrg4ECX+LBh\nXITLyugWT02lC7cNiv+31cEvrZZ7i6io+vf7RiPw2280QE6dAhzUEpb6r4B/6nGGDXr35g247Ta+\n6K23OBDuvdfqCSopscrYaKS+Rkfzy5tDcjLnEosHpQ4626HE9j6w2KryTE3lutCvH3Vk40auDwMH\nsoySkxOkY8eRnmqCKi8bwRtWcW574AEcC7wBCxcC/Qv2YHHEf+AV4MRKWXZeGaYp8myWQd0S6uuS\nmJ6ejtmzZ0Ov1+OVV16p1dxFNkUxGDhLnT/PEmgAJ2F3d64IsbHc8i9cCBQWwhwegS+7L8Wx4wrM\nnEm9efJJvjwzkzlyNeecr7/mBOfhwbWgKec82or2msiqotezC1hWFmt8z59fxWZOTuZJJK2Wxu5D\nD9X9QefPA/n5uOozEC8tc0JICN+2enWN133+OcsQODkh5aGXsWpTOHx8arf3bQ5yy3P3bqqnSsX5\n6vx5imGajTJD8+fT0MnJYbGbWrav2czSWD/8wFwSNzcaIXVZ6lXkhCVL2nzSa03d/P57Zvi4uPCn\nBQVZq29euMCf6uwM/P3vjIY3mtxc5n1ZXLi20OtpdIeE0MD56SfKOiGBbt6ZM9nHXGbklOe+fez7\nYTnImp/PzdzgwTSc58+nDFNTmUVQLdImSVxEU1LouVy4kBNkcTENr/nzra/NzGT+Qp8+DZc8Kiuj\n8oeGtklory3mzpISTn85OfTjPP109eczMxkIcXDg/OXvz2zGTZt4b6ZNNuLuMRncqFT1VEgSw/Rl\nZZxYqsrLsu5ZEuSHD+cC14rjXxjU8tJq8szP5+JSUfEIzz9v82U7dwL/W62D+tQxvBj2P3SbGAnj\nghfxwFwVjh+nH+fFOZkYPdkZLStA3TY0RZ71xhhNJlPl3xqNBkePHoVWq23RxVm6JI6w0Ulj+fLl\nWLZsGbZt24alS5e26HvqxcGBE4RWa20WUFDACX3QIM5Gen1l8lvJlRz8scsMs5nz/euv0xGSmUnD\nxVbqRlISDTSdjutna2I203j/73+5pncEJInevhdesDqMz57lv1ei1QJmM9KcuuI/W0MRF1fj+ar0\n6AEMH46QKCf07k2b0ZbhiexsWksGA/Zu0VZ2wj55shV+ZAsoKmI4PTWV69qWLTQAv/mGOvXxxzx8\naMnvnTqVjoLoaNuOZyiVDK15e3MnaEkIrovsbC7CBkP9r+uAnD1LD35mJjdcX33FwNSff3KfkZlJ\nh2mTj5H4+3O3XZcxDVCmERFWd21ODjfxRiMHcgcYwFu3cnNXUED9++orTqm7djFVKT2dWQaTJ9uw\nbU0m/mZPT+pVfr41XFyziUhwMOXZmPqhzs6Ua0fIk2sEhYXcjBw/zp9/5gznvu+/537k2DHqZ1oa\n86kPHOD7Bg3i8HZyAoaOVFMmNcOnCgU9jNddV1telnlBkqiTej0noA6Kp6cvFAqFzYegiRQV1T1W\nQXX56Sc6E816A8oMKqQ498AXCUPx7POqyjzorCyg++jgDmFMN5U6c6i//fZbPPnkk/Dy8sI777yD\np59+Gt26dcP58+fxySefYJpNa6Vh6uuSmJCQgJEjRwIAPDw8KkvotRqTJnFyVyoZYqyKtzcwdy62\nfZmBbQ5jUVqmQuoZ2heJiTwT8+GH1lP/NZk1ixMiwMXHxYXZBX36MCdTkpgWvHcvI79V2yA3laQk\na1WMwkL2zrBnTCZGilatoldar+e/V210CYDCuv12fPJJGFK8+2Pty5S7JZXD1pzo6EgHS1lZHWmA\ns2czxSMiAiHevaD/kjbMxx+zA+bcuW2a2VAnmzfzurKzrV1/LV7806epS87OlOOjj3LBdXOjLllS\nd+Pj2em6Rw9rmH5Uj0cx2fVrKHt0q7/s31//SjlFRtp19YnmcPfdHJunT9MgWb+eGUWursxf/9//\naNv27Fn7vWVl3LwWF3Mu6NqV+xSFgg79bdtoA545w3v3+OMNFDi47Ta6IqOi+GEzZ7bWz5aFjAzO\nZ2VlnGuGDqWBvXUr9xPz5nE/0acPoymZmfRYde3KFBCo1aylt20by1T068fJ8vRpDmwBAA49S4nG\n/HxGS9LS2M3T05P6O2cOdVGt5kZ61y7q3OLFTLWpmiKSl8fzxQoF9ynr1/OswAsv1LBrPDyYlrRl\nC3P8R4zo0ONfpytA/d5kQaOJiABmzYKUcBqbXGZi598ZlXJwoC5dvszNXmkpEBTgjbtGu8HFPxK7\nUsZCXcxpbuBAHnFoUuSvA1GnQb1s2TIkJCSgtLQU/fr1Q3x8PHr37o2rV69ixoyCXYbUAAAgAElE\nQVQZzTao66OqR9zLywuFhYW1DOparcct3fKayuHDnOnHjauY6SvQaGjN+PpCN2IK1par4OsHOOYw\n5Pbdd3xZly71n9vo25dnkDZsoFdx3ToaOr//zvr5Dg5chAID6YmcOLH5zhVnZ77XYGjVXhuyceyo\nGd+vykL2eRcYy9ww7SYHLFpkw0BWqYA77oD7RaA0ngZhnz5cVCZPth4OrolSWce9SUzkmwcPBiZP\nxjgoUFoOrFjBjU1UFO9RA70m2gQ3N97XAQNo5A8YQGMmLIwLq5MTF9uoKKYpHD4M+LuW4PJL32DQ\njWXAvffi8899oFKxhq3JRI9ifC9fBIzrh0HqCo9oXQfhwsJqx5g7Cd27s9TlwoWUqY8Ph31QEA3E\nPn2sxQ9qsn07N8JJSTQcQ0L4CAsD1qzhZ338Me0SLy+q2zPPgCkOO3fSSr96lZbmzJl881NPtbkM\nmoujI39bnz5My3V15cZvxAjaYGVlzNLo2hVwK83Fe3Mv4GqxH6TIrggPVzFzYODA6i3rp061trtu\nLBcv0h0+ZIi1vFAnwt2dOhgVRaO3Xz9Gpry8OI4HD+bjtdc4hLOzUdkoKz+/dhr5H39wz6LTUXdN\nJqrkX8YWYezFLxiimziRJydHjOBDIKiKQgFMnYqikVPx41O0Xd56CxjWrwi73r8MtYcr8vOjodMp\n4e2txLh5AxEePhAuS2hkP/QQfZi1sofKy1ma1WBgzlhLD8S2I3Ua1CqVCsEVK0p0dDR6VzSGiIyM\nhMFgaJWLqZpPrdVq4WMj1Fet9Xhz0etpZbi6MhlwwADAzQ0nTgBfPJ+CHoXleLjbWphdghEUNBCZ\nmfQyTZ/Ol1q6EO/fT89AXbstBwdrioKLC/XFyYkeBQ8PKlZyMlO2W3LAv1s3pqLk5vKcjr1TfuYi\nFFdz0E+twrAQI/7+j1G1jGmTiQvEqVN04g0ZQqMlJ4cyb9bGYfVqQJJgPJWEE+Ux8O8fjNBQenws\nG5JW6tXSZKZNs/YFsWQhVfQoQng4r/P0aXoJs7Ioj8AL+3Fd6U7gAIso9+x5L44epa5ZKlgoszKh\n3rsLOJnMPJtrdOFUKDhmEhI4DvV66perq3U+v3SJ+hYby82NTsf3ZWQw1cFopD3s4EBD01JppVs3\nLiB6fZWKIe+/TzfhDz/wxZaSDB1s0+Lnx0OvFy8yHWH+fMqruJiezvx8GoPPPAM4btkE5yxPGAqM\ncPDwQklJICRJhoIPJhMPkBsMTOh+992WH4CwM26/nfro6UnnDGCtAJWebq2IFBxMPdu9m2Pc1dXq\nmS4pYRQ1I4M+I6WSa4+/P/XX0RHonrqb7urUVIZVLAdCBYI6cHXlhvnCBToVjOcuo1SjhyZZghP0\nUHq5IDKSa6qfH9dvhaKySFdt9u6lDgJ8QUWXu6Ii6qgdFN9qNPWWzTObzVAqlfjCcnAPbMoil0Fd\nM9F7wIABOHDgAGJiYqDVauHeSm14oVZbGyoEBlbesQ0bALPSAQdzuyLIWYNf3+sCp2DurLp0YUgj\nOprK8a9/0dHk5cWcalsG3tSpVD4HBxpAH35oTU1zdGR+f2YmDaSWLjJ1lQRrbcrLaUSEhDRuTdu5\nE1izMQAOigzcGb4Pnh5B+PHHUbj99uqpfsnJHGe+vvTyvfsuI8Tp6VxE1GrrZqXRsgsNBZKSkHDV\nCx/+zw0KT+Yhz59Pb02PHm0rx4ICRjw8PTmHVJ041GqmDlioWlmhqIjOdq2W57kUCnoM/zozGBF/\nqPjiwEA8dicnPS8vGj8pKcCggvPofyqFb+pIM1Uz0OuZElNUBMyYUTuiERBQd7OA1FTqRnk5ezh1\n60YPtK8v782ECbx/jzzCrJiCAjr3LBuf8nIamWFhvB0KV1cqr6srF43ycrvrjmjJgczJ4W+pqzBD\n1668/DVr6CgwmZjq8cEHtMmioxmdgyYQj/XYjAN53bEzqDdefZV16x98sO5raJTBrVDwi4uKOPF2\nsLzpzEzuq8LDWWDDljPFyalChjXw8amdUr52LSMnRqPVuWw5d2hpKnb5Mo1xhYKO/c8+Y7DEJSoI\nkkoNhSRx19gBS2MK2haVitG99HQuIQlvp+HHX9QIdQNcQnsgdjjnTKORY72wkFNdr15Wp1A1LDpn\n0UHQWfnpp9T1RYvst1JaTeo0qD/++GPo9Xq4uLhUNl0BgNTUVLzwwgvN/sL6uiQuWLAA999/P0pL\nS/HKK680+zsaRKViHO3CBa4OFWWqYmKALVe6wcvNDRfCusHR6AOdjo6lr75iOPOOO4Cbb6Y32MOD\ni6Zeb9ugdnCwLtiHD7M6lpcXczQfe4xGYk4OI772kLfbHFatYt3+wEAad7a6VVdl927AJ8oL+cb+\nyA1yxubiGOh/puFRdQHx9+fuNi+PizDAwWupppKWBrzzDm/lc8/VjhJIEj2MVT27ePppICkJW7+O\ngKLIA+Xl9OIMG9Y+nv1Nm5gLbTRyw1Y186gmf/5prazw6KOcYC5fttpmBgOQ6tEXykWL+A/9+uFc\nIp3yoaHUt6goICxgNBRJqsp27Z2ZQ4e4GVMqOU/Pnt349+p0vC9OThzrqan0wObmcp7Iz2fKw7Bh\n/Pull/hcv36s4Ojjw9d/9RXD7TeN+wduG3WAyqhScZWxs1SFkydp6KnV/O1PPln3a4OCqEJ//MGx\nuncv/33gQOv5yvTY6TAiEtcFeWDdan9ERHD8339/bRu4oIDjWaOhd7ve/kGW8iInT3Li7GAh4jVr\naOzu38+NWks38bm51O+SEuZRHznC8yi9enFdKi3ld1jmzpQURl0KCoDlO4cg3/c7zBp5BBNu9UJO\n9DDkJNK50Ir9qwQdnLQ0pkp6eQHPLpiIwoBU/HwoELmZLkhMpF1TXMw1KjeXr9Pp6viwkSOtpRor\nGinExVF3c3MZDevwBvWwOiyMqKgoRDW3LiXq75IYFhaGnTt3Nvuza6LVMiweGWmjEoe3N/MIqjBj\nBjBihBo+PuG4epXNnYKCaDiXlHDePneO8/m8edzld+lS26NSXMxT2MHBDM2ZzVxYk5JoFI4Zwwn1\nwgV6D379tWMa1JLE3+Tnxxw+jaZhg3raNOA//1Ggy0Bf+MUOQ/EGQFtoTUkA6PlPTqahfOoU5ZmT\nU714wr59NGQkiZ2yb721+vccOMCsHoWCdvSgQeAIHTIE9wbwAGKvXs0vsSoHPj707qnVNWoa2+Dy\nZWujzvx8burGjGHFit276eV2dlbA2K1XZQGJzZupq4cOcfF2cwPCwhyxbNm4jmaDNAsPD/5+s7np\nB8p79eJ8sHs3P2PwYHpvIyO5wbt4kd5FBwdO+gUFnBtOn+b3vfQSbeYdO7hZ3LjDA3/5dIpdBwXc\n3amLBoPtBSw5mWMzJoa6+8QT1kp1V65wo/fttxxTbPyogtEYi5kzOdUeOcLxr1JRn7OzmULn4sJx\nfvky59jt2/lZ9RIU1LKT3O2IpVuso2PD494WRiOdM/n51Ou77uIaYulOqVJRPydMYBR0+3a+zuL9\nnzwZ+OQTzhnJyQqEd/PDd9obMKAHsPhfnIvHjq2/Sqng2mb7djoYU1KArzc44r5Hu+JQLhB/lg5G\nR0c6I0JD+XdwMNdpT08ba65SWSv1cPJkRvRDQuwnDbMx1GlQT58+HQ888ACmT58O1xqrb0lJCX7+\n+Wd8+eWX2LJlS6tfZHN5910arR4eTMtoKCVBqeSCCXDRsHRONRhouKSnW7tdubpyQsvJ4YnrqiUZ\nP/2UHmlnZ4aNfX25OxszhovInXfyMy2GekdtOqlQ8KT5xo00LhoTwR41iourJb983z4azD/8wANh\najUPjFmax+Xm0ug8fZqn1y3068dCAQoFPYU1SU21VkRMS6vujI2M5IaovbnpJoZ9XVyseZJ1MWUK\nDQ5nZ+rQtm3U14UL+TlvvkljxmSqTEHD4MHc2J0/z0nO3596q9N1OKdes4iNtVZ8aaozXqnkPVmw\ngO/v0YPe7rQ0RmJMJm7Yn3/eWsHi5El6aJOT+byHB993/rz1NLw907Mn86M1mupnBgEaa8uWcVx2\n7870gX79qGunTvF8pY+PdU48d4465+TERffvf+f/OztzHl26lP8/ahQP0EVF0bjU62t/d2dj9mzm\n1vv5WdebprBlC0uknjzJezZtGuezoiKuPRoNu80C3FTv28dIgo+PNaoSG0vDfOlS5lhPmMB7V1zM\n+3Dpkqw/WdDJGDiQzgZLOcfCQj6uu45pRqNHM5p/5Qpf9/33jMhu386odmBg/Z9/3XWMrqpUHSuj\nq06D+osvvsCqVauwePFiqFQqhISEQJIkZGZmwmg04p577sGXX37ZltfaZHJyODmUlvLR1HMrFm+S\nSkVvTF3UrI2s0Vg76JaW8u8HH2SJo1mzrLmJr7/Oxbq+srX2zsiR9acq2KJqmp6LC3exej0nc2dn\nem8sHbAB2zmV/fqx4aVCYbtM7aRJ9KapVLZzEe0BtbpWkKROgoKYtw/wsKYlQlZSQv0zmWiw5eVZ\n3zN5MmW7fDk9qIWFnOQamsw6CwpF7TbiTaGwkBtfZ2fKz8mper6ruaJlu1rN9Iju3Zn6ULUr4MKF\nnIcCAztG9+W6ImXl5bXHpUpVPY3m8mXrXGhp9V5YyGp4CkVleiSKiqwHtC1lt7t04XguL6+3qV6n\nwMmpMrLdLHQ66p7JxHtgkaG7O/Dss7Vfr1DwvlRdp5yc+Fi8mLodFMTnb7iBzqN7723+9Qk6P8OH\nM7f51VcZ+dTpGNHYvJl9qW64gXoXGkrnYnm51TlZXNy477DnaF5dNNgp8e2338Y999yD9PR0AECX\nLl0qq3+0NU3tAHTuHHfzgwczhCUnksQQZmoqD0VXDZGmpwO//ELP1aRJ9ruQ2kOnxCtXGErv3Zte\nWIWC+cInT3JQarUMX44ebf+GYFvJs7CQu31vb3qnJYke/sJCpinUDNefOkUv6ahRdncOrk7sQTcl\niW20//yTHlbLHHL4sO1xb8/IIU/LuJw61XaOc31zYlXMZqYoXL7MCgDh4S26rHahPfVTq2VU8Nw5\nbj7uvLOOZk4Vr/39d86dI0fa51rUmrJsj26InbZTYg0kiWeAEhMZEakr2lJYyCIeZ85w7rAY2x0F\nWVuPL1myBBs2bICPjw9mzpyJGTNmIKiFq/Kzzz6Lo0ePYvDgwVixYkW179q0aRN8fHxwyy234Nka\n2217WGQ7E0Ke8iLkKR9ClvIi5CkvQp7yIQxqeRG6KS+ytR4HaOSePn0aH3zwATIyMjB27FhMmjSp\n2RcXHx+P4uJixMXFoby8HEeOHKl24W+//TZ27dpVy5gWCAQCgUAgEAjskXrrUFclMDAQwcHB8PPz\nQ05OTrO/8ODBg5ha0RVr8uTJ2L9/P4ZUSSRduHAhfHx88NZbbyE2NrbW+2XrlCgQCAQCgUAgEMhA\ngwb16tWrsX79emRnZ2PGjBn47LPP0LehkgT1UFhYiK4VCXheXl44ffp05XPz5s3D4sWLceHCBcyZ\nMwdxcXG13i9Lp8QmoNUCX3/NnJ/77qv/YKMk8YCIu3vD5eOuVcrLeQgmIKBl3SHrQ6NhswOViodA\nW6s/UHuxbx/rdE6ezMoojUWSeECOJfZa7/quRQ4dYtOisWOZq14fJSV8dIbDdzXHmlrNOTMgoGPl\nSXYW4uN5+H3UKNvnhgoKrJ16BYKqmEy0X3x9ecB9/35W6Jg4sWWHaK8lGjSoU1JSsGLFCgyUqZaR\nl5cXtFotAECj0cC7SoFYS6vx7pa+qnbA77/zMI4kWTtb1cXmzex85+fHigxNrX3b2Skv56ngy5dZ\neaO16pzu2MF7ZjazrbSlhFRnQKdjmUY3N+Djj1n+qrGnoTdtYv3tgADWSRaLqjzo9azr6+LCexMb\nW/cmLjcX+Pe/aYjed1+HLaVcyc6d3OABrLZz6BA3bbfdxoeg7TAaWbvX2Rn44gvqYdXuoPHxLAXr\n4MDyiM0p2SfonEgSdePoURYI+PvfWYKx6jojnDAN06CP8LXXXpPNmAaAkSNHVjZv2blzJ0ZWqbmm\nq2ilk5ubC6PRKNt3toSAABpmGRmshVxSUvdrDxywdlNLTW27a+wo5OXRmA4NtW5SAFb6WLuWTWLk\nwFKGUKXi5qYz4eREw0Wj4cl9dT1b4rIy1k7+9VeWKzpwgN6H7GzWUxbIg1pNb7NGQ/nWt8FJTqaX\n0MODY2DzZj70+ra7XjmxRJosDXSysymD/futr5EklhPcsIG/XdA6KJWs4qPRcB2qaQAdP87XFBWx\n6sIPP9TTvU5wTWEwMOqp0XDslpVZ5zR/f/uvoW8vNDqHWi4GDRoEZ2dnjB07FoMGDcKQIUMwb948\nrFy5EvPnz0dCQgLMZjNef/31VruG/Hx28urateFd+vXXWw2+EydYDu/uu22/9pZbuKvr3ZstZQXV\nCQykPA8eZKknhYJhprfeYr3uXbvYfrgxnlOzmbtps5m1nKsWfx8zhpOAUtkxO1BaSE5mycABA6wb\nA0dH1v+8fJl1j+tLm9m2DfjmG/7t5ESP4X/+w9rMle3YBbW4dIk1zAcNalyUSaWix+/CBc4p9RnU\nPXvyvqWl0Ri1pJMplfYRSUlNZYnF/v0bVx9/9GjqplLJ5ixXr7Kc29y51tecO0cPviSxpOjTT7fa\n5XdqEhK4dg0dajul0NKR/fx53ouq9f4BNm85doye7IMHuZ4VFFS/V4JrEwcHrsHnzrGhmlrNOe3S\nJdoylr4Hhw5RrwYNar2UzY5MmxvUAKqVygOAlStXAgA++uijNvn+d96hkezmxmYCVcNiNVEouABa\nWrfWt1MbNoyTncgdtI1KxZbCjzxilZFCwcFrNHKRaOwg3bePrcUlCXjgAda3tKBQNNx50N7R6Zge\nU1TEtJVXX7XKzNe3cfWPq3qvVSrWoR0xQuhnfeTlAa+9xsWlVy9rM52G8PJid6+GcHe3fubOnfTc\nSlL9kYa2oqSEv12rpafzjTcaHo81x9qCBdYW1xZUKv6/2Sw8Xc3l/Hl2QzUYuHGbM8f26zw969bD\n6Ghg5UrWpX/zTd4Pe9A7gX3Qpw83x87OHPc157TffrM6AJ5+mvaOoDrX5HDS6Wi8lZdzgmqIoUPZ\nHresrOGue8JYaZiqMrJ4VY4eZWc1N7fGfUZZmfX99aXhdFQMBmtnuqKi5n3GlCmcHFUqehIBoZ8N\nYZkTnJ1bLxxuuQfjx9OgkST76OZpNHJcubqym1lzS9nW1LFu3bgAZ2VZ9VDQNMrKrBuS5s4HAO9N\nTAw7e2o09qF3gvZHoQCef56NmXr3tu1kLC62pnZ1xjVXDhps7GJPyFWw/PJlHlyLjb22d1kduQC8\nXs/8YJMJuPlmGgHtjdzyPHKEIdpJk2x3puvMtKdu/vkn8/mnTKm7A11Ho7HyPHaMnSAnTAB69GiD\nC+ugtLV+ms1M4crM5HzXmc6GiMYu8tJa8iwq4prr7AxMn94xW4M3B1k7JbYGdXVKTE9Px+zZs6HX\n6/HKK6/UaiDTkQ1Ae0TIU16EPOVDyFJehDzlRchTPloqS09PX+h09Z12tReD2gGA7WILHh4+0Grz\n63hf0xC6KS+ydkqUm/o6JS5fvhzLli3Dtm3bsHTp0ja5HkniQZzs7Db5uk5BWhrDt4K2RZKAlBSW\nJRPYJ3o9D5JaUpI6KgYDDyQVF7f3lQhqUl5OHRNhd0JjWqrjYU8YUdd11r8haB0kiYeI8/La/Ks7\nLW2eQ11fp8SEhITKMnoeHh7Q6XTwaOViufv2AZ99xlzGF17gAURB3ezfz7qUSiWwcGHHrqLR0YiL\nAz7/nHmUL7547aWB2DtmMw97WaosvPRS9eozHYnVq1m3ODgYePllUYPWXpAk68HC0FDem2sl9C6Q\nl19/Bb79lmP7pZeAsLD2vqKOT5t7qAsLCyuNZC8vLxQWFlY+ZzKZKv+u+ZyFJUuWVD52797d4us5\ne5aLXmlp42tHZ2Rw0bwWoyrnz/MAQ3k5PVhJSSzlJJAXrRZITKReWjh71lreSNQ5bx/MZpaWysys\n/Vx5OSswBAWxilBH9SBKEg02Pz/q3KVL7X1FAgtmM++NWk3vYkWPNIGgySQmsjhDcTHLWQKMfp49\ny7NJgqbT5h7q+jolKqvUaNJqtZWdE6sid+vxG27gguHhwdqKDXHlCrB0KRfPu++uv3NiZ2TyZBrV\nLi4ceOvWsVTT0qWiM6Rc6PXsppedzQjA//0fNzE33kj98/ICZOy1JGgCP/3EhhhOTvTqRERYn3N2\nBu65B9i6lXXWO2onSoUCuP9+6mBZGbBqFcd3Y0o1CloXlYp6FhfH6in2cBhb0DG5/XZGm3v1YoWt\nrCxgyRIa2NOmAbNmtfcVdjza3KAeOXIkPv74Y8yYMQM7d+7Egw8+WPncgAEDcODAAcTExECr1cK9\nrv69MhIeDixb1vjXZ2dzkXF2vjY9N6GhXGgBYP58GtM6Hb3UwqCWh6Iiegr8/JgraTZzIbXUoxa0\nH5cuceyXlHAuqGpQA9z02EODlpYydiwbJmm11Me8PGFQ2wOSxMe0aWzKotMJo1rQPLp1Y615C5cv\n05h2c2OkTdB02jzlo2qnRLVaXdkpEQAWLFiARYsWYcqUKVi0aFFbX1qjiIlht78uXbjDu5b529/o\nLb3hBuaMCuTB1xe46y56QefO7bh5uJ2RO+/kpnLMGHYT7Mz89a9scz9lisjXtxcUCs4JLi7sfBoY\n2N5X1DZIkoS0tDSkpKTUegjkoWdPlssMCBDe6eZyTdahFhAhT3kR8pQPIUt5EfKUFyFP+WiMLPfu\n3Yvx4yfB2bn2DqK4OBX2Uxqv/WtUC92Ul6bI85rslCgQCAQCgaBjUFZWBnf3MdBodth4VrR/FdgH\nbZ7yIRAIBAKBQCAQdCaEQS0QCAQCgUBgh3h6+kKhUNh8eHqKk8L2RJsb1DqdDjfffDNGjx6NNWvW\n1Hp+/Pjx6N69O7y9vbFr1662vjyBQCAQCAQCu6C+TpDt0WFRUDdtblB/+umnmDVrFuLi4vDZZ5/B\nYDBUe16SJIwaNQoDBgzAhAkT2vryBAKBQCAQCASCJtEurcc/+OADKJVKxMbG4syZM4iJial8PjMz\nExqNBmlpaSgoKKjV3EWhEAcQ5ETIU16EPOVDyFJehDzlRchTPhovy7peV9/7O8Zz9cugae8Tutk+\ntLlBXVhYCE9PTwC124sbDAb07dsXGzduRO/evbF06VK8/fbb1d4vysHIhyivIy9CnvIhZCkvQp7y\nIuQpH0KW8iLkKS9N2Zy0mkGdlZWFmTNnVvu34OBgeHl5QaPRICAgoFZ78TVr1uCBBx4AAPj5+SEh\nIaG1Lk8gEAgEAoFAIJCFNm/s8u677yIkJAQzZszAxIkTsXPnTqjVtOtfeOEFHDlyBA4ODti3bx8G\nDhyIuLg468WKnZesCHnKi5CnfAhZyouQp7wIecqHkKW8CHnKS1Pk2eYGtU6nw6xZs5Cfn49HH30U\n999/P06cOIGjR49izpw5GDp0KFxcXHDq1CkkJiYiJCTEerFCUWRFyFNehDzlQ8hSXoQ85UXIUz6E\nLOVFyFNe7NqgbglCUeRFyFNehDzlQ8hSXoQ85UXIUz6ELOVFyFNemiLPztvYJSsLiI8HSkvb+0oE\nDSFJwLlzQGIi/xZUp6CAuqzRtPeV2Dc6HeWUl9feVyJoDKWlvF9ZWe19JR0DIS9BTS5eBE6dAszm\n9r4SAdqhykeboNEAr7wCaLVAbCzw/PPtfUWC+oiPB957j3/PnQuMG9e+12NPGAzAsmVAdjYQGsq/\nVar2vir7Q5KAt94CLl8G/PyAV18FXFza+6oE9bFqFXDyJODpyfvl5dXeV2TfrF4NHD9OeS1bBnh7\nt/cVCdqTpCRg+XIa0zNnAtOnt/cVXfN0Tg+1TgcUF3PiSU1t76sRNERuLmAy0SjKzGzvq7Ev9Hog\nP5+LZ04OYDS29xXZJ2YzkJFBo6ygQESmOgJpaZyji4s5ZwvqJzUV8PAQ8hKQ/Hw6XFQqzn1tiGiH\nbpvOmUMtScCvvwInTgC33Qb06dP6F9cBsZtcq6IiYO1aoLwcmD27w3peWk2e+/YBu3cDkycDw4fL\n//l2SLNkGR8PbN0KjBgBTJzYOhfWQbGbsV6VpCRg40Zg4EDgxhuBDtSMol3kmZQEbNoExMTQG9mB\n5FUfdqmbHYGyMmDdOkbk77sPCAgA0DbyZG3mur6jc91PcShR0CiEPOVFyFM+hCzlRchTXoQ85UPI\nUl6EQS0v4lCiQCAQCAQCgUDQRgiDWiAQCAQCgUAgaAHCoBYIBAKBQCAQCFqA3RnUp0+fxqhRozB2\n7Fg8/vjj7X05AoFAIBAIBIJGob5mK4DYnUHdq1cv7Nu3D3FxcdDr9Th27Fh7X5JAIBAIBAKBoEGM\n4IHF2g+drqA9L6zVsTuDWq229popLS2FdwctoSYQCAQCgUAguDawy06JP/30ExYtWoQhQ4YgOjq6\n2nNLliyp/Hv8+PEYP358216cQCAQCAQCgUBQBbuuQz1v3jzcfPPNmDJlCgBRr1JuhDzlRchTPoQs\n5UXIU16EPOVDyFJe7KEOdWeqUd2h61CXl5dX/u3p6Vnt/wUCgUAgEAgEAnvD7lI+tm7dinfeeQeS\nJCE6Oho33nhje1+SQCAQCAQCgUBQJ3ad8lETERqSFyFPeRHylA8hS3kR8pQXIU/5ELKUF5HyIS8d\nOuVDVkwmxK87i/kPFWDNGsBkau8LEtTk7Fng//4P+OgjoNHZPefPA8ePd/obmp4OLF4MvPkmoNU2\n4wPMZuDkSeDMGaCDTWKNRaulfJYsobxajMkEnDgBnDsnw4ddu5SWAitXAosWAZcvN/BiSQJOn+aj\nk+ppY/jzT+D554H165soBp0OOHwYyM5utWsTVFBQQFnn5zfq5cXFwLvvAv/6F5CS0srXJmh3OrdB\n/fPP+N/Ll1G+7xB2fK8RCm2HrF8PaDRcTM6cacQbkpKAZcuAt94Cfvml1Ugv41YAACAASURBVK+v\nPdm6lZPw8eNAfHwzPmDHDlqbr75KI7ETcvQo5ZOcDPz2mwwfuGULZbZsGQ08QbNISAAOHQJyc4GN\nGxt48Z9/AsuX8/Hnn21yffaGJAFffMH/bt4MZGU14Y1vvQW8/z6wdClQUtKq13lNYzIBr71GWb/6\nKmAwNPiWEyc4R2VkdPrlSoDOblBnZaGPTyYK9S7wcSqBn197X5CgJr17cxfv5gYEBTXiDYWFnMjU\n6k7vkenWjXO4szMQFtaMD8jJ4X9NpkZ7VDoaYWGAkxN/YvfuMnxgTg6gUgFGI3d6gmYREgK4ugJl\nZUDPng28OC+PhqEk8e9rEIUC6NOH6hcYCHh5NeHNmZmApyc91aWlrXaN1zwGA/XT05Oe6kaEVENC\nOH8bDDLNTwK7psU51IWFhdi/fz+uXLkChUKBqKgojBw5El5NmhEaR5Nzg3JyYPz6W1w2dUHg/dPg\nFeAo+zV1ZOwhd81sZkjY2xuN2/Do9cCGDTSsZ84E/P1b/Robi9zylCR6Xp2cgODgZnxAQQHwzTec\n0WfOBFxcZLu21qYpsszMpFp06ULDpEXk5QHr1nHRvOceCr8T0B5jPSeHNl50dAP3RaejngLUUw+P\nNrm+ltAa8iwvB65e5VhvkggSEhhZGToUmDBB1mtqC+xhHWo0hw8Du3YBY8cCI0Y06i1ZWdznREbK\nMD81ApFDLS9NkWezDeo9e/bgzTffxJUrVzBo0CCEhoZCkiRkZGTg2LFjiIqKwoIFCzB69OjmfLzt\ni+1IA68DIOQpL0Ke8iFkKS9CnvIi5CkfQpbyIgxqeWmKPJtdNm/jxo14++230aNHD5vPnzt3Dh99\n9JGsBrVAIBAIBAKBQGBviLJ51zBCnvIi5CkfQpbyIuQpL0Ke8iFkKS/CQy0vbeKhttCtWzeMGDEC\nY8aMwZgxY9CvX7+WfqRAIBAIBAKBQNBhaLGHuqysDAcPHsTevXuxd+9enDt3DjExMdi0aZNc11iJ\n2MnKi5CnvAh5yoeQpbwIecqLkKd8CFnKi/BQy0ubNnZRq9VwcHCASqWCUqlEQEAAghpV/8w2Bw8e\nxKhRozBmzBg899xzLb08gUAgEAgEAoGgVWlxyoenpydiYmLw3HPP4aGHHoJ/C8uYRUVFYdeuXXB0\ndMTs2bORkJCA/v37t/Qya3P6NLBtGzB8OHD99dWeKixkZTYXF+Cuu1h1TNB2NCj/hARg+3aWLRo5\nsl2usTU5eBDYtw+YNAmIjW2HC5Ak4PffgVOngJtvZkHsDkpWFnUpJAS47TaWmJYVs5mdOK5cAe64\no5kFwzsmGRnAd98BERFUk0bJVqtlNydnZ+DOOztUKcfmIEmcqhITgVtuAbp2be8raoCiIg4YpRKY\nMYPFxK9BJAn49Vc25b39dpbkbBCzGfj5Z3bjuvNOTjqCa4oWG9Tr1q3Dnj17sHr1anz66ae4/vrr\nMXbsWEyePLlZn1fVu+3g4AC1usWXaKWkBLhwgYve0qXsuvf112zlFRFR+bLNm1lqMjub9SMfeqht\n6kdeCxQXs5RnYCDQt2+VJyz3JiICW371QVwcm3WEhwPjx1d5ncnETlUqFdtq9+nDIta2+P134Pvv\naXTfd1+HuIk6HfDxx7QzkpKA1asBB4caL9Lr2Ro7OBgm3wAcPswFYNiwRho1Oh3wwQdsY/fEE7VX\n+YwM4H//40UkJwPvvCPXz2tz1q6lmhiNbKzQ3A1Kpd6aM9F3+3s0NB5+mP+4Zg0LB2u17LV9jbBm\nDbubHjoE9OgBVDs+YzbzBUeOAHfdhZSu43D+PBBz8XcE/LGbChsSwl2jLVJSqKe9e9O466CkpFAH\nnZyA9HTgjTfa8MuTk6m4vXpVk2FpKe+Zry8Qk7yZNawnTuSGcMcOYOdO3p+AAOAvf2nDC24bzGYO\nW5OJc6YtE+PSJeDbbwFHR5amf+WVej4wIwNYtYp1/3NyOBeUlAD/+AcHiLf3NbXRvpZpsbV66623\n4tZbb8WZM2ewZcsWrFixAm+88QbKyspa9LknT55ETk4OevfuXe3flyxZUvn3+PHjMb6atdUA771H\nBffxoeuqpIRG1sWL1QxqPz/ORampwKZNdITGxLTo5wgq+OILYP9+Gokvv8xi9wCq3Rv/8a9Cklyh\nUtnoGKZU8galpHCiqqvxhiRxJfP1pYtoypRGtmJsXxwd2VMkLw8IDa3DQP7sM7qxPTywZ9pyfLKO\nXSDmzq3bPqnGqVP08ru5cff41FPVn3dx4aOoCIiKaulPalcCAtilzCLX5vLll8DevYBjsg4vh5kQ\n6XAW+Pe/OY+cPs0Jwo6aDLUFAQHcrDg52WhEkplJr0RAAIq/WI/XXMdBpwOCywbiDcfvoFAq624H\neOkSHR4GA0NUt97a6r+ltXBzo3xKSrjpaDPOn2d7bJOJDYqmT698au1a+hrUChP+WRKHHj3c6Vmd\nPJlro0LBR12Oig7Ovn3ARx/x76IiYOrU2q9xd+ecUVpKPa+XP/7gbkmrZXdVR0fOBd9/z37jjo7A\nSy810s0t6Mi02KC+8847cfz4cXTr1g1jx47FmjVrMGzYsBZ9Zn5+Pp566ils2LCh1nNVDepGExcH\n7N4NHD1KA6GwELj/foYe/f1r9QSdMoVGX3w8F+EG9wYZGQxh+vg0/dquMUpKaEybzXS0AqDxa2mX\nmJyMyQf+je4Dh6D0htvRt7+y9gfMmsWJq3v3ukPGCgUwYADveWhoh1kcnJzo5Lx4sZZjycrly7Rg\niopQmlsEhYLWTDU9lSQgLY2e1C1buDu87z5uHCMiuNLr9TXcihX4+AD/+hc3La2RbtWG3H035ejj\nw459zaWoiOui2dMLZeVKwMOZHqnMTGv6QmMMP52OuhsW1iEiJvUxaxbVx9/fhq3g60sPdHo6jDGj\nUX6GQ7XYvQukh/4BhZODbd0DGDnR6ynX5GTrv0sSPRynT9PQruFskZ2CAg6qFoTu/fyAf/6T9lab\nDqXcXLZedHTk2Jck4McfgYQElJQ+BLU6GGazEvouPYDMPfyNOh0wZgznSoWi03qRysooDoWCy4kt\ngoJ43zIzuYzUS69ewG+/cYP48MPU/dhYeq2dnBglSEhgC8ytW4ETJxgNEBXROh0trvJx+PBhDB48\nGCqZkhONRiNuueUWvPzyyxg6dGi155p1erW4mB44Dw/mOcbEMGd62jQawq6u1Q3hixeB1auhcQvF\nL12egHeIC264oXZYSJKYEuJ+LA5u33xutYQ60C60PU5XZ2fTvouIYJSx0qaIjwd++omLpb8/Z7rF\ni6unI+h0wJIl9GTr9VxUH3oI5WY1cnI4X1VTQ6ORRmVgYJvkasotz7IyID+fk3u135WUxDzHPn1Q\nNv1O/LKFVvf06VV+5oYN9I4YDPRSeXhw4p8/n8r78cfAn38Cs2fbdtG0M+118t9goI4GBVUf8zk5\ndOZHRAAT+2RA4egAfPIJN+WenowJ1xUtkySmlv3+O2+otzcTau+4o01+EyC/PC3zn5sbvXk2KSmh\n4MLCcDxBjaNHgXH6beh+aiPn37o2IHo98NVXfO/993NDDHD+XryYX+rqCrz1lmy/pxbJycCyZbyW\nOXPYaroKbaGfJSXcewUHN2PvVVrKlBuL80ivp5fUzQ15Cn9sHv4KglXZmHz0DSgL82l8q9XAo4+2\n+bmUth7rej3HstEI3HRTPWniBQXAypVWG6JKFLsWWVn0flR1Z6ekAP/9L8oPHIHJxQMufbuyt7y7\nO71KK1bI+rssiCof8tKmdahjY2OxatUqxMXFAWAaxmOPPQaHWomfjWPDhg04cuQIFixYAAB47bXX\nMGLEiOZfoCX8kpnJHeHLL1utE0tekyRZDZAzZwAPD3gFZ+K+acdqHVi0sGMH18hplxNwaxdHuBQV\ncRLuQAZ1exAYCDzwgI0nBg/mY/Vq4MABLpo1Q8LZ2fS8ZGTw/7dtg+n4SWxP6YeNPnMRO9wZf/97\nlcVHra6SU1IHFs/N/v08tWYnhxzLyhj1TkkBRo0CHnmkypN9+nBxBOAM7itw4QLw78856c+ZAxw/\nTsMtNZXv0eutC0J2Nn9vcDDwzTcMySgUXL0/+4yvfegh3qxrCJOJNtqZM/QmPv+8VZcCAqrqbYXH\ncuhQvrjmQmohMZG56EFBwLFjnHcOHKCBqFS2qUEtN5b5z8ODwQybquLqWjn+Bg4EBnYvAu55jylH\nmzfT9WcrbODkxPylmnh5cV4oKmp977Ql/9jVlddbw6BubTQaLlX5+TT67rqriR/g4lJ90igooCGn\n08FvSG/cfz+Az38BNAXWKEBUFDeI33/P3LEbb6z9udu38+ZPndrI/DL7w8mpkUPv6FGmzjg5Ma/c\n5sJVwYkTfM0NN7DQwSefAAUFyBp7Fy59dRH5jkEYUngBQT29mRoyaJBcP0dgR7TYoH788cdhNBrx\n5JNPQpIkrFmzBo8//jg+++yzZn3evffei3vvvbell0XMZhpVixYxTN61q+2k1KwsTvCnTjF59fJl\nGhX1hPri4zm3H/K9EeOli3Dp06XThshkx2ikEZuTw5ktIID3SqXiQjpqFI09P7/q74uMpMGbmsqN\nUm4uyp294Z10ALHjRuDo0esqP6bR5OQwjOzrC/znP0yYt4NQfH4+jengYB6gqWZQ10SSaBgXFPBN\n11/PFfjzz4Fx47giFxfTEC8o4IKp0dCCHD7c+nsPHqThp1Zz0Zw1q01+q71QUkL7OCyMEdqysgYC\nGxMm0Dh2cbFdvmHtWhp/KSnU7+PH+V9J4n0wmzvsgbsjR2ifaTT8eY3ae7m60ngrLKSO/fgj8Mwz\nfM5kanjg+vgwQpWRwdevWMHx2hKHS10MGMDxkp/fLgfzMjLoO/Dz4/hvskFdEx8fbsLT0qynwfv2\nZTpkQADnwdRU6nK3bjyRN2ZM9fBDURF3UX5+jCBcf33HrtJy+jQ3CMOH23akREXx9xmN1IW60Oko\nF39/ykWh4ABxcUHx1j2ID7gB/QvicKD7X3Hry0OY/9OrV6v9LEH70WKD+vDhwzh58mTl/0+aNAkD\nGkw6agMSExmu8fVlmHvgwLpf6+XFwaBW05B2deX/5+bWmXh5003Ahx8CfkOi4fHM24BbK/2Ozsip\nU6ys4uBAq0WppCF39930itRVikGtBh57jNZlaiqwfz+cN2+BfxcXaPLNeOT6PVDpYpqWL+3pyQUi\nN5cRDDswpgE6NUeP5mn8u++u54U6Hd2q+/Zx8g8L45uDg4EXXuABL29vq8H300/0klrcNLfcYv2s\nsDBrgntDnv1OiLs71W/nToqlXlth/35687t1A5591vrvWi1P6oWH04u6fTvlr9fTgDGZmPt/3XUd\n1pgGKJ/Vq/kTG+0stpRi+89/qGeSxDSO336zRohuu63+zwgM5Jz+xBOcDyyVfuo64NhcPD3btWJL\ndDSXrHPnAFn8S0YjsG4dPakzZ9KTOmIEjcZffuHBuoICpopkZHC+qDkAnJ05R6Sm8n11HQjvCJhM\ntA9UKsrEVrWo7t2B5cuZBxYcbPtziouBN9/kZ4SFAUOGMErt4gIYDAga3RN5nlPwXc69ePqhYuDs\nMTrqRC3eTkmLc6gHDx6M9evXo3vFwb6LFy9ixowZiI+Pl+UCq9Kk3KCVK5lrWlQEPP54nakbleh0\nPBW9dSsnlqFDeYq/xmphNHKDGRjY8ceEHLlWhYX07IWENMEWvXCB+QxGI70DR47wAwoKmNvbWCSJ\nBiPASa2oiAbOyy837Udotbyp0dEtWiTaJe/36FFWSPH0pEK+8AI3g8XFwIIFMGt0SPPsA983XoCb\nu4IG9fr1NG6ef772iZuUFN6XqKh23VzYffe0F19ERq4DnLXZ8HnpKavX77XX6N52dWUOrkbDDdtH\nH3E+cnBgnmpsbJtOIG0pz3rPaJtMLJeydi11VKmkwdK1K72nn3/e8EbDbAZefJGv9/FhLbo2nozt\nVT9LSugbCAur4fBPTmZuTnAw17rVq63PbdtG/Tx5knPgsGHcTNhKLi4u5mdFRspWo7pdZClJ/I2p\nqdyMvfFGo73t1c4VnzgOvPsuw9VKJT/H1dVaRazqPLpiBcMNzs5c/1qpTrXIoZaXNs2hfvPNNzFx\n4kREV3hyr1y5gi+++KKlH9tyhg2j19PLq3o41nK8tyYeHlT0gQOZY/rwwzZdLx9+SPsvIoLzU0fe\npLeU9HTOCyUlLCAxZUoj39i9OxdEjYYyzs2lp6qhD6h57xQKGtA5OfR0u7nRwm8qnp4tq6nWnkRF\n0WNXWMhKE5bSbQYDUFqKtenjsf1IH/i/JGHJEsDjL3/hSuDsXKMQeAX1Hby5VrFMplV0L85zOj5f\nb4aTmxqLpAhUnpwoLOSCajDwYamV9tRTNLQjIui97qT88QdLY1Y7o1113CqVTEPatIn/rtdTh1NT\nGZJpjNdeqQQWLmR+TteuHd+zIRPFxcyIyc5myndlGrqlpnRkJA/F1TyEPGkSPdOff875w9GxtrFs\nGQNubvWnP3QUFApgwQJucm154+sgL1fCkpcV0Ol4pvb28ZHW+XfWLMpNkuhxq2lnaDTUVaOR8hZ0\nOlpsUE+aNAnnzp3D2bNnoVAo0KtXLzjZg5UZG8vZPDmZj+Bghra++44TS1oat/ADB3JC6dmTB7E2\nb+Yu3UZjGkmijR4cTEdeYWGHKG3caqSmcrfu7k7nRqMNaoDytvDPf3KySU1lLvDYsdaT/RcvMtet\nuJgrtaMjIw433mj1bhmNPKV+9WoDFfg7IX5+9IomJ3OHk55OBXV1BR57DPH/5wjfEZHITcpB1k3/\nB4/eaj6fmcn0mcGD6//8M2dYDWTECNsGeFNJSWF6SkyM/ZeNMpu52Xv/fZ6teOYZ6m1BARIy/OE4\nwA9FTj5ILlBZDeo5c7hQm8101To5MeoVGsq55uuvqct//WunbPaQkMAhWlzMW93l4Aa2nBszhhGo\nxERWnXjkEdapjo1llKqwkIaJBZOJ5YCOHKEBOGoUdXzfPr6nb9/qea/nzgFnz9KR0pknZcsiVFrK\n31rl8H9uLo1pf3+m6yMtjevZnoqyeE8/TX2seTbFZGL6zNCh/Hw3N+aaWcrfHj9OT1J4OPDcc3y+\nM+DtbTt3uqSEueWennzeYhhv3468V79D7+SeyBw9A8eOdcHtt3kzImo0Un/37WOaSFgY5RkRQVtC\nqaR98csvdAK1pIanwG5ptkH9/fffV7rCq7rEL1y4AAC4o71PsF+8yMOFvr4McwcFcaFzduZhGL3e\nOgj++19g/XpIXSJxIOYRZGYCE7W10/IUCuazbdzIMdJgwfdOTt++tImysqqn4jYZSz7lypXWBeP1\n1wGdDrmvfIC4K5GIPL0Z16lOcCExmejVKilhiohGwwWha1eu4ra4coVlpMLDWSqumVVo7A1JAv48\n7ICct/ZiossBePqouKKmpwNz5+KeV4dhzRpg+MGViDIdAC5peSCmXz82cxg8mBuZL7+kQv/tb9aw\ni17PcKYkMe965cqWeQMlCXj7babY7NjB3G87rQ9+7kQpTi77CcPzfkWEKp2L4G+/0aB+/33ceCUf\nFy//BV1uHo2YmCrePL2eE4ePD+Xr6clyeSkp/IyE/2/vvMOiPLY//t1dYFnK0jsI2BAREEVEDQr2\nWKPRa0lMNDHJzTXlmtyb8ktR00001/RqSYxRo9EYa+zBCiqIggVEQelKLwvb3t8fx2VZWGQXXtgF\n5/M8POLuMO+85z3vzJkzZ86kkrF9+TJNEDtxHLU+HnyQorD8/YHQXrXA97vonfvzz/oY3ML3fsBx\neRR6DXJA2NOD6d11cSF5nTlDrr+SEgpf0hzr9/33pC/V1STPlSu1q0plZRTyJZeT8bh8udnsheCd\n8+fp3jmOVuYeegjXr1PkV0QEzTtSUoC5s9Xkrt69m/rJmBjauyIS0TLCgw9SYYDkuWEDyUyjvxcv\n0kP08NAeTpKRQROXrp6hYts2mgQKBDR50Ozp2bQJvgXJCLt9C93is+H32wrgk1U0SZw5k/KWLltG\nY01CAtkgnp70ExZGRnZ4OMlTqaQ49q6qp/cprTaod+7ceTeORj8dZlCr1eT5cHDQTRzr60sGQnEx\neaDPntWekMhx1LHI5dRhl5UBf/yBG6FT8c1af7iUpMPz1Q9ga6PCqoBVePAR1/pd1mPG0E9hISVL\nCAoyIPF7F8XOjsY8fSQnk2Nu6FBa4W0RoZB+NPlQAWReBz7eF4Pg6jNIUw6Hu91t+Amuk/dVLKZB\nWiKhwVeppHq8vHDhAjmrYmIa7CXZtImMGs2AcHeTqp7V/HuTkQH88AN1jk8/3aG73PVFK125Anz7\nnQDK1BBcFIuxyGs7LIoV2Fs9Ao4fJaG79S48XOWIQeIdsLhZQEaInR25sjTZC37/nSafly+TXHr2\npDJCIcm5rIwMXz6MP5FIm33HjIzJ3FxyxPftSwtbn7wrg/K8F3YKn0Zs3V+IslWi+6wobFwD9P+7\nEn29q7BywK/A82GAgw0p/C+/UL/j6EgdxKhRNLimppKeXLumXVFJTqZBe8KELjGoanSze3d6LVJS\ngBt5YtwqHoKMU2r0jQrCGM9UCHNuYt2pfiiwtMfuLB98OK8YHmEeJK9t26gf/+EHMvgsLckY5Dj6\n3cKCZGdtras7arU2Y4pKRZ+dPUuGy+DBlPO6C8gYgPZUEqEQqK7G9evk+LS2pjDoceNoga+inIOq\noBAigMa41FQKa/zhBxoHV68mD6qVlXbcVCq1G/MlEq3TISqKJilVVU1D6urqaEKuyXbTiZHLaW7h\nlaSEW4EAJcWA5RU1gvxKyEOfnY2cPCFK4Ij4umgM33wS/Q9soBCYPXvIoHZ2pndeJCL5CQRaB4VS\nSfKXSmk8iorSXZVhdHpabVCvW7eOx2a0gTVryCsRFEQeaE3n4OiI6tffQ3qKDL6hTnCryISqbz8I\nuveAcFAkKbaNDZV3cAAOHYLL0SSEV/wD/jeOwro0G9uqxyDtxm0kZLjiwgUadOePzsFw51T8tKcf\nLlX4Yu9eWnHvyquMxqJSUf8jFpPzPyys+UMka2vJjvNylcLzX/8iIQ8eDJUKWPmZBe6UW2GfIhaL\nbNchfdJi+AyogDBuBBl9DzxAXr6AADpUY9MmyL5fj8217sh1CMH587QvDAB1cImJ9KDuxhlnpHP4\n/Y1zcLMsx/QVQ+HkbcCAsG0bxbmcPUsWe0shEzzAceRA/vtvkuWoURQxUW8jCEW4IugDdaUCn/v/\nB263c3D6pjcUsEScYh+GCo8iV2GFIDs7GjU4jh6OJs1jQAC5uMRi8kx9/bX2qLDXXqOQm759afBt\nCwIBZdw5c4YGITOJW+c44NNPaV62fTvgVXUVafFK+Ek4pNX4QtbnCRyTeGBGjTUOHgQuOD6PWeL9\nGDK/jzat2K+/Akol1Mkp4AK7Q5SSQgZzt24kN6WSZpZ9+5Lh3a8f5b6Piur0S10HDlACib59SaV+\n/plU6fvvBagsfxqlslp0L7KGz2IF+v35AUZv/RM1VWIcrhkPOdefJhlCIXUSxcVUydix5IE9fpwU\n3s2NNtGeO0cXapjOzdmZMq2kpVGfAJBHWyKh9G+RkZ1exvVERtJR4lVVSPKdgkcnUWSRxJqDlVCB\n7VUiKFQi9O4tgkPsaxia8QRUciWEQhEE6ekU21tYSO+8ZqyMjSW5//oreWRjYmgJVmPshYaS/IKC\nSJ5xcfS5ZsXp6lV6l8ePp/aZ6WBYVETDS58+TW3/tDQKy8/OBoL9ZiD4jgNcujvi0qFwfG2/H8Lj\nx4Hz56GUd8M2bgrOVg9DwU+XEOnrC5/4eGDBAprUffwxyahXL7IrnJ214Y0iEcn92jWSZ1cJnWHU\n0+YYan0kJSVhQAcYGlCrqcP19aWXuqREJyHqZ99LcOWKBA4OwJw5PbFB+T+4egKLC76EY3g4GUWB\ngeRyPncOUjsJZvhexh1fH/Q+8ifk1ZbIqvWCqpCyOkX1l0P1wXJgQDmGX3bAWZ+VqKi1wldf0buy\ncGGXDIs0GqGQ+tTsbOpP7uW4+P574OKJCsxIfx9OwUUQPzMfcHeHQA0oqutQqraHGDUoULnimPJR\nqPoIEewI/LgEcHWNwZMfhMPG2ZoMXbEYgioF3KqzkCMN0XWA3rhBYQ6awRvA2Z/SEHv+M6iUahR9\nkw+ndx9t+eb69qUlPju7dtul3ZjSUgo3raqivZwSCdmlr79Og8PEicDJk45IsIjBHQUwdaoS6lNq\nCPKL0P3iBajkZbCyqIJaVQqhgNPGmubnk8JOnkyDpb29NtVkQQF5noKDtfHsfODpSdczMwQCsg8K\nCoDypNsQKO1QUyeC2MUOiYXOEBQBFnZkF2epuuFsrzkI/2M5bFavphCi0FAU7jqDjzMeQ/S+rRjn\nUAlpzn4ynCdMIK/V4sUk56oqWilxdr7HMYOdh23bKGLj88+1DviRIzVnsAihtLSBWAJY2olxKVUF\nG64SNijHNG4brn7VE35OSWTtTJ9O/XHPnuRyDQggxd+3j2JRNXm/9dGvn+7Z3v7+Whl3JcPF0hKY\nOhW3bwP/nU36CgAOqjtwKr8FdYUlShz74HyNJQ73HYrsEV/jt59rEY7rePvEKQg/XUGx6IGBWi+/\nJuRGKqXOxcKCwpM0SKX03paU6O57kMtpxc7RkSaPd+6Qi3fFCrNbEaioIN9Abi5tB2mcCGrvXhrD\nq6qAErkdzvlNw+08QFwM3LDohR5lZciTOeKEYhDq1IBArIJYWQMbQS31m5mZFObh6EgyycqiCzbc\n5C0QAC+/TDFRfn73d0aDLkq7GNTffPMNfvjhh/aoWhehkIJ3//yTlvY0GQ7uosmIU1lJ4Y+wscGN\nQiDNrx/C847DTqWCytkNf6b1hEuNAAMc8uH/72nw9/cHTkRA8IU7uHhHODmQgXjqJIeIPDlOclbw\n9JXjVrYaciG9jGFhtMI4fz5N9EtLaZzVHI7WvXvX2BxtCJoN1FevwKFh5QAAIABJREFU0pioL+yW\n48iY/vhjINC2BlbyQtRaO0J85AgwYgSEQiDiATsc3h0ET3k2PrV5E4OEQty8SVnibtygPn/QICmi\nPQHExaHu/GXcVFkiYMIQBDg1ypQYGEjeVxcXVAqkSI4HnO0VKL7DoVYuhKig1rCbmzSJHra9Pe/L\ndfHx9DN2rHY/EEDjWVAQeftVKur0P/iAxsXRo8kWsbcnQyYkBMgtsEC1HHhiLhCy3RavXf8Eg8v/\nwljFHvSyK6TCkZHawVEo1Ga0mTSJvP69enW5jTMlJeSFunyZ3tMnnyRdPX6cVrKFQrLXEk4HIAhX\nIZUIofSyQOVtcuAVF9NzuHwZOB2vgPBODywaWklG37JluCAYg6LdLhBW/4WCMmtIuwkp529iInkV\ne/emCy5eTF4qP79OtUx+6dLd3PsutL/NyYm2L8hkFMGiOaumro4Ml7VraVK9bRvpsKMj8KHwn5hm\nlwzfyiuocfVEWbEKqCugys6eBSZPRlER8OlSoMdVBeZCAFsbkKVuDA1lzFN6t46kpIS2L1y9SuPI\n5MnUZ778Mo1l0dGkOi4u9N7/0+Z37BEMhrKuDooaBfy6W+LKFWD3lRhUigtwoTYCk51cMFAq1Z14\naAgLo0GupqZpjJ6tLR0Kk5OjzVoDkEE4dy49YH9/KqdZATMzg7qkhMZhlYoWPubNIx0ND6fbSkyk\nyUloKMnb0ZGy3Dk5Ae/+2gP/XfQVjr25D1b5NyECh9xqJ5R5eUEdNxK4laLdIJ+YiNxcDjfTK1As\nuowH/+enm77Qxka//Bldgjbnoeab/Px8TJw4EZcvX0Z1dTWEDdyMzeYDVCrJcm30El+8qN13ZW9P\n5zCIxYAQKtTeLMJC0TrYiRX4WP4CrBztECJPwsujLwD/+AdqLKR45hmaeAqFwHPP0Uq4VVY6ogWn\nke0ZjRO3e0MgoLrDw+klVatp9mtrC0ybRsbOtWu06rtkCTmkWrLDSkpoRu3v3779Eh/5KjmOOiSx\n2LiTqu/coVi/3FygVqbGy8G78f7APyBY+GS9JXziBLBgAQdwgKeXALNmkUGzdCnJ1MmJQtcCu6mA\nHTvw5UZnnFINhoW9BG+/retkgUxGngMfH6xY64LkZKCiTA27xEPwtCpBsseDOJrUthCE1sizrEx7\nlsoLL5Au1dTc1bUGERYKBYUjLFhAt2JhQeOfmxsZMCoV7dcSi0lnoqKABwbVYWrBd/i/rRGwCfRA\n5J29eKLHMYpRajAw5uXR39Q73Jt5nzoSvnKpVlfT7Tg40J7UJUvIEPH2pnTcjo4U83v7NumbtTVQ\nJ1PB3aoEft0sUMI5ITubxkGJhFYINm8GxCIFwkr/xluBG6CctwDnbIfj7E+pOBmvhKuvGC+POItu\nMYG08csMjAtD5VlTQ/qkL0TriScozlwupzSZ775LUSs7dtAk79w5ep+FQurjxo2jfkyhoL4hOprq\nP5+kgnXONYT1F2HSE+4I2LycrJknngCGDcOuXVSvuCgbc6t+QPAoH4iffQKOHubj0WurfpaUkE41\nt8d3zRpyNqjV5LD/8UeS++jRWqNw+HA6H0ggANS/b0f5tULsFU4EvLwBoQhTptC2kaQzSogFcvxj\nrgWm/cMK9uI6dEv8HRaySjo1SvOwNad4GnXU7F0uXqQNkzEx5EUxgo7Im1xTQ2cGlZeTLkqldKvB\nwdQ/FBeTTP/7XyDSIQN5G45g2dmJOH7DG0KhAH37Ao/MVmHxywLkFwDyOg7W1gJMHVuLF3rvQ63A\nGpGvjYHt7Sz8PXUlRBIxtnR/Ff/9n3eHZ8lkeaj5pcPyUKtUKojuvnzl5eW4du0aevXqBWkbYiOd\nnZ1x+PBhTJs2zfA/stB/G6GhuqeB9+tHezO+/14EaQ8v/G2/CHOqV8PyeBbkZU5wV5wF/j6FGokL\n3kqahrzrMozKXI+IwDL08ZoPDw93JOX2RrV7b3h7A31cyCD64AMKlQwMpLzMBQVaT41CQf2TTEbf\nKRQ0qW8uxVx+PmV+q6mhtMJtyp7RAZw4QZ29SEQrXA0dGPpQqciuvXJJjbpbhaitcoLIUoTMoIkQ\nfD1GZ4QZOhRYtUqAK1doNTgggGRbV6c14AUCkOts+3Yob06ASHkdXEhI/R7FeiQS8sJcuYLKbUmw\nFvhC5tYbZx3HQKUCQk2QfvnMGfL4WVtTR+7iQp26r29Tlba0pLHvxAkyNmpqtKc1FxXR7woFGeRq\nNX0WNkgMr+jnMH+kAmnxxYhLy6Yvn3qKlHDBApy7YIkvviA5vvTS3fel4cWVStpAk5VFVlQn8lrf\nukXvZl0dTYh9fEjGJSXkLLa3p/sOC6Pn4OBABqBYIoJrDzeoxUAPFyrj40Or3jIZrXgVySzxz3dH\nAjEPYM3P1vj2KxV63szFDJdDGCapgs+LK3Q9o2VlFAgPUCYVTXaTnBzKVOPkRJa9CUNAioqoj6qs\nJNs2Jkb3e2dnmqBIJNo5gstd+Vhbk1NBpaIQ3aoq0tWoKKrX2ZkWECdPBm5sOgvvMzsgjY0CQqcC\nIe+Q8t5994OCACuuDqpr2Uh0HYC1v3rB/moVlnX7DC6DulNnYEYbWo3lwAFaxXR0JMevvsmLqyvJ\nuaKCytXU0O9+fuRptbAg7/Vbb1E44j6faciulEEgtoa3twB+ftQfq9XAmjUWOHTIAjdySPXCPEvx\nQEk1nu5z93TVxx6jiyoUFN9/+zZNBHfvpoHtySdbDk9oPNiaGTY2tK/y+HGa9G3dSu+/hwdlxtu9\nSw234nQErtsIFKfD29ERjyhvY1vBq5DVWaCsDHj1VRFeeZX2W1y/DgiEQHauEBlZN6CwkKAkpA7T\n5vXCjX9/jvjjQnj5WTReNGd0cVptUG/evBmLFi2Cg4MDPv30U7z44ovo0aMHMjIy8P3332P8+PGt\nqlcsFt8zj/XSpUvrf4+NjUVsbCxN3detoxF0/vxGrkktDg5kVHt5kYd0tM8ZBOSex5vdclHqF4qw\nO4lQq4Hl+8Kx9xzgoSzGSPFxDPAVweHKdqxY8QwuX6bBWK2mI4oHDKDB48gR6psCA2klva6O+nxN\n+lW1mpbqHB3JyzNkCBlGQiEwY4Y2zC8/n+qzsyM70dwN6owMugfNZu+WDOrNm+8eRnmjAv8WfYZN\nFtNQLnBCdU1vLP3IGhMm0CBcVkaRPE5OwIsjkiH67jcgLAyes2Zh6lRh/Zk9YjEAgRSwtMTj3Y7A\ny80L3nN001zr8NtveLqnDHszeqDnZCtI3+6BtDRtwouO5MwZ8kJXVpLqvvEGhbL07EkylcmAo0dp\nMIiJoc8++IDkc+sWDbq//EITi+Ji0jGVisa1lSs12WeEiB0rRmywClhSBiTSxiT18eM4JYzBhqRg\nyGQkx6wsPWPi1at0kppEQhd7662mN8Jx5D5PSCA3kL7criYgI4PeJYmEvKcLF1Jyg/x8MgzPnSNZ\nTp9O0QbXr9P+rNBQ0mOhkAbfV1+lFZEdO6ibsbamEK6aWiHWbrTG7t2AnVSAYrUzRHIFpG6SpmkZ\n//6bLgLQzHDqVPp91y5q0PXr5OHTbKozhBs3yJXp7U0WcBtjMm/coPfO3p4eZUODWqWiW9Ks7IvF\nwKJFtCr33//SxE6TZXHHDpKRpSW9o2++SZOR8HDAAkr0OfotWeJ//EFuVmdnHa9or17Axx+qoF66\nB58lRMNeKkBFyg0UQA6Xgp3klm3viV1hIW1cl0hoAsrjBtqTJ6m6khIKidFnUE+cSKtPiYk0p12y\nhJwJ3bqRqK5f187J5s2jZ1ZQIEHPnmR09+qlXTF8/nmq58IFMsxdXEVIzepGHUbDnNQXLtBAJhaT\n5amx3h944N6prCoqSFYyGcnKTDclRkTQz7PP0mpJZiY5KQYPBgZ55iLz3R04me2NEUUnIe1tgY23\nhqFOLoRcTpNGKyt6zXr0oCyNajXwkNUhOCVcgJ21EuKbQQBG4bGFVhg7idS62SyjKSnkqOjXj8LC\nWrMq0I5Ipc6orCxth5ot7pkdzt7eCRUVJe1w3Y6h1Qb1+++/j9TUVMhkMoSEhCApKQl9+vRBdnY2\nZs6c2WqDuiUaGtT1XL5MHYCNDSnpG280+/cODpT5QakExKmOwFUhejgWA0+EAxYDUSdT4+ZXAYiK\nAq6esYenjy2kkioUWPqhpAQY5ZIMy13HgOHD0fOZ/rh+HfjyS3ofcnMpdrhbNxorEhIo5GTBAuog\nMzLIEJo3j/ZuHDxIbXJ1pe8B2vM2aBAZpw8/zL/8+GbYMBJ9QIBhCS8yM+8eJOdmDXdfG7xUsAaf\nWy7G5cskm+xsksGWLZS8Ra0GolTr4OGO+jx8L7zgj3PnyI7w8gLAdQMeeABOV65g1j+7Ad3v0YA+\nfeCTuRsLI8qByVOgvntK9+nTtOepI8MtR4+mFRMfH5qEOTnpDq47d5JxAlDHbGNDRsrcuaS/ixbR\nwFleTl5tHx8aZL/+uuk+rGpnPxwd9gEcBHswrPYwypT22HDAHcWgCV9MzN1Im4QE+hk9mh6Eiwtd\nXCYja0ofRUU0+3F2JgMvOtoswhxCQ0k/qqvp2Wq80ceOkVdPJCJ5791LxrOvL/Cvf+nX46oqMir9\n/LR7OdPSqOuRywEnZyHcJwQjZPws2E/q1dSg9vTUelXrczmCKr1wgS5u7ObPrVvJ8MvKopnBwIHG\n/X0j+vShvuv2bQrXaIhCQZeKigKSkmhVSuMlXbqULl1TQ7fo40O3tWoVJejQSQ7DiWi2e+UK3W8z\nHnknHxvg/Zcw62A+1p4KQljuEfTO+guwFXfMZq6//qLOSi4na1TPQV+tZeJESnHXvXvzDgiRiDz1\nP/5Ir9eVK/R5VRWFOI8dS2o0cCDJd+FC6sMuXKBn0NAzWlFB6ujpSc9F4OaKR5f1Bnq/rGsoq1Rk\nqVtbU8VFRdSRtGQgJyZSEL2lJbnfHzVgc7cJiY6mTKEzZpBM/vgDsBc5YX1OHNR1CtyK7I1/TS2G\n+rItukvycVXpAxcXUgVLS1KFuDh6JjsW28DamoOljQUiJ5KcNHsx7snPP1OF+/eTA6L7vQatjoeM\n6XuFObS2f1fes97KStOPG22h1Qa1SCSC592BITAwEH3ubmry9/eHwtgNJG3F3Z08CTU1uj1UXR0N\nNj4+Oh23SHR3QjhwIAUCatZ0AYgBzF9A/ekjqxzg5PQGtsUr8fv+bhDvl+GNgi/Rs6+Yeq4vv4S1\ntXW9d0Zzevnw4dS5nT9Pl9+0iQb2xx6jvsnGhjafCQT00/AAGWtriqU1BqWSPL85OWRsdeTp0Zs2\n0WBbXm7YJHvOHOpLBg+2xvQxz6A6+w72/tgLJWepf5GSsxl2dtq0qNct+2L1ARv0CajDQ47OkEq1\nmZsA0MD3999U+JdfaB0VZAAIBI1iu2fMoOfu5AQ4OyMlWXs2zOnTlDmjo4zq3r1pMqbRg4YUF9OK\na0YGTVYSE+lHs6ctPJxuIS+PHEihofT8583TGtPl5aSm3brRasqfOz1hLZ4P+3lj4ORnB9kqJ1jI\naeL2zDN3/+C778hgSUuj3frl5bR2XFOj3bjYGKmUDO87d8jjYgbGNEAevuXLtWl7NWjC4e7cIfnb\n2JDuicVND3PSEBFB415iIk1acnOpHqWSbl8gAIrr7PBJfDSWjQKahE1GRZGMNDmVc3Opwzh3TrtZ\nsVs3fZdunl69KHZVIuHFK+jgQN1hY3kB1C/Nm0fjv4cHqYdIRF7t//2P+jd7ezKw6+roFfPwIOPc\n27uBSmhii27epC/ulYrR3R0hc92xYi6AjWXAdyK614sX+c08o4/AQHpprKx4T90UGUmvmVDY/KtS\nUEBl0tOpP/f2JsPYy4v6g3/9S7f85cu0NSI1lfT+7be1ThorK9LRqipStRUrBRAK9Xj4jxyBwssP\n8nIZJKPGQGhvS+9845MVG+Ptrd0IYmT8dEeTlkb7bmxtadLx8cfURxYV2cHPMwJezjJwD9gAR/+N\nZ/y9ICoMg3t3O3gFOdCKQEkJcOcORD16QCoVIcM7FiVib4RGWmFofyNWTYKCKCZK03cyugRtiqFW\nq9UQCoVYu3Zt/WdKpZI3g9rg4HUvLwr+KyvThntwHPX0ly/TNPSdd/R7NhrsGKitpQ5JLievVnIy\n8Ee2L7KyaOI+dJAFytVSoKqYei0LC3h7k72Rn6/rIFq4kN49S0t6eTdupIGme3daAn3gAe3g3daD\nYS5dIuettTVd55VX2lafoXAc3be9PYUt1NS0HALas2fD08E94Ojrgf+4kGGemKiNi54+ne5HnluE\nrd8FoEamxtXKIPQvtkf3xkaPra32QIK7Oz6Tk+nEaIB2xtdnexIKdUKCOI7afekSGVienuT57Sia\nCwXdt4+MNRsb8qg4O5NcVCrSq9xcisO3sCBHsrs7TWy++47Slz3+OHler14l8ZSU0MAhkQhR6+aH\nbuGkJ7dv0wAPgEZeW1t6j7y9abS5eZMGybffbn7GJJHQmnRentnFWOubrMybR8/555/p/3l5FCkW\nENBstBhsbCgOe88eMsLPn6eVpAULqP7162l8lMtJ5ocONepuBAJS/lOn6CEJBFShrS09OG9v4+OC\np0whxXZwMG5H8D3QJy8NcXF0C6+/ThOMO3docpGeTt2sVEoydHKi9/fbb2lhw8mJ3rMFC+56/8Xi\nlmPDGpOaSstXFhbaw1vakwceoLGhHQxqoGXnw7Zt5IxxcNCGcNXW3t0bEUb97uef0/jy/PMkX7lc\ne75NURHVk5lJr3NMDPkaiopoRXH48KbXrLF2xqU0S4iqauC85Af497WjyU9LBl/fvjQTUyjM2qAu\nLqbV6TNnaO565gyttly6RGrl7W2JsdMt8dBDAD51wYDyK/hiQg4OjI7F9oPA5m9K8GLxW7BRVQEj\nR8Lv8cfx2usCFBQEaftQQ1mwgJYa3N2bn8UzOh2tNqi/++471NXVQSKRIKpBjq+cnBy81tzxeQag\nVCoxfvx4pKSkYNy4cfjggw906m8WNzfd5P1qNbn3XF3JVVlZqTvCFRfTyNerV/3f/fQTLQdfukQe\nwNu3qRPz9aV/g8Ms4fvK/wHl6TTDvLt5q3fvpjG7zs6U7ePQIfq/xkt94wYZ61Kp9kTTtuLkRLem\naWtHobEJdu+myURrx/Q+fcgW7tWLHklmJnm3/voLqL4lQnWZE+ysVbBVluvve7y8KMynsLBeqOnp\nNMhoVjFDQkAunrQ06k3vDpL9+9PgX1ZGH1VUtO4e+MbLiwZGf38ynP387m6YE5PR98479Lyjoynu\nFwCuZ3LI+ysV3ewU2Lo5HAq1CDY2JFuBgEQjk2l1JDi4USpHiYTkmJlJMnr7bXp/srOpknu57qVS\nszmopSUcHMgrn5pKuuHiQgaHIaeqjxxJYeQKBU1QLC0prKGwkFa7vbzIaNFsnG1CVpY211xenlbe\nwcHGG9RCofGGaRuRSkl+dXV0GxxHns/oaGrOhAn0PtfWArVVSvgUnceNFBt4xgZjyxZB689BsrSk\nmZ9M1jFLcAKBSSeHPj4093Jzo1OtNRl4NE3asYO82CoVRWhNnEgT5B07SDxTppBaaTbCe3nRJFLz\nvOrhOFJkjkNu3KPYcyAcIVUJUJUkwV+hoDg8QzYbdnQqi1ZQUEATmd69ySGRd0sB2e1aONlZgbMQ\nw9+fZG1jA5pIpKVB5O+P0nh7yOVAafptFFdWwabv3aUYkBkQFNSKxlhatvIPGeZMqw3q5ozcgIAA\nBLRhlmphYYGDmuDitiASkdtp507KX9dwlq1U0vpYYSF9/vHHgJUVChOyILlQCE/OC2VlfvD1FeDh\nh8nAfuEFjZfT7e6PLhxHYRenTtG+rJgYcm5oNrspFJSma9w48ujyiZ8fxTGWlJCzoCMJCdHN9W8o\nhYXkGQ4IoLErIoK8f05O1PGfPElhMS7OjhjYywoLehyHx1NTmneWdO+uE4c2YgStDItEDfbIrVpF\nlra9PcUCSKUQXk7DI6m/wD0iFtm9RmPSVPPYHBIXR4OglZXWa/rss/RvZiYZNNbW2oMdAMC74Bym\nZayCQs5BHvAY/J8eh7/+oudz8ybtNxoxQvc8GrWavKvJyZQqecgQT22M75w5NBOsrSXlnjev2Yw6\nnQ2BgA7ey8igSUtzxrRmUlZRAXz1FcndxYWMErlcewr244+Tx3bnTtpj1Ozcont3mlVXVNASyptv\n6ncXmiEcRw71JUsoPGrzZjI+QkKo34mO1safV1QAU4S74HPzd2TXeiIx8wlEPK6biD8jg3LR+/hQ\nyNE9U3LPmUMeDx8fCu/atEm7Q6wLMmkS3ZqdnX6nb8+e5HCwtKTfBQKa7I0cqS1z8yaFgeXm0nOZ\nMIF0tX9/kn337oDo1AlaSuA4BD7xNFwnjcDZ5B6ItqoC/C0bJfM3Ao6j4ORTp8i6N2azbTvRsyfJ\nITubxpuCg1fQXVELN4ca9Jk7AI89a6/1GaSlUfujo9EnaBr27xegzKUHRFGxQFU6VLMfwbrVNCmf\nO5dWqxiMVo+OEydOxPz58zFx4kTYNPJc1dTUYOfOnfjpp5+wZ8+eNjey1cTENM39BNAIqdnOXllZ\nf3re/IKP8HtZb0wU52Hg6y/BoY83pFIgdkAFuZrL3KmD0bMmevs2LdO7udEO4J9/phf45Zdp0M3N\nJVskKYk8onxnx/L17QROgrNngY0bccNzCN6/Mh0KpRCPPkoe2BkzyPC1s6NMCmvW0O+yWhEmvN0f\n4WP7G3UpT0/yzuhw+/bdSmX0I5UCX3wBwY0bGGuXDjwdAHiZh9dAIGj+ICDN0q9crhueYq+uQP8w\nNeQqESRhZRC6V+Of3ocQf0SKA9eGw9pGiNGjdR2hubm0QdbFhQxrnQQdY8eS8VJeTta4ZnBds4Y8\n2AsXdurTvuzsaGBtDqWSbN6UFDJqMjPpHR45kryCFRUUYtWnj/Zk7P/8p4WL3rxJHUJZGfU769bR\nH2uMxaeeMsxV3sEolTShSE6md3XSJPo8M5O8/Y3Dv6VSYMbIEqzOHIGj+b1hBccm+/q2bdPmr758\nGRjQo5yUUZPLrGE/GxREKW6Sksi7UVFBu2m//rp9b9xEiETNn/9x7Rq9gpr9Ns1tbdAcDOvtrkSP\n7HhMEMmhHjESb79nhcpKWll5zKW8vrxFVdnd2Gw3AM1v7G9CRgbtnvTzoz7B2ppmlzt2UMeydi31\nHSZMdahSUaRVSgqNv4MHA7+duY4TJV6olYtwp0ClXf1Uq2n/iEIBZGUh4qsYLF/uBov8fDhvyQRc\nXHBL0A3x8eQA+vVXZlAziFYb1GvXrsWXX36JJUuWQCQSwcvLCxzHoaCgAEqlErNmzcJPmryr5oZY\nTLEKR4+SwW1rC3AcuqluYLHkyF0v3D8A6d2NLxs2kMtUIKBYDj2WjoMDef7y8sjgcXYmZ2hWFnV4\nly/Ty1daqk3qHx9P4+tDD3Wa1fK2sWEDwHHIP3wZMqtqSNzsce0aGdRCIfXHt25RfGpgIO2iHjdO\n21mpVNRPu7hQn3f4MP1dXFzTpAp6eeEFCizu358G7epqukhODj0QffmrzJAjR0g+VVXa5VuZDKjq\nNRSuU/NhWVcHTHwQsl+3484ve2GVB/QKk+IKNwCFhboeamdnCtUpKmom211QEKWjsben8I9vv6VJ\naEICeZ34ilsyQwoKSBe9vLSnzXMc7fKXyUgXKytpnubWaNGqupr6gdJSqiMqCugmuU3LMBq3trs7\nzbr/+IMmLbm5JNN7WfkmoqCAbFlvb0roMmmS/pSexcV0e7a2AB56CFc234KTowTlzu4oLdU91Kpv\nX61c3d2B9LfXw+biaXh6CWHh4tL8knhREfXRmZntcq/mztGjNMGRySiWurmJt5UVPSP1noMYXfQz\n7LcDeVVCVFSMhfjuvvqLs0Yi3ckWD/QsgMeoUa1r0JYtNMHR9An9+9OA5u5OS5EhISbfqFxYSBM3\nd3faA2FvDzzzdTiS5lXDzsMdt8odUF19d49sWRkNRKWlNCbY28PdGsC23fQiZGXBPSwFzs4PoKSk\n6cGSjPuXVhvU7u7ueOedd+Dg4IBZs2YhLy8PANCtW7f67B9mTf/+9KNBIKDZ9YYNZDg0jNMTCLTH\nqTbTMYjFFFtZUEAd1R9/kJdU4zV+7DHqd8aOpc+Sk4F//5v6oYMHtRukujR9+wLHjyO8uxUifS1Q\nKtN6ujS4u5OxyHG0k33BApqscBx5yM6dowEkNJQ8A5qDvQwaC3r10o05FQgooM7Zmaz0TrLbWpO6\nzNGRloXLyymmurjYGjNmPFIv05OnBLDOBhQqAdScAEOGNB18NUv4RUXNJJl45BGytF1ctJPJ9HSy\ngjrDe94G3Ny0ERpTptDET6Uio9LWlt7Z8PCmYcwFBdo90pWVJLa//wZWvSmASBMYP2gQ9Tf+/rR2\nf+WKWctUI4vr15s/lOrYMe3K0ptvAh4eznj0Y2f8+iswsG/T0IVJk2iDnb092capJwToWUyOwcDm\nDLA+fehlLyholOrn/iEykiIp7O1bDqF//nngtosQ7rsBkRDw9hHA35+cx4GBwLufSGBjE4ukIuD9\n1q6a9u1LMcUN9VczIOblaeP6TIirK81d9++nyciPPwL2iwMQPod+9/encK56QkPJoA4I0K4YBQVR\nrJNEApue3njnHZpUG5uch9F1afPR40uXLsWWLVvg5OSE2bNnY+bMmfBop8Tu7X6kJseRS7lhKhuV\nioJ9//6bRpWoqBY7B46jd9HOrvmsUEePUgigjQ0ZRn//3fG53TviiFIdlEoKYHNzu6dLXqGgiYaz\nMyAAB6jVqFOK8PTTNBnJyaET17Zto/ILF+rGDhpFZibNgCIj27zZqSPlWV5OuiWRULjfxx+TvGxt\ntaEuq7+sQfHvR1FnZY+HVw5D335GLrmqVE1ze6nV9AwdHHTdjTzT4brZDDq6aKBNcPo0Tf6srSnG\nsk8f6gtWrQJEV9JoiXzoUO0uXo4jq13jqm0H+JCnUkl615ywEdf/AAAgAElEQVQsVq4kg7uigkKR\noqMNrJjjcCZBje8+rUZQYTzCx7pj7P8Nal7glZXkcvT3N3Bpin9MrZ8VFeSkNyjFp0JBA4xAAAwf\njh/WWeLMGRqjqqpI5fz8GoXIaY5hNQR946YRdJQslUqa8B09qs3eePQo6WxlJbDoXxwGD1LTfV++\nTJOE6GjtJIHjaElZImm395QP+JDnvY8WB1o6Xrx139H35tDvN8QYebbZoNaQkpKC3377DVu3boWv\nry8OadJb8AhfL15ODoVb9Ot3j5R1ajVNXU+eJOuN51NWVCrg//5Pe4Lb7Nm8Vm8Qph4UWqS6mmLZ\nbt0CnnkGv90YhD17KKvFww+TgcJxlJeZ742erYFveV68SLZ+TMy9vSAyGcni+nXSpcGD6fPKSgoP\ncXVtGpLaIomJtGPMz48CgxufFNPOmFI3k5LIYRwb27p0x+XlpLa3b1M4V00NOaSbna9VVNDGi8JC\nWpbpb9x+AUMwVJ6XLtHq2bBhxmdAS0ujmHNNPLlB2cAUCuCLL6C+kIpjoc+iOngQ4uJa2KBoBnS0\nfnIcjVlFRbRCoDklsTVkZlJGWTs7yg5y5w49b3f3uxdau5Yu9uCDtFO5nWmrLA3tJwHqKw8fpnuP\niSG7+YsvAHcXFf5j+w2kGedol2FzyzCdAGZQ84tJDOr8/Hxs3boVGzduRFVVFS5cuMBHtTrw1Ym9\n/DLNzgUC8uzpnVTfuUMFfX0ptnH16nZxIWvyhpoCszeoz5+nnt/RkdxiS5bUy+vQIXokAgFNRiZP\nNnVj+ZVnaal2g5u9PYmhJYOYV11aupQaUVZGrpwOjpU2lW4WFlJeeYAcUx9+2Lp6OE7/ASl6OXuW\nRnWplDYmtiHtaHMYIs/KSnrUajUZtJ99ZnyXp1bfO5d1E27cIF3z8CBrR5M83szpaP1MS9MeUhQd\n3fZc+ZqmN3lOpaUUi6jZ0PL99+2+8bgtsiwro36S47SrQMZGl6jVgCA7C4KlSzqdHuqDGdT8Yow8\n2zz8fv3114iNjcWoUaNw584d/Pjjj+1iTPOJpSUt/wiF9xgwHB1prTYnh9x77RSPYcKNz+aPvz8Z\n0hUV9RkmNPKysNCGtpto1bdd0ZzmqVQafn+86tLQoSR3V9f7KkhQJCI5qlRt0yuBwIjnERBA/U1V\nVTM7QzsGTX+oUNC9tybs9V6n/+nF05OMt6Iis0itZq5oslWq1fc+XNJQmp30SKW0ifDWLQpv5ONi\n7YhQSD9KZeubKhQCAk8PrR4OG8ZvIxn3DW32UL/++uuYNWsW+rfDMmVj+PIKFBWRU6jxHrUmKJU0\nY3dx6ZKWr9l7qAFKlVBT0yReV6WiaBylksZhczCq+ZZnZiaF8WmOce5QNBsBbGxMksbNlLqpOVwo\nKormEx2CTEa63k6ZZgyV540b5A0dOFA3G0y7IpfT5M3FxeSb1wzFFCEfSUmURWXYsHaOwOrgca+t\nsszMpBCtyMg29pOdUA/1wTzU/GKSkI+OwFSDbFkZvV9d7YTQTmFQtxJTPLOO3Fxz5w7Fqnb0RtaO\norPppkpFMdOuruZ59k17yrOr9o/3wlz1U6OHLi7m4WQwBD5lyXHkMHNwMMt07h0CM6j5xRh5mmHX\nDyxevBjnzp3DgAEDsGrVKpO25dIl4NNPtSersdNCzZ/UVIqlEwqB//63w09nbldUKtrwdvkynfr1\nwgud2pnSJeA44PPPKeQ/OJh0rqtOdBqTlqaN73/lla71rnU2OI7OuTl7lrKBvvqqeU7u2pMtW4Dd\nuymS6K23+D9AjcG4F2YXx5CUlITq6mrEx8dDLpfj7NmzJm1PWhoZMQoFGdcM8yc1lWIN5XJaCuxK\nVFaSMe3rS0vAcrmpW8SoqyNj2teXno3msJ37Ac27xvpH06NUUtYoX19KFV9RYeoWdTynT9PKXUEB\n/TAYHYnZGdQJCQkYO3YsAGD06NE4deqUzvdLly6t/zl69Gi7t2foUAprdHHRpiNjmDfDhtHeGlfX\nrnckrIMDndSXn08HY3Tik7+7DNbWlH4sP5+ezX1x6uldhg0jnXR1pZhzhumwtKQDiPLz6cybTnLw\nK69Mm0YhSOHh99VeaoaZYHYx1B9++CEGDBiAcePG4dChQzh58iTeeustAKaLW+M4mu0qFNRJffMN\nxWk9+yydVNewXG4uDTDmkBe5JdoqzzNngPXrKZ/3E08Ytrwok1GMn7e3tnxdHeXL9/Ex8KACA2g2\nLVQ7wpd+chyweTNw/Dgwdar+lKiagztbIieHwg+8vMiTmJtLOmzuS6HmGqOakQF89x1tflq0SFdf\nDX0m5eXkxfb2JuOH40j325PWyDMpCVi3jsJYFi5sPia34btWVUX72Xx8dPezlZSQoRMQ0DX2d5tS\nP48coUOtBg+mlMmN5XkvPSwspOeoUlGaf39/04eMtSTLujrg229pw+zChTTeNKa2lhKT2NiQPDps\nQ60ZwmKo+aVTx1A7ODig4u5aVXl5ORzbksGeJzIyKAeoSkUe64sX6cXduZNSdmrYvh3480/yUC1d\n2q4HyZkFmzZR53XiBJ0G3HByoY+6OjqNKyeHvFmLFlHn/7//0VK5jw/Jja+0UJ2V4mJg3z46aOHX\nX+kUyMYxuYbcX2IixVQKBJRSPS0N2LuXMrQtXdq2wyHuV3bsIEPkwgUKcYiM1H5nyDMpKgKWLaM6\nBg4ko5XjgBdfBCIi2q/drWHzZrqn06fp/e7dW385zX2XlWnTl0+YoD0TpLBQe89TpvB+RtZ9BccB\nGzbQpPjAAVoRaXxafXN6mJBAhmltLdUjFpNBPm5c+7e7LaSnUyiLVAps3drUoFaraV9JcjIdbhUa\nSs4uE2agZNynmJ2vYMiQIfWnLB46dAhDzOCtyMkhY1AoJA+MrS39PyREt1xyMr30ZWVAXp5p2tqR\nhIXR4OnsTHFrLVFaSrL08CBZcRxNUq5eJeMxL+/+ij9tDqmU4iALC2lwaK1H7/p1+leppBWApCRa\nPSktZfGFrSUkhFZZ7Oxa51XOyaE4eFtbMnBUKjIIbtzgv61tJSyM+jInJ8PSkRUUkG45OtL73fBz\nTb/Z1fY0dDQCAYUzFBXRCocxk+JLl6gvKS2lLEFiced4Hl5e1CdWVuo/2VihoNR5FhbauPG0tI5t\nI4MBmKGHOiIiAtbW1hg+fDgiIiIQ2dAFZCIGDqTwhpoaOpVPIiFvS+MB9eGHgTVrKPvC/bDbfd48\nOp7ZxcWwEAJ3d/K2JiQAc+bQ4GBhQfXs3Eneq/sx7q8xVlbAG2+QQe3j03pve1wcTVYsLel0NXd3\nWsIfNAjo3p3XJt83jB9PHjI7u9bpanAwTZJyc8mLdvgwfT58OL/t5IM5cyjHu7OzYSFs3buTx/7q\nVWDmTO3nffpQeMLNm8CMGe3X3vuFZ5+liZm7u3Gp4UaPppVALy/tGDZ1avu1ky9cXYH336dQKT+/\npt9rPO3bt5Oeubt36pPDGZ0Ys4uhvhftEbcml9OSpkRCg0FnDhUwltbIU6Egg9jSkgyzrhAPyRft\nHVcplwOnTlG4UVfXVXONoW6J/HzKfBEcTKsM5oKx8rxzhzKX9OgBBAa2Y8M6KabUz6IiICWFQnD8\n/U3SBF4xVJYcR6FWJSXkIJBIOqBxnRAWQ80vnTqGuqPZvZtyVwoEwEsvkTea0Tx//UVxvQIB5UBm\nmU86jp07aTOSJiba3GJu73eUSuCjj2hJ3cGB4jo7YxYWjgNWriQvqI0N8Mkn91fmEnOG4+h5FBTQ\nKsknn5j/BmO+SE8nvVSpgKwsYMECU7fI/Jkz50kcOHCo2e/fe+//8M9/Pt2BLera3PcGtUxGXla1\nmuKiGfdGJiODjuNocwuj49DInumqeaJW0zthbU3/qlSmblHrqa6m+1AoaKLAMA84jvoBa2taserM\nOmYsdXV0/yIRhV8yWub8+TQUF/8PgD7vy7e4evVaRzepS3Pfh3xUVZGX2taW4iPvp5OlWiPP6mqS\nl1hMO/k7y/G2HUF7LwNXVpLs7e1pZ35X1tXOGvKRng4cO0ZL0o03LZsSY+WZlUXp2cLDaU8IQxdT\n6uf168DRo/Rc+vc3SRN4xVBZqtXAwYOUdnXCBLbfpjkayjM4OBpXrqwCEK2npB2A6nvUxEI+AOPe\n9fveoL6fYfLkFyZP/mCy5BcmT35h8uQPJkt+MdygbpvhywzqprAtZQwGg8FgMBgMRhtgBjWDwWAw\nGAwGw8RYQCAQNPNj1ex3Uql5nKLXhaMwGQwGg8FgMBidAyVaEy5SWWkeOWS7pIf66NGjZlXGXK9n\nLMbWeb+Vb496+X7epry2sWWNwdx0wdzK81mnOfZlHd0mQ+isMjDF9Qylq/Vzpus7Da3LkHJ8lTGU\nlusylZ1kdgb13r17ERwcjJiYmFbXYY4dsDlez1jMzUgwt/LtUS8zqNun3vutPJ91mmNfZo4GYGeV\ngSmuZyhdrZ9jBnVraLmuxrKSSp31horExcXxGi5idgb1kCFDkJKSYupmMBgMBoPBYDA6OZWVpaBw\nkcY/S+5+xw9mF0Pt6Oho6iYwGAwGg8FgMBgGY7Z5qGNiYnDs2DGdz+h8eQaDwWAwGAwGo/0x1Ew2\nmYe6sLAQs2fP1vnM09MTGzdubPZvzNT2ZzAYDAaDwWDcx5jMoPbw8MCRI0dMdXkGg8FgMBgMBoMX\nzG5T4rlz5zBmzBikpqZi7NixqKurM3WTGAwGg8FgMBiMZjHbGGoGg8FgMBgMBqMzIFq6dOlSUzfC\nUGprayGTySAWi/V+X1lZiaKiIohEIlhZWfFyzfT0dLi4uOj9TqVSoaCgABKJBELhvZ3992p7e7Qb\n4K/tXYGOuN+W9NMY+NaJ9tCxzlKnObfHHOrnsw3mWJe56ZQxmKMMTNGmztLXmHudXb0uk7/rnBnz\n7bffcoMHD+ZGjhzJrV27lhsxYgQXFxfHvfvuuzrlDh48yMXGxnKTJ0/mHn30UW7KlClcbGwsd+DA\ngfoyhw4d4oYPH86NGDGC27hxY/3nU6dOrf/9xx9/5FavXs39+OOP9T/9+vXjVq9eXV/mhRde4DiO\n4/78809u0KBB3Jw5c7ghQ4Zwa9asMbrtfLW7rW2PjIzUK39Dr61h9+7d3LBhw7iJEydyBw8e5KKi\norjIyEhu8+bNesvr4+rVq81+9+mnn3Icx3Hnz5/nYmJiuJiYGG7IkCFcfHy83vKGPisNTk5O3Lx5\n87jt27dzMpmsxbZ++OGHnIeHB+fo6Mj17t2bc3Bw4Hx8fLj//Oc/OuUOHz7McRzHlZSUcC+99BI3\nduxY7l//+heXl5fXpE5DdMIYWRhan6nrXLFiBRcbG8uNGzeOCw4O5tzc3Dhvb29u06ZNTQXPcVxO\nTg63aNEiLjY2louJieFiY2O5RYsWcbdu3dJb3phnYOw9GnOfHVW/IfLkU9cMqYtP/eroNmn0Jzs7\nm3vqqae4UaNGNdEfQ3TSUD3sSBl0tDyNedf57g+7Yp3PPvssx3EcFx8fz/n4+HCOjo6ch4cHt337\n9nZpX2d9142Vf0VFBXfz5k2usrKyyXfNYdYGdXR0NKdWq7mamhrO39+fk8vlHMdx3JAhQ3TKDR06\nlKuqqtL5rKqqSqfckCFDuLKyMq6mpoZ75ZVXuKeeeoqrq6vjYmNj68uEh4dzY8aM4VavXs2tW7eO\nW7t2LRcaGsqtW7euvszIkSM5juO42NhYrrq6muM4jlMqlVx0dLTRbeer3Ya23cPDg3v00Uc5Dw8P\nbs6cOdyjjz7KPfLII5ylpaVe+Rt6bQ1RUVFcVVUVV1RUxHl6enLl5eVcXV1dk+elwZBJQEM01x09\nejSXkZHBcRzH3b59u9n6DX1WDetPTk7m3nrrLS4qKoqbNm0at379eq6srExvealUyp0+fVrnGSck\nJHBSqVRvu2fPns39+uuvnEwm4w4cOMCNHTu2SZ2G6IQxsjC0PlPXKZVKuaqqKh0Z7dy5k3NwcGhS\nJ8dxXFxcHJeQkKDzWUJCQv0zb64dhjwDY+/RmPvsqPoNkSefumZIXXzqV0e3KTw8nIuNjeW8vb25\nBx54gJs4cSIXHh7ODRw4sL6MITppqB52pAz4rMuQeox51/nuD7tinY6OjhzH0fj+6aefcjKZjNu6\ndSt711t5f8Y6Oxpi1mv9AoEAubm5yMzMhFKpRFFREaqqqqBSqXTKicViXLhwQeezixcvQiKR6Hzm\n4OAAiUSC5cuX48EHH8TEiRNRUlJS/31ycjKee+45HDhwALW1tZgzZw58fHzw+OOP15cJCAjA4cOH\nER4ejpMnT0KhUCA5ORlSqdTotvPVbkPbXlNTg3HjxmHChAmYMGEClixZgn/84x+wtbVt9hkYcm0N\nEokEtra2cHNzw7Rp0yCVSmFlZdVsCMQXX3yBTZs2QSAQwMLCAiKRCAKBACKRSG/50tJSHDp0CKWl\npejZsycAwNXVtdkQDkOfVUP69++Pd955BwkJCVi+fDny8vIwZcoUvWXVajWcnJx0nrG/vz/UarVO\nOY7j6kNO5syZA2tra4wePRoymaxJnYbqhKGyMLQ+U9cpFAqRnJysIyNXV9cm9Wmora1FSEiIzmch\nISF6ZQoY9wyMvUdj7rOj6jdEnnzqmiF18alfHd2mGzduYMeOHejduzeOHTuGXbt24cSJE0hPT68v\nY4hOGqqHHSmDjpanMe863/1hV6xToVBg//79qK6uxuLFi2FtbY2HH35YJ82wOeoBn3XxeX9vv/02\ndu3ahT///BPr16/Hjh07sGvXLrz99ttoCbM7KbEhK1euxAsvvAAXFxfs2bMHTz75JGpqaprc2C+/\n/IKPPvoIb7zxBlQqFYRCIcLCwvDzzz/Xlxk3bhyysrIQEBAAAJg2bRp69OiBV155pb6MQCDAlClT\nMGXKFOzfvx+PPfYYCgoKdK711Vdf4fPPP0dGRgaee+45ODg4YOjQofjpp5+Mbjtf7Ta07Z988gky\nMjJQWFiI9957r77tn3/+uV75G3ptDQ8++CCUSiUsLCzw9ddfAwDq6urQp08fveWTk5Oxc+dObNy4\nEbGxsZg/fz42b96sMwloyEMPPYTjx49j8uTJKC0thZOTEyorK9GvXz+95Q19Vhr69++v8/9evXrh\nlVdeafZ+P/jgAwwbNgwSiQShoaHo378/FAoFXnvttSZlR48eDaFQWN/uiooKvcacITphjCwMrc/U\ndQYHB2P27NmoqanB0KFDIRaLERQUVK97jXnvvfcwefJkSCQSSKXSenm+++67essDhj8DY+/RmPvs\nqPoNkSefumZIXXzqV0e3SSgUIi4uDo6OjvXlTp8+rVPGUJ00RA87UgYdLU9j3nW++8OuWKerqyue\neeYZuLm54caNGwgMDERubq6OI8sc9YDPuvi8P41xPmTIkPrP7uXsaAjL8sEwC/bv34/Vq1cjPT0d\nycnJpm6OUdTU1KCsrAwODg739PYz+IfJntER5OXl4aOPPkJqaqrOgP3KK6/Ax8dHpyzTSQaj82LM\nu96EFoNCzJDnn3+et3IdWcZcrxcWFmZQXcZeu7XljaW922Ns+VGjRhlUrrlY8ba0ge9ypq7TUFlq\nMEamrSlvbrrWHrrZmfuyjm6TIfrDVxmO69oyN+Zd72r9nKn6TnPUA3O9niGYvYf67NmzOHXqFMrK\nyuDo6IghQ4YgMjLSoL9NTExEVFSU2ZTRVy41NRUWFhY6YRGnT59GdHS0UWUMLbd582ZcvHgRYrG4\nXp5KpbJJXRqMlX9bnpeGF154odkwlPZuDx/lLS0tER4e3uJ9pqSk6C1naBva+924V1lDddKYssnJ\nyXB0dERgYCAOHDgAuVwOLy8vDBgwwKB2As3LtDXlTaH7xjyXlsrrk/v69esxb948o9vc2ntrbd/J\nV7+oT6fGjx+vs0/DkDLNMWfOHGzcuPGeZQzRSX1lDJF5ez4XfeXa87k09653RH+o716NLcfnOK3B\nUN00RJ7sXTeuXGPuZZdoMGuD+t///jfkcjlGjx4NBwcHlJeX49ChQ7CwsMBnn31WX67xJjCANn+M\nHz8eBw4c6PAyhpZ76aWXUFRUBEtLS9y+fRtr1qyBu7s74uLi6o9lN6SMoeUGDBiAqqoq+Pr6oqam\nBs888wzOnj2LHTt2ICcnp0l7DZV/a8sDxr287d0evsoDFL/dEIVCgStXrqCsrAxOTk7o06cPLCya\nbmEwtA18vhvGljVUJ40p++yzz6Kurg4ymQzW1tawt7eHVCpFdnY21q9f36RdzVFXV9fsJlhDnwHQ\n/rpjzHNpTfmXXnoJBQUFqKmpQVFRET788EMMGzYMY8aMqZc7n7rGZ9/JV7/YnE7l5ORg3bp1Bpdp\njq+++goLFy5sMe98Y500RA8NkTlfz8XQcnw+F5lMhsLCQggEAjg5OcHf3x95eXlNZM53f8i3TDTw\nOU5rMFQ3DZEne9eNk2ljvvrqKyxatKjZ7zWY9abEpKQkxMfH63w2ffp0DB8+XOczW1tbvbO7lJQU\nk5QxtNyZM2dw7NgxAMCFCxcwc+ZMrFixQqe8IWUMLZeZmYny8vL6Ms8//zxWrFiBDRs2NKkPMFz+\nrS3f8OXt27cvysvLsXbtWqxfv16vEdLe7eGrvJOTk45BvX79evz4448IDw+Hg4MDKioqcP78eTz5\n5JN47LHHWtUGPt8NY8saqpPGlE1LS6u/n9DQUFy8eBEA4OTkpLfe5pg8eTL279/f5HNjngHQ/rpj\nzHNpTfndu3fD09MT4eHh8PDwwNy5c+Hh4aGz+Y1PXeOz7+SrX2xOp0aMGGFUGQCIiYmBQCDQyZyQ\nlpaGN998E6WlpU3uqSENddJQPTRE5nw9F0PL8fVcDh8+XK+bmzZtwpw5c3DixAkUFhY2uT7f/aGh\n92pMOYDfcVqDobppiDzZu254uebe9c2bNzeRTWPM2qAeOHAgnn76aYwdOxb29vaoqKjAoUOHmiwL\nBQcHY/v27XB0dNT5fPTo0SYpY2g5tVoNuVwOKysrhIWFYfv27Xj00UeRlpZmVBlDy9na2mLhwoUY\nP3487O3tMX/+fDz88MOQy+XQh6Hyb215Y42Q9m6PseUzMzPh5eUFR0dHiEQiqFQqlJWVNdmx/913\n3yE+Pl4nNY9KpcLw4cObGHOGtoHPd8PYsobqpDFlz58/j5iYmPq/0fxeVVXVpE4A9d83JjU1Ve/n\nxjwDoP11x5jn0pry+fn5SElJgbW1NQCgpKQEjzzyCA4ePGh0mw0px2ffyVe/2DBF6fvvv1//u0Ag\nMKoMAOTm5qK6uhoeHh5wcHCAPgzRSUP10BCZ8/VcDC3H13PJz8/H5cuXIRQKMXr0aEyZMgUqlQrO\nzs5NZMd3f8i3TIy5b2PKAYbrpiHyZO+64eWmT5+OlJQUPP7444iLiwNAGcz27t2LljDrkA+AjK6E\nhIT6XdNDhgxBRESETpn8/Hw4Ozs3WXrTpHDr6DKGlktISEBAQAA8PDx0vt+yZQvmzJljcBlj6qqo\nqMC1a9fq5Tlo0CBcu3ZNp66GGCL/1pZfvHgxqqurm7y81tbWWLVqVYe3x9jywcHBWLduHZKSknTK\nv/LKKzrLWpMnT8bcuXMxZswYSKXS+mW0DRs2YOfOna1uA1/vhrFlDdVJY8p2794dqampsLGxqf9M\nLpcjKioK58+fb3LvwcHBSElJaXK87JgxY/SGQBj7DID21R1jnktrysfExOCRRx7BjBkz6u93//79\nWLlyJZKSkoxuc0vl+Ow7+eoX09LSEBQUpFO3XC7Hvn376nPLG1IGIH1LTEzE+vXr8ffff2Pu3Ln4\n5ptvoFKp6vXNEJ00Rg8NeTZ8PBdDy/H1XGJjY+sdOxoZ/PXXX/j888+RmJiIxvDZH/ItEw18jtMa\nDNVNQ+V5v7/rxpSrq6vD6tWrdd71ffv2NZFVY8zeoGZ0bYw1WsyJvXv3YsiQIU1m4efOncPAgQPr\n/19ZWYkffvihyX0uXLgQ9vb2Hd1ss8RQWba2/P32DO63+21vGuqbQqHA+vXrkZ6ejpkzZ9brmyE6\nyZ4LkwHfMHm2Hw3f9Y8++qjlP+AlVwiDweBmz57Na7n7GWNl1N7lOzv32/22N4bIk68yXR0mA35h\n8jQdZn30OIPRmWh8MmVby93PGCuj9i7f2bnf7re9MUSefJXp6jAZ8AuTp+lgBjWDwWAwGAwGg9EG\nmEHNM9OmTUNkZCT69euHH374wdTN6fSUl5fjm2++MXUzGAwGg8FgMJqFGdQ8s2bNGpw9exZnzpzB\n559/jpKSElM3qVNTWlqKr7/+2tTNYDAYDAaDwWgWluWDZ5YuXYo//vgDAJCdnY19+/Zh8ODBJm5V\n52X27Nn4888/ERQUhLFjx2L58uWmblKzFBYW6qT2aWu5+xljZdTe5Ts799v9tjeGyJOvMl0dJgN+\nYfI0Hcyg5pGjR4/irbfewoEDB2BtbY24uDgsW7as2YNKGC2TnZ2NSZMm1Z9oxGAwGAwGg2FusJAP\nHqmoqICTkxOsra1x5coVnD592tRN6vSw+R6DwWAwGAxzhxnUPDJ+/HgolUr07dsXr7/+OoYMGWLq\nJjEYDAaDwWAw2hkW8sEwa4qLizFw4EBkZWWZuikMBoPBYDAYemEeaoZZ4+LigmHDhiE0NBSvvvqq\nqZtjFhQVFWHixIkAaMIRFxcHe3t7PP/8883+TWxsLM6dO9fk83PnzuHFF1+85/WysrIQGhqq97uX\nXnoJx44dM6L15ktr5Dp//nz8/vvvbbpuV5XhgQMHEBkZibCwMERGRuLIkSN6/4bpZsu0Rq5MN5vS\nUI6JiYmIiIhAREQEwsLCsHnzZr1/w/SzZVoj166onxambgCD0RIbNmwwdRPMii+//BLz588HAEgk\nErz33ntITU1Fampqs38jEAj0fj5w4EAMHDiw1W159tln8fLLLyMmJqbVdZgLrZVrc7I1lK4qQzc3\nN+zatQuenp5IS0vDuHHjkJOT0+RvmG62TGvlynRTl8obn98AAAWPSURBVIZyDA0Nxblz5yAUClFQ\nUIB+/fphxowZEIlEOn/D9LNlWivXrqafzEPNYJgpr7/+uk4O7qVLl2LlypXYunVrvTfAxsYGw4YN\ng1gsbrG+LVu2YPDgwQgKCsLx48cBUGaayZMnAwBu376NMWPGoF+/fnjqqacQEBBQn0ddpVLh6aef\nRr9+/TBu3DjU1tYCAHr16oWsrCyUlZXxeu/tCd9y1UTNHTp0CAMGDEBYWBiefPJJyOVynDlzBg8/\n/DAAYMeOHbCxsYFSqURtbS169OgBoOvKsH///vD09AQA9O3bFzKZDAqFQm99TDcJvuV6P+omYJgc\nJRIJhEIygWQyGRwcHJoYfRqYfhJ8y7Wr6SczqBkMM2XWrFn47bff6v+/ZcsWzJo1CyKRCDY2Njpl\nDZnpq1QqJCQkYNWqVVi2bFmT75ctW4bRo0cjNTUVM2bMwM2bN+u/y8jIwHPPPYfU1FQ4OjrqLNVF\nRETg1KlTrblFk8C3XAUCAWpra7FgwQL89ttvuHDhApRKJb755hsMGDAA58+fBwAcO3YMoaGhSExM\nREJCAqKjo+vr6MoyBIDff/8dAwcOhKWlpd76mG4SfMv1ftRNwHA5JiYmIiQkBCEhIfj000+brY/p\nJ8G3XLuafjKDmsEwU/r374+ioiLk5+cjJSUFTk5OyMvLg5eXV6vqmz59OgBgwIABejd5njhxArNn\nzwYAjBs3Dk5OTvXfBQYGIiwsDACabBL19vbuVJtG+ZYrx3G4evUqAgMD0bNnTwDA448/jvj4eIhE\nIvTo0QNXrlzBmTNn8NJLLyE+Ph7Hjx/XWabsyjJMS0vDa6+9hu+++67Z+phuEnzL9X7UTcBwOUZF\nRSEtLQ1JSUl48cUXUV5errc+pp8E33LtavrJYqgZDDNm5syZ2Lp1KwoKCuo77NYm5tGEL4hEIiiV\nSr1lmqu7YeiDSCSCTCbT+Zu2xsJ1NHzKFWjqyW5Y1/Dhw7Fnzx5YWlpi1KhRePzxx6FWq7FixQqd\n8l1Rhjk5OZg+fTrWr1+PwMDAZutiuqmFT7kC96duAsa943369EGPHj1w7do1vXHRTD+18ClXoGvp\nJ/NQMxhmzKxZs7Bx40Zs3boVM2fORLdu3VBQUNCkHB/ZL4cNG1a/nLd//36UlpYa9Hf5+fkICAho\n8/U7Ej7lKhAIEBQUhKysLGRmZgIA1q9fj9jYWABATEwMVq1ahaFDh8LV1RXFxcVIT09HSEhIfR1d\nUYZlZWWYOHEili9f3uac/Ew3WyfX+1U3gZblmJWVVW8cZ2dnIyMjA7169WrVtZh+tk6uXU0/mUHN\nYJgxffv2RVVVFXx9feHh4QFPT08olUpUV1fXlwkICMDLL7+MdevWwc/PD1euXAEAPPXUU0hKStJb\nb8MZveb3JUuWYP/+/QgNDcXWrVvh6ekJe3v7JuUb/z85ObnTHWLEt1zFYjHWrl2LmTNnIiwsDBYW\nFvjnP/8JgJY/i4qKMHz4cABAeHh4k1RaXUmGNTU1AGjnf2ZmJpYtW1afRuvOnTsAmG7eC77lej/q\nJtCyHI8fP47+/fsjIiICM2fOxPfffw+pVAqA6ee94FuuXUo/OQaD0alYsmQJt2nTJt7rraur45RK\nJcdxHHfy5EkuIiKixb+5evUqN3nyZN7bYgraS64twWTYMkw3mW7yAdPP9oHpJ8EMagajk1FUVMQ9\n+OCDvNebkZHBRUREcOHh4dygQYO4s2fPtvg3ixcv5o4dO8Z7W0xBe8m1JZgMW4bpJtNNPmD62T4w\n/STY0eMMBoPBYDAYDEYbYDHUDAaDwWAwGAxGG2AGNYPBYDAYDAaD0QaYQc1gMBgMBoPBYLQBZlAz\nGAwGg8FgMBhtgBnUDAaDwWAwGAxGG2AGNYPBYDAYDAaD0Qb+H3sPNyCQSrVGAAAAAElFTkSuQmCC\n" | |
| } | |
| ], | |
| "prompt_number": 97 | |
| }, | |
| { | |
| "cell_type": "markdown", | |
| "metadata": {}, | |
| "source": [ | |
| "These are the individual subject clusterings." | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "collapsed": false, | |
| "input": [ | |
| "zip(sy30.subj_idx.unique(), clusters_recog)" | |
| ], | |
| "language": "python", | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "output_type": "pyout", | |
| "prompt_number": 101, | |
| "text": [ | |
| "[(101, 0),\n", | |
| " (102, 1),\n", | |
| " (103, 1),\n", | |
| " (104, 0),\n", | |
| " (105, 1),\n", | |
| " (106, 1),\n", | |
| " (107, 1),\n", | |
| " (108, 1),\n", | |
| " (109, 1),\n", | |
| " (110, 0),\n", | |
| " (111, 1),\n", | |
| " (112, 1),\n", | |
| " (113, 1),\n", | |
| " (114, 1),\n", | |
| " (115, 1),\n", | |
| " (116, 0),\n", | |
| " (117, 1),\n", | |
| " (118, 0),\n", | |
| " (119, 0),\n", | |
| " (120, 1),\n", | |
| " (121, 1),\n", | |
| " (122, 0),\n", | |
| " (123, 0),\n", | |
| " (124, 0),\n", | |
| " (125, 0),\n", | |
| " (126, 1),\n", | |
| " (127, 0),\n", | |
| " (128, 0),\n", | |
| " (129, 1),\n", | |
| " (130, 1),\n", | |
| " (131, 1),\n", | |
| " (132, 0),\n", | |
| " (133, 0),\n", | |
| " (134, 1),\n", | |
| " (135, 1),\n", | |
| " (136, 1),\n", | |
| " (137, 1),\n", | |
| " (138, 0),\n", | |
| " (139, 0),\n", | |
| " (140, 1),\n", | |
| " (141, 0),\n", | |
| " (142, 1),\n", | |
| " (143, 0),\n", | |
| " (144, 1),\n", | |
| " (145, 1),\n", | |
| " (146, 1),\n", | |
| " (147, 0),\n", | |
| " (148, 0),\n", | |
| " (149, 1),\n", | |
| " (150, 1),\n", | |
| " (151, 1),\n", | |
| " (152, 0),\n", | |
| " (153, 1),\n", | |
| " (154, 0),\n", | |
| " (155, 0),\n", | |
| " (156, 0),\n", | |
| " (157, 0),\n", | |
| " (158, 1),\n", | |
| " (159, 0),\n", | |
| " (160, 1),\n", | |
| " (161, 0),\n", | |
| " (162, 1),\n", | |
| " (163, 1),\n", | |
| " (164, 0),\n", | |
| " (165, 0),\n", | |
| " (166, 1),\n", | |
| " (167, 1),\n", | |
| " (168, 0),\n", | |
| " (169, 0),\n", | |
| " (170, 0),\n", | |
| " (171, 1),\n", | |
| " (172, 0),\n", | |
| " (173, 0),\n", | |
| " (174, 1),\n", | |
| " (175, 1),\n", | |
| " (176, 0),\n", | |
| " (177, 1),\n", | |
| " (178, 0),\n", | |
| " (179, 0),\n", | |
| " (180, 1),\n", | |
| " (181, 0),\n", | |
| " (182, 1),\n", | |
| " (183, 1),\n", | |
| " (184, 1),\n", | |
| " (185, 1),\n", | |
| " (186, 1),\n", | |
| " (187, 1),\n", | |
| " (188, 0)]" | |
| ] | |
| } | |
| ], | |
| "prompt_number": 101 | |
| }, | |
| { | |
| "cell_type": "markdown", | |
| "metadata": {}, | |
| "source": [ | |
| "Lets combine both data sets and see whether there is more structure we can exploit." | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "collapsed": false, | |
| "input": [ | |
| "opts_recog_prefix = opts_recog.copy()\n", | |
| "opts_intens_prefix = opts_intens.copy()\n", | |
| "opts_recog_prefix.columns = ['recog_'+col for col in opts_recog.columns]\n", | |
| "opts_intens_prefix.columns = ['intens_'+col for col in opts_intens.columns]\n", | |
| "opts_all = pd.concat([opts_recog_prefix, opts_intens_prefix], axis=1)" | |
| ], | |
| "language": "python", | |
| "metadata": {}, | |
| "outputs": [], | |
| "prompt_number": 103 | |
| }, | |
| { | |
| "cell_type": "code", | |
| "collapsed": false, | |
| "input": [ | |
| "opts_scale = sklearn.preprocessing.scale(opts_all)\n", | |
| "kmeans_all = KMeans(n_clusters=2)\n", | |
| "kmeans_all.fit(opts_scale)" | |
| ], | |
| "language": "python", | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "output_type": "pyout", | |
| "prompt_number": 92, | |
| "text": [ | |
| "KMeans(copy_x=True, init='k-means++', k=None, max_iter=300, n_clusters=2,\n", | |
| " n_init=10, n_jobs=1, precompute_distances=True, random_state=None,\n", | |
| " tol=0.0001, verbose=0)" | |
| ] | |
| } | |
| ], | |
| "prompt_number": 92 | |
| }, | |
| { | |
| "cell_type": "code", | |
| "collapsed": false, | |
| "input": [ | |
| "clusters_all = kmeans.predict(opts_scale)\n", | |
| "colors = np.empty_like(clusters, dtype='S10')\n", | |
| "colors[clusters_all == 1] = 'b'\n", | |
| "colors[clusters_all == 0] = 'r'\n", | |
| "_ = scatter_matrix(opts_all, color=colors, figsize=(16,16))" | |
| ], | |
| "language": "python", | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "output_type": "display_data", | |
| "png": "iVBORw0KGgoAAAANSUhEUgAAA7YAAAO0CAYAAACRMqqTAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsXXd40+XavrPTtE0600UptOxNKSCWLSqIoLiOiqI4OUdR\nP/U4zvEcJ3rcuD0OEAEHCMoQkFVkiGxaSlvo3nslbZKmTfL9cTdNy+xImrbnd19XL6BkPM/vfd9n\nP88rstlsNggQIECAAAECBAgQIECAAAHdFGJ3EyBAgAABAgQIECBAgAABAgR0BIJjK0CAAAECBAgQ\nIECAAAECujUEx1aAAAECBAgQIECAAAECBHRrCI6tAAECBAgQIECAAAECBAjo1hAcWwECBAgQIECA\nAAECBAgQ0K0hOLYCBAgQIECAAAECBAgQIKBbw+2O7aFDhxAbG4tJkybhySefBABoNBpMmzYN06dP\nR2VlpZspFCBAgAABAgQIECBAgAABXRlSdxPQp08fxMXFQS6X46677kJiYiJGjBiBuLg4d5MmQIAA\nAQIECBAgQIAAAQK6Adzu2AYFBTX9XSaTQSKRIDk5GZMnT0ZsbCzeeOONFq8XiUSdTaIAAQIECBAg\nQIAAAQIECOhE2Gy2Nr3e7Y6tHQkJCSgtLcXgwYORlpYGHx8fLFq0CJs2bcKcOXNavLatTHZFiESi\nbs9HT+ABEPjoSugJPAA9g4+ewAMg8NGV0BN4AHoGHz2BB0DgoyuhJ/AA9Aw+egIPQPuSmW7vsQWA\niooKLF68GMuWLQMA+Pj4AABuvPFGJCYmupM0AQIECBAgQIAAAQIECBDQxeF2x7ahoQF33XUX3nnn\nHWi1WhgMBlgsFgDA/v370a9fPzdTKECAAAECBAgQIECAAAECujLc7tiuXbsWR48exTPPPINp06Yh\nISEB48aNw5QpU5Cfn49bbrnF3SQKECBAgAABAgQIECBAgIAuDJGtmxVh96S68e7OR0/gARD46Ero\nCTwAPYOPnsADIPDRldATeAB6Bh89gQdA4KMroSfwAPQMPnoCD0D7+HB7xlaAC2Gz8acroavR01F0\nV3664t7oKHoiT0DP4Kkn8NAe/C/x7W5e3f39l0NXp+9S6M60twf/C/x2R30p0OtedBN+BMe2p6K8\nHHjhBeD//g/IynI3NYDFAnz2GfDQQ8CuXe6mxjlITwceewz417+Aykp3U9N65OcDTz8NPPssUFzs\nbmqcg6Ii8vP00+SvpyA+HvjrX4E33gAMBndT0z7s389z/8EHQH29u6npPGzfDjz4IPDFF5R/PRV2\n2f7gg8DOne6hISUFWLwYePllQKdzDw2XQnIy8MgjwCuvAHq9u6lpGzIygMcfpz1RUeFualyLykrq\n88cfJ989Fd1RXx44QD2ydGnX1yP19cCHH5LeffvcTU3HYbMBa9ZQxv/wQ5d3cJ3q2JaUlCAnJ6fp\npzU4dOgQYmNjMWnSJDz55JMAgLfffhuTJk3CXXfdhYaGhg7RpFb7QSQSnfMjb/FvtdqvQ9/RJXHi\nBJCTA9TWArt3u5saoKAA+PNPwNcX+Oknd1PjHPz2G2A2A5mZQHea3r1/Pw2U4mLg8GF3U+McHD5M\nfioqyF9PwcaNgFxOw/3sWXdT0z6sXw+o1cDx40B2trup6TysXQsEBNAg6ykBpAvBLtv9/IB169xD\nw7ZtdLDT0oDTp91Dw6Xw66/8MzWVTm53wq5dgMnEAHlCgrupcS1OnaI+N5mAHTvcTY3rcOgQUFLS\nvfTlunXUIydOdH09kpsLHDsGaDQ9w941GCjDtFpg61b6FV0YTnFsN27ciP79+6Nv376YMmUK+vTp\ng1mzZrXqvX369EFcXBz27duHkpIS7N27F3v27MG+ffswYsQI/PLLLx2iTa+vBGA756e+xb/5mh6G\nqChApaKyHznS3dQAgYFAr1408MaNczc1zsHo0XRsvbyAPn3cTU3rMXQoIBbTYRo40N3UOAeDBgEy\nGfkaOtTd1DgPMTHMQGk0QHi4u6lpH8aNYwWJVgsEB7ubms7DuHHMjPTuDfj7u5sa16EryPboaDoj\n3t5dUxaPGQMYjTTMe/d2NzVtw4gRQEMD9Vzfvu6mxrXo04d81tcDo0a5mxrXYdAgQCrtXvqyO+mR\noCDSWFbWM+xdDw9g2DBm94cOpW/RheGU4VEjRozA7t27cfXVV+PEiROIi4vDypUrm+6lbS0WLlyI\ncePGoaamBn//+99x/PhxrF69Gu+++66DYJEIL774YtO/p06diqlTp170M3m577ksnvu7zm+y7pTG\n7upqKiQXGVVt5qGujhHCoCAK1C6CDq1FWRkdRLXauUS1A23io6KCa9B4Z3RXQYfWoqoKsFqZOXIz\nnHa+bTZG1r28AE/Pjn9eG+BUHoqKuNc8PDr+eW2E24ZoWK109vz8AIWiwx/XpYeBtFK2u5SH0lJA\nqaRz62K0i4+SEhqEXl6uIaqNaBMPXUjPnQun7ymdjgHrgADnfWYr0Onnu7KSstmJ+tKlPNhslKca\njcv1iFP4MJn4jN1k7zp9LRoaKMMCA5lE6CS0hw+pM75YJpMhICAAVqsVFosF06ZNw+OPP96mz0hI\nSEBpaSl8fHwgbtwEarUaVVVV5732pZdecgbZPR8ajbspaAmFAggJcTcVzkUnKz+noQs4f05HF3PS\nnQKRiIqxO0Mk6nnnvjUQi/93+O4Ksj0w0L3ffzlote6moP3ornquPeiCzrtL4OvrbgraBpGo62dq\nm0OpdL9MdCakUiA01N1UtApOcWx9fX2h1+sxadIkzJ8/H1qtFl5tiEpWVFRg8eLFTXfa5uXlAQB0\nOh18eqKxKkCAAAECBAgQIECAAAECnAan5Mc3bNgAlUqF999/HzNnzkS/fv2wadOmVr23oaEBd911\nF9555x1otVrExMTg999/BwDs3LkTEyZMcAaJAgQIECBAgAABAgQIECCgh8Ipjq2npyckEglkMhnu\nvfdePPbYY/Bv1td5KefUnqV95plnMG3aNGRkZGDy5MmYNGkSEhIScOONNzqDxO6L2lqOne/q481d\nDZuNUxm763UD9fVcxy4+Ta7VqKzkenTVnr/WwGrlBMwLtDt0WTQ0cB/V1LibkrajOz7vi6GoiNOA\nuzsKCshLT4DRyCvY6urcTUn70N10fU/QAW1BSQmn3fYEfmtquNc6eOuI22Gz8faPsjJ3U9J62Gyc\n6lxe7m5KnAu7jdsFbBOnDI+6HEaPHo0TJ0445bPa2kjcrYdHGY3ASy+xYT46mnemdiF06rCDDRt4\nbYhKBbz4olN7LTqFjw8/5HUnQUG8a1GpdPpXdNp6FBeTh9pa4MYbgXnznPbRnbqn1qzhCHtvb/Lj\nxCFrLuPjk094tZFWS5pdOJ3Q6Tz8+COwZYtLnvel4HQ+EhMB+0DDRx/lxNtOgNP5OHoU+Phj9gI/\n9VSnTEd12bloaOAdsTk5nPT+3HPsyXMRnM6HyUS9VlTE/dQJur5DPDTXATfdBNxwg3OJawM6RWek\np/Mu8YYG4P77gUmTnP4Vnab7amuBf/+bzuD48cDf/ua0j+70AVi7dgHffsvBZv/8p9MmoruUj61b\neResUsl1CAtzydd0+lp8/DFw5Ahtk1decdqAr/bw0XVG0wo4H1VVVCABAbxfrSdECtuL06dpxNfU\nAIWF7qambbDZuH4BAVzP7p6xKiriOnh6AklJ7qam/UhMpJOl03WfrJV9H5WWMmPSnXD6dPd73hdC\nZiavUbPZeG9qd0VaGp2/+vqufy/k5VBTQ6dWq+V9z90l62lHVRXPRGBg99D1hYWAXk8d0BXvDXY2\ncnOZaJBIgDNn3E1Nx1BRQafW3586sDsjJYVOrdHIq2i6A5KT6dTW1vaMqh87upBtIji2XRlBQcA1\n19CIWrDApRHoLo9bbuE1CWPHAoMHu5uatkEk4vpZLFzP7j7ldtAg3q/q6QncfLO7qWk//vIXTnO9\n4gqgf393U9M6LFjAkt4ZM7rfxMXbbut+z/tCuPJK0h8RAVziqrkuj6lTeafqwIFck+4MjYbVI3V1\nwB130NjtTggKAq69ljri7ru7vq4fNIi6uLvrgNYiOhoYPpyVYjNnupuajiEsjPrDZuNe6864/no6\nUyNH8qc74IYbeINDdHT3uUO4NbDbJldf7fbp1W4vRS4sLMTs2bORnJyM2tpaiMViaDQaREdHQyQS\nYd26dfBtNpb8f6oUuQ3Q64G4ON7iEhvbqBdNJmD5cliLS7C97yIUWoNw/fXOuxXBGTykpQEnDxow\nNvV7RCiLgfvvx8GMIJw6RR/QSZUll0RH+LDZgD//ZLB9+vRW3LDU0ACsXo2so2XYHngnhl8dAmfN\nR2sLHyUlwP79QFQUMNInG1i+nI7SPfdcsEy6qgrYuJHy+LrrOPndFXDGnioqIm+DBvFO8Uvi1Ck0\nfLcGv5pnoHrEJMy9QeyUW4M6wofRyGcNqxVzG9bDI+UEcOutwKhRsFiAPXtov0+f7pKK9ia0mweb\nDekfbcHOrWaMvnMwxt09CDU1wO7dvGFi4sTOtdtdXZJVVAQcOAAMiLJg+OkfWMVwxx2wDhmGnTuB\nvDzaXx297aVdfKSnAytWoDY4CrtD5kPtJ8WkSY5rFXNygN9+Y6xw4sSO0dcauOUuXr0e+PprwGBg\nGWlQEKxWnrFdu6hnrr++bXuyTXzYbMDmzcAffwBz56KtAj8+nss4cSIT0Vu3Av36AVOmdOwctZqH\n/Hxg2TIe3vvua3P7g9UK7N3LpPr06Y6322zAjh0dPx9O3VM5OdSFWi2wcGGrBKzFAuzbxwTc9OmX\nr8AsKGBHRlQUY0v2NbwUH1YrsH07E+Vz5rTu9qWCAm65IUP40wSbDVi7Fjh5knpl9OjLf1grcSke\nkpO5D8aPB0aNat3nJSYyQR4b28xXslrZ1pKYyOD0iBHOIb4ZLsbHwYNAQgJjUK2xTY8eBXJ2p2Fq\n4ffwmziEZfudpPwudy7q69mJVVNDsdSmW65sNmD9epzamoezA2Zj4j39XJavcds9tpfDt99+e9H/\n8/Pzw+7duzGvWZ/eiBEjEBcX1xmk9Rj8+CMNXpGIzsewYWBpwIEDSDZFYfXmckiGBaG6GnjiCXdT\nSxgMwDvvAHVZVdiT0QtLJ/yB8jW/44vjt0EqZZXJe++5m8pLIzUV+Owzytq8PGDx4su8IT0d2LUL\nHyUsgE6Uh4OZIYiM7Pwk7scfs/pQLAbeiNiK4Px80jZmDLOx52DdOuD336nEQ0IYrO+qWLqUFd9b\ntwJvvnkZI2DFCpzICcKaozKIM2rRYPHGffd1GqkXRFxco2Nba4SXPhuzh+ppbH3wAQ4doo0uEtG5\ndWJ7s9Ngy8vH0k9lqJP54NDrlYi6Dvj555byafhwd1PpPHz4IY1IcW0t3hQfZOBwxQqcue9trFrF\n6sXycuDvf3cDcd9/D5SU4Ofdodiq0UPk6wu12mHLfvIJaTtwAOjb12XtXu7F4cPs/ZLL6cUvWID4\neI6v0Ok4+mDAACauXYLycgpQPz8e3vHjHZGFy6CwkPLManVUKOfk0JHq06dzAr/YtIlDolJSmGW6\n8so2vf3ECeDLL/l3nQ64807+/cwZNJ2PsjLgmWecS3a7sG4dFXlqKpXcBXThuTh+3MFfTQ19rUvh\nyy+pe+1r2Lfv5clKSgJWr+azao0NZ7PRdiorA7ZtA95+u9m1tfn59Gh8fBiw+OijyxPQQdTXAx98\nQLoOH+bfL3cjaFkZ8P77tDmOHmWLMwAegG3b6ImtWOGYd+BiFBcDX3zBoP6ZM5e3TbOzaWdZD5Yh\nNWAknq1cz6BWF7kL9uhRjhmRSNqRvC8sRMmaPXg/cT6s+0pxvLoflixxGalthlNKkb29vc/76dWr\nF+bNm4eMjAwMv4QVo1AozrurNjk5GZMnT8bzzz9/wfe89NJLTT979uxxBgvdFzYbrar8PMBqafl/\nWi2gVMLDUgOx2gv19Wxx6zTk57P/xmK59OtUKogkEsBqhTyyF2QyZq00Xpd5X2ejuprhugtMNhaJ\nLhGIs/fjAexr8fKC2lYNo4cf5HIXV83V1JDm6urz6LX/Kerbh16SUsk905zeRnh5MdksFjttJkD7\nYTKRp4tMFRSJHORfNjgaFQUPYxnEMgksEsVllW1nwNMTgLkOMBjg6Sliv0qz0t3m/HVJaDRQewOG\nWkDh6wG5zEaaLRagshKiym462fxcZGYCZ85A1Fj9I1IoeFB0OqB/f3h4ABJYYK6ztS0a7kz060d5\nJZNA1Dz71OioaNQ2mEyATMYq8S6P8nKefaOx5e9ttovrmdBQClmrtYUnaP+VVOpimeblRdmank4v\nxi6ULiBnz4Vdr9hfplZTVEulLqjWyMujB2W1tvx9374U/kqlIwLbCtovBw8PGtVmcyfbJUDT2T2P\nh8hIPmAPD0cK2Qm8Nkd71rA9z+qius/Li17uOXrlPOTkMM167n5oB8Ri6jWDgRn7DlV8qdV8CFVV\n/NBO6q2122pGY+uym/bnb/NWA0YD/1FW5pTn6Qx4eHBdLJbLBxkAcPOdOkUPX6OBSO0NmEywqdVd\nrnPCKaXIL7zwAsLDw3HHHXcAAH744Qekp6dj9OjR+Pzzz1vlfE6bNg27du2CWCxGVVUVfHx8sGjR\nIsyePRtz5sxxECyUIjtQU8PJhJs3wxA+ALsH/BW+d8zElVc2E2pFRYBOhyRzP1RUiTFmTKMSz8tj\npE6hAB5/vF0TSi/JQ04OJ6OZzawzuu22C74sPZ2lVjFhhegdYAAiI5GVLYLho6/Qb9snkEeEAF99\n5dIoV6vWwmwG/vEPNsb36cNwv0jUFIEsLmZp2HmlyCkpDLlrNMC0aUzFRUWhasIsxJsGICJS6rSo\n+3l8WK2ctJmTQ4PktdeavOjSUpbr9usHDB9qZU14Xh5DjHl5rHd65pkma9dsZoTPy4vZNlcJslat\nxXvvsYxKowFef/08TV9UxBKsgQMv08JSVwe89x5sR44gY8p9KI6ZjZisnyDfvxuYPZv71pV8XATW\nbdtx7LEVEMtEGO2dDnF4L+DZZ4GYGFgsLOcymbidumQpMoCKjCrkf7QOfbP3wEvRgBqVFnvKhsK3\nrghXRhZDtOS1ZikE18Il5a+JiSw3MRhQbAnAAdsEDFg8E8NGSljnHxUF/PknqpZ+g8qAfgh64/+g\n8uvYYrWLj7w84IUXUG+VYN/Uf0HWvw9i/VMgfus/gNWK6nn3It5/Onr1ok3fhO3bmWaPjQXmz3fa\nge/QWtTUUAZXVVEI2VPgDQ3UZZs380Dccw9LLJvTnJfH8x4ZCYhEsFpZhnziBEuRW1sa2S4+cnM5\nsbW6mnTddRczg6+8wizuihXsdb4IEhIcpchKJWkODaXs7gha8JCVBbz6KgX9TTe1LAWxD0nz9OQX\nb9nCVI892jluHHDvvRfNQlut1DV6/fmluikp1EVjxrR/wHub99SpU8zyWa0srW7eJ29t1IVqNWtf\nf/kFeOEFOrmrV19wroHV6ihFnjbt8kGSmhpmeUNCWvqVl+MjKYlzn5psuMugsJCls4MHN44lsVrJ\ny/r1zEQ/8wz7dS4UWU9Lo25taKDt1kpdeCkeSkroJ/fv33pz7vTpxlLk4ToE/fAB5a7NRuXu5cW1\nVCpp54SHt+5DO8BHVhYzsSNHolUtS8eOAXmZZkwq/Rl+67/iwoeGAt995/KypcvtJ5uNtrfRyO0g\nk13mA7/8khvdauWbk5NRGjoCh254A2PnhvS8UuSNGzciISGh6d8PPfQQRo0ahTfffBNvNNUPtB72\nDO6NN96IEydOtHBsBTRDWhpLZmw2qCoLcL1mHxB7zmCD4GAgOBhNLRY6HfDfZZR4Egl/jh5l0wC4\nZxMT+eshQzpgz5SX05BQKKjYz0VdHfDtt4gqLETUPfdwEEsj+oTUASe+Q0WDEtaEfGg2b4PsITfX\nhxqN5MnXl0ZSQwMgk0EkYmUZampY1mMwUFlqtaivBwqW74JPNaCpLaCDHhEBJCTA5+abMaWPizsB\nGhoYzfT1pfVgMjFUum4dAuPjMe/WW4HhI1FXJ8Yp3QAEbvwVEZmZXJsjRyjBBwwAQN3Xxgo01yEr\ni06tTkdj8RzHNjiYtlkT6uuR/9F65CfrMOyJGVANbaz9yskBUlIgioxEVPZuRN0zEfhiMy2OtWtp\n8bphCI34x+8xVh4P1NZCV6WEMXw0/HfshjQmBhJdJaYda6xFnnA/oHRCQ7AL4BfpAz/9QSBUA2zd\nitJxtyE0eTdGDKyDaH86jeP5891NZtuRmkoD12jkOSkrQ1B9IW6KMgAlcsDvL4CfH/R6QP/FJmi0\nPuhrSAFKsgC/QZ1P78mTgM0GmQyYrjgATOoD7CtlbaBcDk1lFiY3L2ffsYO18CdP0vDasQP62JlI\nLg1A795ungmi1/PM+/hQBthRUEALsqSEztX779Nie/hhh8PYq1eLj7JY6FPefDNjEC6FPUuj1Tqm\ngX/zDeVzbi6vslu8mF7LsmVUvgsXNlnOw4dTDOXn8++TJ7uIRru+zslp+X8iUUsPbMMGboT164Hp\n02HYdRCn80MQWpqAsNtiz2vWFosvTvOgQfzpVBQXc/9Lpedn+8TiJp0HgLWnIhH329attP7T0tBw\n251IqBsIb28+milTWv/1Xl7tW8MWfbKtQEgI4xOJifwZqi2HaNMmOu2//85IwrXXXrjvs/l+yMtr\nO7EXgFbb9j7qoUP5Y9p1Ckf+MGNAVhY0MiMjIiNG0MM3mWibOdGxvRjaWv6v0QDoK4e30cazXlfH\n8/X443Ru3ShQRaLWB/RsNiDpiAEW0wAMy9kCsdkE6PUIrMvH9UFHgBUpPBv33deKQTOuh1NKkVUq\nFX788UdYrVZYrVasWbMGysZUgqgNnpHNZoPBYIClsaRo//796NfRsGRPRkQET5lWS+Pe05MCSa+/\neOnMwYN0ZGtqKNQVihah+j172I/xn//wZe3G0KEMz0ZGOrK1ej3vHFuzhmHn339nKHrt2pbvlctR\nMmgSkgo12GGMxc8VUztAiJOg0bA5SKMBHnyQBtbXXzMDa7EwbXvoEAXu5s2A0Yj164Gv4sci/qgZ\n1dDQMywr43o5a4LXpSCXk1aNhg0UajWV1Pr1jHT+3/8BOTlYsYJJ5VdP34QKjzDuncjIrttw98AD\nrDC46aaWNOp03F9r1zLzUF8P1Nai4lAqXv08AB/uGY7Pn051vD40lD9lZTTGvLzId2Ehm9QvG8J0\nEcaOBbRaZHiPwJ/SWGQcrkDqgVJm0XbvptF+8iTPT1fGlVcCpaUo0/TFR39E43htf/xxWEwDZMeO\nC5b0d3l88w0DinFxNIKjo+k8icUtLPT33gN+zJuIU3HlqPMPPs+xcikaGhzPduhQZjTEYocVM2YM\n7+EcMgSYNYuOyrJlNN6/+45Oe0UF9UPv3li6wgcffcQEo17fSTzYbMDOncDnnzsM6+BgeqIaDbOe\ndmi1LJeVy2mtGQx0Xn766aIf/9NP9H9fe40qyOm0x8WR9txcpstiY0mjvQFz+nTKKE/Pxsgo+J6E\nBDrp+/c3fVxiIpNn77zD1kKXYPhw0tS/P52dFSv4kMxmB096PXXdxIl00AcMAGpq8HnubHywzBuv\n7JmI8k9/7PpXLY0bx6CBwcDzey5MJjogAJ+J0UjdEBhIuVVaig0vHsN77wFLlnTt238OHADeeouz\nJv5I9qVeKy/nOopE7J++UCnvqFHMZHt4sGTZzdeaLTs4GB+kzcbKiuthLNHzrJtMjv3p6elW+i6E\ntDTgjZfN+PhtI9bXXcfJ81Ipg1zFxayQaGhwN5kXh/3MnzyJ7Oc+xarUcXj7zFzsGbyIdpNYTJmc\nl8fU+vHjLeSWO+GUlNHq1avx+OOP45FHHgEAXHHFFVi1ahWMRiM+/vjjS763oaEBM2fORHx8PGbO\nnIklS5bgr3/9K7y8vBAZGYlXX321TbSo1X7Q69t6h5L0PAfc29sXOl0X7wXz9aUHevgwI4spKcCj\nj9JZHT8e+OtfKbzS0qgwx45lGE8q5USdRYtofDYrQz58mHtUq+3gVVRyObBwIWw2KuOUn4A7pVsQ\ndGg7D/YNNwAZGTzgHh4UrocOUfAOGIC8+17EqrwC1Hv4YJRnF2h8BDjG/OqrkZsLpD78CfpXHEZY\nqAXi8HAecLmcAYPGCZiWwMeRHzoOK9UD4b1IitHSRBpls2Z1niCeMKHFFM6a42dRvCsTfjU58B4c\nDumnn6LY8z/wsBlQVw+UPvwC/KaGcJ901SszRoy44CTEtA82o+6XHQjWWuHv5UVDsbQU5tibYIQ/\nvEQGFEkaHYyiIgZ5br+dToefH8/Kc89xT4aEuOfKjeJinmOtFqYF/4fvt43AvOQl0JQVcNLK3LnM\n6ADYVzIQh98FZk43Y2hJHB3xyZNdN7K6LbBaGWgAUDPjRlyxORHBdTnQlJdh+elpCJ/QC1fJFehi\nrTmXRlIScOAAbImJKJGHo6zOBtWCh9BXU8Eau8Zglc3GZSwZPAdpQbGIetILgV6d1MCq09ELKi5m\n1m/y5Kayy4On1fjjVQNmeP+JkRNjWH92/DgDQRIJneGgIAZ2ZsxgACk4GMVPS+HtTT/AYOikfsis\nLGDlSu7lwkK23IhEDDx9+SWf9zPPwDZ2HHbuUyJJ82/M+ehviEQmK2PM5nNqq1uitJTHpb6+aZs6\nD7m5DIDIZOzlrKnh3rn/fkdW6Ykn2O7g6ekIzoWFkUeptEXArqqK9q9Uyhic0cglq6tjzNgpCRKF\nAk1T81av5pCtwkLq5UcfZTD011/p+D79NDBrFn4/7oWj+4xIFqvgqTsBk74eNdpI+HcF+XMp5OfT\nYPf2pmM3eDCNnb17+aC3b+fDfu45pM59CjvKbsWgMZ6YNt4G0ZYtQE0NSj0jIG28Avqc8RVdChUV\nPNa5ucCvv0lxxQcfQ/Lc32kPZmUxGJeWRjkwebKjvlapZOD4jz/4uqVLWe7fyTqxoIDxlQOn/OAd\nMwyHs/xwnWcOIrW1fPAnT9JY/e9/GfnpIoiPB9Z/XIA5v78BX1Qi33IzsOwjBuSefZaHOiWF9Ldi\nQFlnIiPL+sQBAAAgAElEQVQD2PCLDTNyl2NY8S6IMjMg0QzDNWf2Y+Xg11E+cz4w9VoKIq2WPBw6\nRB3SRZIhTpFAUVFR2Lx58wX/b+Jl7hCQSqXYuXNni98dO3as3bTQqW3ZP3t5NODcPly9voubXEYj\n8OmnjJZcey03lclEoR0RQcU6eTKjxG+/TUW/Zw/D1C+/TAHe2G9kh8FAp1at5t+dcd6ys4EffqCc\n3FKpxkKZjd+p1dKhGDmSkvfNN2lhbN0KvPsuho9UY9o4I0q2H8RtdSZAdwP7XSwW9im5ccrP8uVA\naJkGyuwGqDVSaDw9Gb1++WVGrLZsAYxGzEt6FR69HoT5mhkYHpABvP4p6dfrHWMNbTZmsPfuZV+r\ni+/Iy1p7BCWeg6GqLUG9yBdaHx/ce3011s35Bn2t6ei/pRSY+6nDqa2qohVlv6+wi06Yqa0FNu9V\n40q9FWerRYgpqYCscchBUGE8bn/pESTH1+GG+wMpiJ98kvvNYGDfnj0DpFBcst/N6UhKoqEeHs5A\n1NmzNLJ8fTFAdwwz542H2hqCvpZMQNoYsIqORkW1BMs+jICfpBrHln+GwepN7MWVyZiN6wxkZnKs\nrr8/jd/mHk91NcvZjUb0PvADKkbdAM8j5SizKHGmvi9+L52OwSXSrqIHW4eDB4GoKJhT0lFWKUa1\nzIYfVkrwqvwLGofffQesWQORry8efRTYskWEMbf6I7ATk7XIzKRD4uPDwM7kyYCXF3Q6brNe8buQ\nlPMbho5MhfTLz1mOKJHQQrfZqEN8fIC//a2pEe6RR+jTREd34vR2Dw86F3V1VEjr1rHUePt2KimF\nAti+HQVh47B6NaBUypBdEIL33guhztuyha81mZglPccgt/9Kq3VBq5tS6Zgyo9fTKZRIGGCw9yvb\ny3u//55ptRtvZDBBq2UmpFm949ix1KN6PVXEwYP0O8ViHrnbb3cy/d7eDBxkZ9NuGDOGDcnBwUxP\nfvUVSo7mYHn+Y1D1C0OdDRh92ygM9itC77vHdO07eO1DClJTGby0O3Jff01vJDOTdolcDpw+jU9/\nC4fJFIFDv9RjUPwXCAWAO+/EzSPHo6Fx0LUTb8txOqZPZ/JdqSRrmfvy0M9i4aaPj+c++/xznrWM\nDAZf1q4l/9dcwzfq9a0b3ewCrFxJlVhfWgW/9G2YJP0TfUdVAjfcSo9XJOKebGuTvAvR0AB88rEV\ng4/ugEdJNjTySoxK/wBYXcyAfN++zJqHhbW/sdyF+OILoLq8AWN37EK1fyF8slMR3NuCaps3JlRv\nw7XaGCComXMwYQIVQ3U1775MS6M8c2OAyynfnJubi8ceewz7G9PQkydPxgcffIBenVl+9b+G5GQa\n6N7e/NMeBdq9mxaMRsM/X32VhrLR6CitbNbP2hwyGfWqXeE7Y5KnlxdtEIMB0I2/GpjkT6Fpn36R\nnU3pe+qUY/xjbi5kERH4S/mnwBgAJ0uB/ySzJkutpjJy4z0ngYHA/pBbUeIdhf5PaBw9Ob17A1dd\nRYN+2zZ4hIdjXs0qYIA/cDKVa6BQtJyKV1lJoy0khBGAq65yaQmsKXY6JIfScDr0WvS6ay60909E\n+NGjeELyEVBvAnLCuQY2G2v0fv6Z0V2LhQrf2Q1eOh0VZ2hohwwimQzIGzoTW2RaqAMVGHd9BJB8\nCigpgeiOOzBrgi9m3WIGTp1knWhxMTV9eDit9htvpEYyGDo3W/vzzzQeT56kgh44kBuspgbSaZPw\nl+EA5iwEToxyTKw2maDsPwheXkDUic0YXrUPorJ0QCJuubeKinjW/PxcQ/uvv3L9iop4fps3YWs0\ndE4OHoQ4KAjRN/QG/Ppgz5ZeyK/vDc8GPTxlZgDNqgJMJjovoaFdI+t8LiZOZHmslzd+V96KDHF/\n+PYJBQ7lUpl7edESu+suDBnid+GeOJOJ6xwW1rrLKNuK3r25d3NyGAAEOG2+JB8BCh+Mz16LgPpC\niO0O8IQJHCKj07EEtraWZyA9vcmxbRo+05kIDmbAqbCQ//78czqHxcXkz2wGJk2Cpye3mV4PRIWZ\ngJwSnpP9+7n3v/2W+/KcYFVQUCuuZmsvtFrSnp9PL9Rg4LkMDeW62KthEhO5X/r1o4N71VUXzDIr\nlS0rrzUaPgqr1UVH237RsVzOfXD4MJ/hrl10hA4dgod/BFQHU6DXBqP/AAme/IcSQB8XEONkJCZy\nAE5oKPXZ7bdTdmVkcG3Uaj7cxjvJgk4yjuJprIAqNQHwFQHJyQicOROPPupuZi4PLy/Ofdq5k6aH\nYnAkcCyMwZTgYJ4n+3ThoiLaImvWUP5qtRx6lpnJSjo3BCwCA7k8PhXpWBy6HuG5fwD6Icw0T5rE\nTKG/P2m3lzXYUVpKml0hZy8BsRjwU9Qio8IHoz2lGFafCGloLG29N9/kAbZYWPlwIcGalsZNN368\nW3pwtVogL1eKs56jEFN+DAgPh2xgFIb1NWOYch+gGk09XVREe8Xezvivf7HFUKOh8z5mzMW/pLaW\n5QRhYa2++qwtcIr1sHDhQsyfPx9r1qwBwNLkhQsXYseOHZd9b2FhIWbPno3k5GTU1tZCLBbj7bff\nxsaNGxEREYFvvvkG0q5o5LgbYWF0amtrGQWyW1HBwVSWVVU0VFavdow+02oZmW8sZTwXMhn1cWoq\nfTVnPPaAAO53ti1KAWUMabZPtxwyhCVQdiMgN5dNISoVeUlP55sLCqh4RozotGmqF8PChcCYMQoE\nBU1AYPMYgX1AyAMPMCqclsbnbb+IUCxmKemMGY732B0a+2XpLt7r0YvGIzFmJMQKGQYOEwFiEZ9n\no8OEkBBaS0ePsvQoN5c0BQU5J9LRHKWlzHLX1DAb3IEhcXI58Nw/JUhLjcGAQWJI/MAGqPp6x+jg\nZcto8J46xe+0358wYAD34muv8ZzcfXfLNXIlhg/ngfP2prGl1TqCVPaAiUrFHr0zZziN22qF6vbb\n8cIL16FihTeivsiAqAaOFgSAkdPPP+ehfu4510zIGTaM+8TT8/weUrGY2amaGu6fxuuZ5oemYawu\nBSFKwOfnCRzwA3CdXnuN+y06Gnjssc41pOrqWP0SGnrxkaMDBwIffgjFkiWYl1+AnEFDMeRJGXCP\nh6OvdcMG7q+LPfNPP+VZV6tZMuzsM/X77zzHHh78bKMR+OwzKI8fx0tGoEydgyB9OsS9+pEfkcgx\nOtxioc5QqTq3J/hCsPfORUdTN0gkpC8ggPupVy8gJgY+nhz0mp9Vj5GbXgf+1TiytHdvZtCVSmZ2\nnnzy/O+wWi9zT1sH0Lcv6XzzTXoXcjlp+ve/aZQvXuyouMrNpQ5spYEXHU0RUV9/wY6MjkOlIs0m\nE/fP0qU0Ul9+mTJpyRJ45+TgX39JRc6s6RhyqcnzXQ3e3pSJNhtL0tauZfo7Lo7/HxzMslatFlAo\n8Oij9DHCpVb4fCXm8xg2zL08tBHz55Nkf38gPNKbyY4//2TJPsD9n5JC5373bkfw6OxZtl+5URbM\nn08V6f9nEcK/aWyGl8kYkF6wgFWIJ05QN379NWeKiMXUN0uXko+nnmr75K0OQCwGnntBhhRdPqKM\nQZCG3O1IeKSk8EVz53JRcnN53uzOd0YGbaGaGpYCrFrl2qsPLoBFi4BTp0QIq5gJ5aqT1I2LFpEm\nlYp67cUXGU2MiaGuTkig7snNpZN7qX4VnY52THk5qwJcMETSKVZ0aWkpFi5c2PTve++9F++//36r\n3uvn54fdu3djXmMGrqSkBHv27MG+ffvw1ltv4ZdffsEtt9ziDDK7JywWnpRzlW9QEA2jmpqWde3e\n3jRYEhMZVVmzhkpVLKaj9cAD/P+6Ov7+b3/joSoqAr78Ev4qFfwffNCpBld4eGNrkf2agH79WLbg\n40Mj8NlnGc1SqWjQK5VUNAMHMpsbFcU+D09PCjOXjIVsPZRKzp9owtGjFKLZ2VwLq5XPz85PXh5L\nZTQahk/Pve8gJoaH/OqrXWvMWywQi8UYMU5Jbf3IRwyJ+vs7JndmZHBvFBdz74WE0FCcPdv5yiE/\nn0JOraax35Hp5yYTAr5eioC0NJZTTZjAZymXc+DHjh2OOxnsQyd69WLE9JFHGJWureUeS0hwjWNr\nz6Y2N2DnzKECU6u5P/LzaXiUl1OBX3EFHe1Vq9jvpNdzzfLzEXQdELRoKvBHY9RUrXZ89qZNDBR5\neNBAcYVjO2UKz7JCceFhaFOmMGgiFtNgKiiAl74Q0ZkHgDwZkHOYBnNMDGldu5ayyGLhs7pIAM7p\nsFrZrpGayozUv//d8rvt91j+978863PnIiQ6GiEyGfDhEsf1IGYzHWOjkbLgQs88O5uvtU/4dbZj\nW1XFfWOxUMa+/jpLYX18oJLL0XugJ2Abzv45+2yF3bvpkMfGUh989RWDWk8/ff69HHV1bHPJzWWE\nr6P7qr6eBmlqKmX7yJF81h98QN0QFkaH6p//JG9ffsk10umo+zw9ERZiRdjWFcDm9dxPCQm8Cigx\nkfrwQk2Qqalsy1Gr+dp2XHfXBJ2OTqpOx0CNRMIgWnU1dYBWyz2RksJWk5QUvraujkGF48cZtC0u\nblWtd/NYhFNQWEj6lUquv68vPeaMDNJdVUV6c3I4MCMnB7j+eoRMmICQb5YA+5XAQw85fy87G/X1\n1AMAcN11DCTbr8AzmUh/Tg6rdwYNAhYsgNfJkxhvtZK/11+njuhW/RNkb2yMjfL1v8foOMXG8uw2\nNFDeWa20F3U66sWcHJbOJyXRtnHTvA2FgqX4iJ4JbPqA9FospDM8nNdMpaXx55lneLbee89xR7HF\nwrPuKsc2L48BZJWKdkRjw7tPsBJXvHUT8FHjgFaNhq109vuR77uPcnfVKsrrF15gJWV2Nis8FAqe\ny+aB+U6CSmWPjw8H0q5gMmDdOjqjlZWcInjsGG3anBzS++mnTD6FhdE+37CBNsyiReePkS4p4f/5\n+VH2dVXH1t/fHytXrsSdd94Jm82GH374AQGtTP8rFAooGvv2bDYbjh49iqmN94rNmDEDq1ev/t91\nbDduZEN8nz7cOOf2lfr4wKbxQWoqlV2/foAoMJANRMXFjoyPnx9gscBqsSHOPAkV3+fj2v7ZUGtE\nNCjnzGE/UkYGHdyyMio4Z45PLy5mFkMqpcK/4QYY0wtwNkuDsJwqBBzZTUPYHiU2mXiwd+0C3niD\nhysiAroJ1+K3dSL4+fHOOBdUMbQZmZ//BmOiFYNqiiHOzqbSsN+knpPDv5eU0ICSSOh0WCw0cmbN\nYlY6MhInpDFIWs3H4PQg6datDCqMGkUBvG0bacnKAnbuRInFD2YzEFRbB9nZsyzzycwknQsWtMyS\nl5cDO3YgD2HYUz8RMWNF7buyYeBAGrI5Oefcz9MOZGayPN/fH9i4EUXKPih591sMUuVCXlnMIEpq\nKvmoraXjevYsFaNWC6hUsA4eirhj3qgYMg/XXsznqK7mswsIaNsGzMykoaBQcB/YS4xEopbnrLCQ\n9BUVAWYzrBAjpTYCqiOZ8PYOwY6iaPQKD0XsnBkQ5eVxXa+6ilHrmBiHQ2a/BqmhwXXj9+vqWB2S\nlsbneG5vb+MkXpsN2J8VjvwTf2KKORuVUk+EVp+BT7iMDow9G21X7Lff3nlOLcDzmZbGfWA3LOwO\nkX0437hxSEywIl58DQasSIIiah4GH18NWVYW5ZW3N+W0SkVn0N54Z7MxIJGTwz334IMsP7/mGtcY\nyDfeyO/09ua679rF4FR2NhASAlu1DmmjboF19O0YYANEVgvXMCAABT/9gf0eHhiTWIGogCzqhptv\nbvn5ycksY1SpKE+ef75j9G7aRONuwAC2YowcSSP74EHKxRMnaATadVltLfdMdLQjy1FQwAqZXr1o\ncL3zDur7D0HyNU+jPKUEBf4TEZt1jn21axdlW34+g3ztDZaWlTEI8McfdEoXLeL+8fOjQRoZyWcf\nE0P5U1IC3HILadZqgZQUnO1zDQ4dGYTgr7MRcUsQ+vfv5KrPXbv4rHNy6MA8/TR1xL593EelpZRL\n27dTLul0zIbX1qIosRQlehUGDT0C+ayrWnxsTg4/YvhwF2WW24qMDK6TRsN9IpdzfaRSBtB37+a+\nLi2lI/TFF3xNbi5QXg7DP5cgtdwXvTy4tL/9xjjojBmdK65ag6oqqnattpHl+jJM37IFEn8fBq4y\nMyknbriBde7btlFXeHkxapKbS6fq998pGzsx41lby6PSu7ej1D7rlB77y2dhtOgohtYVsBLi6FEG\nsuxTuMViLkp1NXXR8eNcmGbDM52O7dt5NurqYDlyHMnB06DRNKr0xESefZkMxiOJ+K1kAuS6clw9\nTAPZoEE8dzIZS3KXL6ctOHo07cKkJN5a0SmT+s5HfX3jPMSUaoQEBdGBf+wx1GYU4zfdBHhWDcGM\nAXWQPP4494fBwAWrruamswfVN2/GeTX7ERH0nJOSGLR3AZzi2C5btgyLFy/Gk43lPldeeSWWL1/e\nrs+qrq6GutGiVKvVqKqqOu81L730UtPfp06d2uQI9zh88gkVYWYmndw77zzvJX/+CXz2GYCGejx6\ndzXGzfTnqES93mFwNpbOJLy+Bcu/0kAkHoHqktN4wO+AYyhA376wbf4VucfLUHj6LILOvo8+695z\nHi/x8Q4laTQCvr742HYjTpWWwHaqCNrasYiIt+HBhRZ4SMwUCikpdAS2bKEzAGDNV5S1Nht9GHfP\nDEhOBt5MuQ2W4izcJVLgWvVBHCvrje/FT2CYJQ13y1+BRKejgszM5M+GDbRcJBIGFd56C6VlInz0\nVANgNeLkSQ+8/baTCd2wgYbX8eMUxOPHo+b4WXyedC3KaubiWvPnsNpE0OvqMdjPj9mQBx9sOSzK\nZqPy++YbWE4mIO8wkDwiCHv3DcDSpe2Yg+DhwTIhZyAsjAK1tBSlV92Ol543wZAai4n+yXjI+weY\nCiuQaQiHyeyNkHG9EBwQwOsMZs/mGVOpED/rOSw7DYiPAHovx5DQFlizhhvQ3rszcmTr6Nu3j8Ga\nxvH5TUPCSksd2VaARkV0NF9nNGJb2Rh8HzceklQNgpTVKNKOgK22D4L0IkQu/xfS9hZAlnUWfgMC\n4FO3l+8dO5afX1PDQ+LU9E4zZGfzXAcG0kE517FtjJinZkjx1SolYJmEL/RRuFn3ESJtPphadBoe\nyrPcOAUFdMAGDXLBNJzLQKnkd27bxgCLQkHBevQoo+wAqg+fwdKCJ2E0ifGGeSZGvViD6f59cZ/V\nitqgSHxRcwfKdL3x0GNXImJoswBkZiYNZICW5vPPu7aU0ceHmVSAPSCennTerr4aKC/HsfoR+PDE\nbKBGjYcfBmJH19EKy8rCh7n3Y5DhGIozqhFakQsPmQy7drGVesoUYG5sOURlZXQEDIaW9322B6Wl\nzARUVLBX7p//5O/t0zXT0hiIKipy3KN6+jTlRmIiS/s8PLjHVSry+sADwIwZWLVShG27JyA+nmS+\n/y3t94cfbiyYGTOGAQtv70tOT74sli1jZjkri9agQsE1yMujR2dvPdm8mbRNn04n8o03AC8vmKRe\neDf7FhTV+SD5yyEYe5px6SNH6H8tWtQJcxL796fTV1bGoMV11/Ghffgh5d3x45QraWlcs8beuMoq\n4OUTc1HT4IEr/+yLv87ikd+8mTZ7djYdk927GZ93cweRY3BIdTXPfOPZxlNPOSZmNjoiqK+nM7d3\nL2VTYiJ+fvoA1lVOR04Ok512Fe7re04Fl5thNjOpdvAgVdugQYCvtw/8JcMRXZlA3jdudLzB05NZ\nkfJyHo6HH+ai2Z9TJw44stmYcLUf/Rde4PCr77/zRj/DdOxpGI33YjZCvWMj6bNX2ahUfLP92j4f\nHz4EqdS1UaKBA2kPKJVYnzwIG1fwK4cMAYqTRmN+1R6MVp3FtqKR+KmyH2wiCVSJ+zB1507KoIIC\nnr20NGZ+X3uNgTI3Y+VKFk1Kqv+K3iVHAaMJDw/eiz354dhaNAw2aTR8FaUYp1IxEBkQQDnRqxef\nh0LBwLc942G3HWUy/vztby6l3ymObZ8+fbBp06YOf45IJIJGo0Fe4711Op0OPvapdc3Q3LHt0ejf\nn9JJLG55IX0zFBUBNqMJSDyF4uL9gDmSUbhFi857rXTOLOBEHaxSGeSRvsAghSNzNHEi9GV10G98\nFlHWAyjdmQtTqR7KQCdFjAYOpKKvrmYo98knkVP5CtQxMfizOhoYMwYlVitiR0ow5tEJNAilUiqc\nZs6VXO5oV5VK4bho3U2TGEtLgfrwKMg8PVFQEQNE6LGq8k5YRw5FXHIorg0ejhDpaR7spUsZjrTf\nVC6XU6C9+y4kNTKI/5wHs00O+aQIAE5O2doH39jvPQ4Px8mN5Uj8uQ5qSynKJYEIC7KgMrRX03VF\n6N2bmkWhYDDi3XcphNVqwGKBSCyBsUHszsfvgFrNEt6aGlRV+MOwXg+VPAvZmVZgnBIZZd6osAFS\ncwMO+F6Pm8OLGN1NT6dy8fKC9JaXIYIfrA1WyGQXCcHL5VxL+7UcrUV0NI0kDw+HsN+3j2WYOh0z\nY/PmUUHffjszmCUlKFENQ9DRoyiyekNq0MOSkw+JwQApBqKiQY3y/Az426TIzRXBJwQOmmbPZhmz\nl5frSpkKCuhomM0Mpm3bxuyrtzcd87feAgoLIR02FwGHTSgTBeJs3RWweqlhrFVBBzU8goIcTtKz\nz5Jed0yKnDnTEWxYsIAGPkCnvbgY4vJSSOrrYPIIgdUsgur0EeQoK4D7o3Fm4mIc2zwQHr4KbNgl\nx2PN4whSKYWVG0rKoFbzrDc0UOZmZ6PYPwZWX3+IrBYUZZqBX15koMvPD/KIENRl+UAc4A/xYE/U\ne/pg1SraLD+vqcfkX9+Cb048lc7kyZzG3xFIJFzrESP4Jc0DGnffTVlp7+myo7aWDqlIxFLi+nqm\npxQK/u7334GkJBjlT8DTcwisVh5xiYRxikmTGmeajB1LY14m65jnKJeTxjFjSPPWrQwo3XMPn/t/\n/8vP/8c/eF4WL2bQpLEUTzTrRkgnXgFdqhSiYp7dLVv41sxMxo1iY9tPXqswfjxlz+HDjkx8Vhad\n8rAwyqmVKyn37PIrPBy6/mNgGNYHXp4i5NbzGep0jFUEBFC1jRhBv6krVFbB15eOQ0UFqyY++4wb\n4/vvWRGWk8PXjRlDIyM7mzrQ1xc2lSdyK1QoryCP9o6CwMCuN+fOZOLyVVVRbWdmAr7RMkgWPQQE\nFjAbu3w5X/j111wo+y0ZCxaw3F+hcMiOF15g9vBSw4CcBJuNy6DRkP4jR5hcrzNLkOE5FKOj9BA/\n3Q/4fRNtycZho/D3d5T42myOtrfhw9kD6qqBnLGxzEAqFMhdGQiFgjbh3r1AZC9vrM6djNH9UyDz\nVwMeKgTUF0JRXkD7PCSE0baff+aCjR/vGNzpZoMqJ4eiILPYH+WB1yJQWoFtKTnwrjkNq8UKucgI\n1eHdwD2rKSNee410l5dTzz33HGVjr148MEuXksd77+2UVkKnHMkFCxbgww8/bHJCKysr8dRTT2HZ\nsmVt+hybzYaYmBh8+umn+Pvf/46dO3digivLCLo67rmHKUEfH8BmQ20tgyJBQY3Bcr0eM6x/oCAp\nDbaKCkwZXwocrQBGjoTl5VdwICMUP/d/Bp7Banh5AQsWiPD4M0pUZVVh4ualQE5jzccrrwAiEVS9\n/AG5DNUmHwTXZUP+8j+At9+6+DCVtiAigo5ReTkss+dileEWVOlEUKWkY15UNqqNwSjxjELx39+C\n8XQ6IPcAbIDHokXMrDXi1luBkGAbfLJOYuh3PwFZmRReTz7ZaVfR1NYyilhTQ3t+yjQxqhPM0B30\nwt+T7sVEyXqIS9fhbMgUnJ33L6h7l8Jzxwbgxx/5ZqORimLUKAri9HT4+fvj2YBKpEoGYWxdMZDz\ntHOvnZk/n4a7RtMk5MPS9mJeXRpUVgPypBHYGnwzZv5Fg6x3/o3QYCvkRiONAJWKCnDvXhQHDkP6\nQRvEM+9EX6+DuCp9A4bNHQ0Pj+nOo7W9UCoBpRKRvkDoQDWOF4zCzcotsJRXIjndF2vNDyJEUoq5\ndYXAzl1UiHFxVChGI4bJz+KxwExU70vAxGAxcMNz59cj33YbS019fdtWnjVsGEPRYrHDkD5xgk7d\nyZPcTFYrjePCQjqGIhFuO/0iYkqlKPUIx+D6RPw24G/oJ86EtnoBvqq/FSH6DBR4aeGrtAKiciTX\nhOPHl4Bhw0S4+eYA1+rHs2eZqigoYMYtM7OprB5JSfy7vz8iV7yIf9Q3oLzeG/54CJ8aFuB+65cI\nqquFcuRkaGaMZa+zVstnkJZGmdfJ0ywBoLDAhk+2TEBYQwjuMi+Hd2QkMHw4vPPy8Kx0I5JPmlDs\n2RceVQWY6fMH8FkNBgw9htjaufjT55YWJfmbNwM7d/bGTWOfwuSofNeWxAHcS7m5lBseHrDNvQHl\nB1NxMiMCH9oWI0BchYfuACbs+h0NGWZclVdJJyswEDh6FI8NNeHYlNsQ4TkNiiObYFu5DLFqDfaX\njkRYQB28KsuY1bPZaFRmZ3esGsDPj31x6eks1W3u/Ywbx2CoTOYIdPz0E0tgJRKURY5DSpI3ok37\noSrIoINiv3x90CDcdtVOVIUOafLLDAbHPMImXCKFqNPR79HpaINetCvnvvu4d0NC6MVNn85MhY8P\n05SennxWK1bwjBw8yA81m4HiYij+iMOzj27HoekzcTKJ8azqan5ERMT5Lc7norCQiR6FgreFtTsr\n+uijDOZIJKQ1PJxVGFVVtNT1eq6FUklD1mxGyBcvYXGOD46E34wZ/7oOANkND+c2nD2bgYSBA6l2\nzp6lD9m/P6uxv/uO7dC3396JGU+Nhj9qtSNL+dtvJNhk4t5OTaWMHjeOuvqBByDauBF3++xAvqwv\ngCDo9XzJHXc4qsZOneJahIW1aLfsFNhHSMycyXjmxIksalAqKUbvvRcYEesNFHg5Bv4NG8ZqkvJy\nbhG7PNEAACAASURBVJwJE/jmb75xXIDr50cv57ffXO7Y6vXcep6e3M/XX8+CwtraxiH7NjMGeedD\n9sUqrpWXlyPYUlJCJ/ypp3hwEhJ4LuPjqZ8uchOIU9DYN/aXv7CrQqXiMbfo6nGLZw7O1oYCRw7j\nYc+9iFLmI8SURftWr2ffs90hTEpi1cqYMdxAbqxvX7CAZ3XIECD+pA2+VVVQhAdiTG0m+uoTYIYc\nEWcSAW8Rz87x48Do0Ti+owxbTLMx7FQUbrgBEP3wPVtMiou5v379tfs4tgkJCS0yq76+vjh+/Hir\n3tvQ0ICZM2ciPj4eM2fOxJIlSzB58mRMmjQJERERTeXN/5OwlzLl5gI334xly3hglErglX+YoH77\nFdRs2YO7aoqhkZmAk6FA1M3Affch53gFDMZSWPL24mfFdZgSXYMNv3jjr38TAb3rgC11gFjq6E8A\nIB01DP1uHAZs2ghpv74Q66odI7kBRuq//ZZKu6218UeOUPJOnYq8+c9i91ueCNBUQioz4vm0/0Ne\nfRCSrQPg31CMBosIEqMRiR5jkWWcg2vNDVDr9BCpveHhAVzdJxVY9T4/MyiICjc3l4rKlSgvB9au\nxdGC/jiQOhVypQRxcZwrkZkSgpeOT8BQ61GE68+gnzgT/fdugXW/BMlhfRDz2CQqSZuNknvAACA9\nHQ31Fpga5Cgo8kbt8Chcd3Y1EDqUTtD77zsvctdYOms2A4f3k4RRA+QIlsQhTjQFQxQZiCuSQ7rk\nFdQaq2DMyoS8l5rGmZcXcOYMbPn5SD/rj1Mj5uPM6WFYIvkRs8fWw3ZoDXQ3T4enp0MWnzpFv23y\n5PNnB7QLtbWMwAKXvMfYYmlsFz9agedr/4WIjD0o97RBUW9AqKgYebIoTB1xCFifxb2tUNCx7NUL\nZkgRffZ7SE0ZwKY6NAyMxG/hD8BkYvuLSgUq0auvbh8P5zrJs2bRmPTyomFhP4uDBwP19bAlJEDR\nYMXQcDVE+duxXjQPmvh9yDdZUXXNa5DIBiLEuwYiXR5sfn1hsCiw86NklGknYdMmJqVcqc9x9dVU\nxn368FnaB9QdOEBeDIam/eunqkNhvhITJHEos0rQ15aBDF0ArN8cw8RXnobJBIhrG6BYx7tgUVHB\nYRXXXONCBhphtbJ2srwcv+TPxS+yW/Fa+QMokASg4A85TGX+6FWai9CABMwWZwDVJsBcB+iUgNkM\nr+AcLBgTj1mLb2l63rW19MMCA4Flh4ch5t5hrk1EWywsb83NbRqAVbR6J04fs6C62AygBKUSOT79\nyIIX/FYCEgk2fjoIV6gDMSD1D8DXFwGSKlwbXQ4otECaL0QA7pmQiikxIxEW6glZ3Dzghzo6ZkFB\nFw68VVbSOpVIGJi93ECh/v0dZcbnQqPhXtq+nUbRU08BZWWwmurwrWkRknrPRO/0OMisAUi2DMHA\nshyEeXkAOTkIGB+Ff8xmEceAAfTHFyy4cFuzwcBiA4WC200kYsFKQmPV5tatlPEXhFrdMnOtUDCi\nkZzMKo34eBrdBgO9VLGYBrgdhYXo/eqD6H399Qi4YSmOHPFGaio/9sorScvp08xaTZzoqJo2m3nE\ndu+m31Ffz4Rru5LoFgtbVTIyWO0VFcW/T55Mg7W83HG/UH09PVSlEtZD8YiQaOCbmwip4UoAPkhP\np7/k4UG/8KqrHCps5UquQ3o6AwxxcfSbVq26uGNrMPCr2x2ztlo5PC0piSXWI0fSXpgwgUEd+5wJ\nnY5rIxbzSz09SeAdd5Dww4cRptXiw4dC8a30fmzeTLFdXc23VFdze9qH3mZlMRk3aRJjlvZrmV2B\n6mpefuHjw/iz1UrTyP7cwsK4nFWJeZj52xPwOnOcZ06pZKazspILs3cvvTN7kNVm43rX1HAz2mz8\ngi1bGOB1csuIPe4jkTAYolLxDEokgL7KgkfM/8GA7JOwmE6gWqSA1NoAT2k9ha19UnJjvysyMqhD\nrrmmdZdv19SQL2/vduv3sDB2b917L4+6RKTEzFFWJLydB5vZilENu2GVe0AcKONzHzaMbSL5+Siw\nBiHuzBhMHuiD8GPHKDNCQlr3xTodaff1dVrDd2SkozOk8rttKH3vW+Qm6XG8wRe+YikGSlJRJgmF\nypQNSV0p8MILMEtV+KjmXfiMlGPdOmDqlWb4bNvGxUxPp//Q/N4yAMd/PIvTu4owbWFf9JrgvJk+\nTjlqNpsNFRUV8Gvs9K6oqIDFYmkdAVIpdu7c2eJ348aNwzPPPOMM0ro3lErg8ceb/qlbR0FlsQBF\nZ3VI+bUUeSUjEWHJRJSmFL39/YENG5BX4YHfdBOghAnp5T6Y6vcbbj/4PbwDpiE9fSFKS4Mw+uHH\noMg6w+YpO2QyKL78BHlvXgHliUPwnTYRkuaHa8MGKmyzuW19YgYDQ5lKJZCUBP//fAz/EgWKT5Vg\ngDEeJ073Q6lRDXN9DeJk49ELp1AkDsOXtgdw8N/1KHnhU1wXcgKR/7wTtbHXICVZhd5mDQJ9fYHy\nchijY3E8uxf86l183+LPPwMHDyKoPBVyDIdFpm0a8hQQpkDwqBCEHipCL3Eh8kvkSKkPg96igiHf\nHyO27IR8yBDU5FWiWDUUgf59UbEtCdLDOfi34TlUDpwAdb0P7u3jCYXeiDFiI1yRf960iaViIrMJ\nN5cGo3fkXIQV52KHcg5UagXkVbXwNZfAJhLBkF+BM18ehiJIg6hoPyhGjcJhn3/juG4A/NVmSHz6\nwpKdiV8qJ2HDTfmInBiG559nMNU+af/IEbZqddg/j4uj82Fvrp4794Iv27OHdnV6qhWJVRqES2Tw\nMuQiDN6o1EQgsF8QsgvlKOp9G0ZYN0Ilq4d1wEBYjsfj6H2fId5wJcaabRgbWYFDuaFYvZf8pKYC\nTzxBGyA1lfss0M9CI8/Xt333zfXvz7TFnj3MjNidOA8PICwM2/KGwZCUhT7WcowcHYw9yTORXSGD\nh6UGAZXlGCJKhlKegUplKHYWj8MhDxUsVwyErtRx3XN2NoOlw4c7p/CiBSIjudAAS/mKivil33wD\nyGTImfUwCktFMJ/YiBqDDd9jJoz1cphEYujhDa2tFOnFodCv0WH5chEmZX6Du7ESvsYiEvvZZ7Tm\nXV2anJgI8/LVOFkZAZGPFr3kIUhQxGBZ3X0oNQaiKDkC0V5nEFJWiVeDPoFv6hFAJoNNp4fNywui\n/AKU3HoFDLWOj1QqmW3IyKCf4PIqZKORTm1AABe9rg61/hFAw5+osXggC71RYgmCr86AfxbdgRp4\nIVBRjT8s4/GGbxHOeo5GqE8QwufMoaF44gRgs0E2fRL6K6uBzFxmI2fPdkz7vdCk1Lg4emEAH8D1\n17efJ3uppFrNUreyMsBkgk0igwJ1kAwZjOKcIfiu9kaUmb2hkZvxjuwlKL1lTWm00FAgbmcDBlf/\nif77koFB8/iM6uqQtTMNlcoQnC3zw8aNFC1SKe375GTalhpNGwc/Z2XRsfX0pLGZnk66g4P5uzFj\n+MGnT/P19kFle/ci9Np0aEwhWFS1DL9Wzsb6dUNx+LAEIhH1/sGDbL+rqOCA3oICxnLNZv5/u4NY\nZ8/SswfYBzx0KPu0+/dnKjAggNml8HAaqUolsG0brFYbYKuHsq4K4tXLkJ92Jd789QocOULfPSGB\ndInFDoe8vJziu29f/llezq/bu5d/Nh9OnZBA3aFSsTW9tXZ+C+TkUOnpdAyYXXcdy8KHDqXsio9n\noNQ+SVyjocyxWhmVOnPGcc1JURFEx45h8ozR2OMVjfJyfoXd/5NIqB+MRm4BvZ7HaOtWPrYlSzpW\n9W6zMQZrNnMb2R1l+6DdoiJupaQktngXFvII1dXxPaMsxYg8AwyUav6fvfOOj7q+//jzRu6Su4zL\n3pMkLNkgG5GhgODAUcRBwb3nT61Vi1WrpY5qXWhd1aq1Km5Bluy9Z0hCJtnzLjdz4/fHO0dAQgjh\nkgDl9XjkQUgud5/397Pe8/VmV140UeGBBMf0QlnpIlRtRFFaKqRMU6eKt8FgkAlJSJA1W1QkxG1O\np3iMLrignZPSMqKj5RlWVcmS3LJFjEWTCYyVNlSmQsoi4khy7Mau1FIQ0JcGlYFkCunh2AmjRtGw\nMxfLL6vREUBgQIDoCQUF4t1qTQn59luZKI+n3c2h3W5JWsrJkTWQmali36hbqPq4iO55C6khDGWj\nm1JXNxJ/+JHAd18BtZrqnFqeKrqLKncoi3528tHMxSiUSmw22QPR0SfY2198IToEyJodOLBd428J\nVivUb8nmUIETo13Dr54xjAjPwh2WRpjaSJJGDdVVUFqKxw6GgFyMi0tQRBZTVTcKw4gR4py87jrx\nDjqdskAzM6nMN/OPJypQKBTs3JzF37Yk+CyQ4xPD9qGHHmL48OFcc801eDwe/vvf//JHr7l/Dj7D\nTTdJJD85GVZsj2S/dRq9PWtZ4n8n3WKcPB3xNdjtvOu+ia8VQ3D7aZkYvoc/9/mSxpBwNCve59Gv\nIzA7/Rl8XXfu+duxHresF7/n+Y+641L14eqrenLpkelhiYmySDWaltt7HA9+fnJhVFZCdDSBBjVP\nP63gpZeiObBrNM9vdTCt8SuyFN3RRIUzz/gcyxtHYVPoCCvYSaZuLXnqCNKWLuXVzRexf38CIa7H\neT78QQLjGtlVEMwb7/mj0Qhz/alwgbSKiAhwOukRXsXcG+qxJUYd5k8JCoI/DVuEq2QresJZFjme\n+gNl/LP6KuKUdYQ15jI4dCuP7buc2kOpzL5zERO2vcwy/0msNo/EfkBPr8pC1sSlsC94BJO6BXJD\nB+SRms1yedSYVPwzfwJhqsFcMb6A6VPiCF/6b0rSR7BnT28GVy9iYW1/9jT2RGNXkjxuPDNuCeKW\nHpn8dZ6C7Gwt341+glTXVyi/+4FLlev40fkEpb9PJTxcLl2rVe5Gn8Cb16VUtppvZ7WKfGkDggnP\n1ZNcX4/ariYyKZZb9OvRvvQCz92nx1pSy/lxPbnodwbcz8/D6UnBaHKwV9WNGnUwERN1qMePw/Ga\nRJ9rakDnNKLYvIlCVzzfZvZg3pCvUP30g2hvc+e2j+VWpZKwxm+QNeYWXvzQgiMwDGV8Iu/NXE/m\nvB2UFUehw4IDNaM9KzjgN4jFuivYGX8JGpWClHK4Pe1nend3Yq2/mGee0WCzSYDirrtOfngnhHeN\neomj3G7Q66mrcvL5ux7sa7awruEa1KGB2GPCUVVVEB5spMDcC7OtmBzNeVif3Ul2fgw2WzqHQm/j\nz8qn0cYa5KDrqNqoI+Hnx+cFw1lU0hs/jZIHQ96ltMTIP7gVizKIELUDizIIh9uM0mEXBu3oGA4d\ngi8UM+hlzWb7h3ZyV5u5/jY9Y8fKtD76qDjkO6gH/dEIDJQIypIlQjJoNJKaqWbZBXP4fl86TmsM\n9bluXFZYwwj8aERvtzFMW8YniuvZWN0X3aFknrPoiIjUSYsdEK34iSdEsU1Pl+9b29QxMc3CtsfZ\ncyT8/OTM3bBBNPUpU+Cnn1DFxHBJ/wpiwjcT+vAcrG/o0UVGYjNacKUPhjCtGJGIY2HPdicHzGmE\n1x/k6eAvUNx1JxV/fpvi/2yhQWVg2+QX8Hh0KBRiaBUXy59XVYlebzSexJgNBrE0srLEAHQ6my2f\n556TN168WFI7q6rEEiopgfBwuk9M5u2l8yjYvZEPjFdSud/E/iwDer3o2t6uf9nZh/mMOHhQorT3\n3HMKj9vlEqG9l4NWK4de//5y1g4eLP/+6U+SsVVcDBddhGrpSgLqrQQE2NDX7ifv01Icin5UVgYc\nzup96imxLVUqeRs/P8k+T02VJVZQAK+/Lh8XFyck5N4jZe1auUdqa8XQaZcNFRIib7J1azMRWV6e\nsM8GBsqHGgzyGoNB5EtNFeLO778XXcdsFs9gZSV4PKT++AaXX/w6H30RwMKF8vIRIyTqvHSpHIE1\nNeKrfO89mfqCAslabyvXYEvwdhUECXxNnizfazSyLX/+WZ7lzz+LL8ibhhwbK3Z5vrs3B5MvZKVr\nJptN3XEtL2OW4mMs6pH0b9hEmitX1u1tt8kkNDTI80pOFsEuvljeqKJCrC0fh6D9/Zs7Dnq7TCUk\nyDYxe/Rs7zGDCYol/DrkL2xu7MeWulRCd65EZ6rgDzEf0L20jM1l8dj8h5NiyyI1VId2wQIhCbv2\n2uYH1hK0Wlmw0K47p6hIOsZVVor+2dAg4//wIwVDrr2LXz8KI758G4XuRBbrbmbapzruNxhg+XJU\nMRGUlSey19YNndXC2o3LGPnss3yc8hyrN/szqGoR11/rJOzaSS17pwMCmutyfdyW6cEHYddPl3O1\nqRijx591ypEYhgxjxl/6kZymQvX+3+HDD/HU17PJMBGqzBygF4ZqG9t/PET6fbeI4ygoSOZh/nxZ\nlJMnoxo7HbXag92u8HkVoc9qbAcNGsTypibXCxYsoFcn0oN3DNQojjAsgoJCMRprOuejzWZJcHc6\nRUlpSueKiRHjFmDrVgXF51/J4h3TuDPoI2b22Cne9NRUrG+n0mttMTU2N3OGZxE8aCB89BFlliDu\nK32MfP/uuL+MhrlSA1RbC/XlNpL1VdTsr6BRmYTGZaM8zwIckUo2aZKc4nr9ydV/+vmJlzQnR7zA\nKhVBH7yG5/1AAkJ7o4gNw1oXR19NOYOT9/GnsNdJa2ikPM/Go3WvkmTcTXSIBvPol9j3n6Y2kPYQ\nzLpIAmMUaDflocmU+9lq9d00HIOpU8W41+tJ7p4O3uXh8cBnn6H772dyoiUkMOG2Eby9YQARi81E\n6uuounAg7+6dQrJuGVOMC7ng54WE+9UwsL6G/ppxlAckMyFmNzGNJWTHX4HRN1tTYDRKnYNSyeVT\nZqBSBVJS4sdWXRpKu4n6CweQNkcHvx9DSGkpPf/wB3J2DiK8rpIJnmWUuRMpjHuY8kQDlflySael\nwQ8L1dyrrESj1+Aw2UkPriAuLhWNRrgDsrJEf/CJfT5qVLNx26fPsb+vqoLXXmO8xYNlzAModf5M\nrQrDL+tiOHSIhGA9Cf3DyTWAI6U7AdF1VCb35918PUHD4xi59R9Uu4MYZV1MmMGDfr2NITdcwHXX\npWEySXZn0i/vEn1oKwP9tHwX8gye3INyG1utcqOdyLC12cS7ajKJEdJK78yGpF44zhMFdkCsB2Nk\nOknKn5gevpfyBj0jdduJshpJtn1PZJgTRY8J2NWBNOYWoq9ZSUhOASa3HodjHE6nXLw+Q06OZC/0\n7i3KwpETrFTCiBE4KiDopc+pVoeg0KgJjA0ipl8S1vU13Gj5L+d5NuHUgDMqi79HDCf8QCkh1FFq\nNVD3/EtED05sJvfpaPToQfWwQDR7VDSWVKEMNRCkraSbfzn7lJE8MHk3kzfMJVxlJMTfDtOmYal1\nsErZm7EVK9FWlRJkPESUsoLy8mbSPn//jmkffFx4CbBcLrj8clRbtzJLG0jVoE+pKEzAEOFBZVIS\nbG2gr2cH5ao4Zod9Q40zhA2pv8MeEYrZ/JvSZrNZ9lZYmEQjXS5Z6zpdy0WEw4eL0/PIMF17oVKJ\nJbBnjyjSRqNoWjt3krLmM1J2/wSvvsoD31zAytVKhnWvRW+7QR56k/FdUAAOlwKNSkVBTRBmrYZA\ngNxczCoDgc56MrQFTLo2Hrc+mMhICShs2ybb2dtyuM0IC5N03n/8Q5Tl0FB5o9tuE2vn6afFevb2\nTdVqm4l5QkMJj1Rx0D+QdEs+Nqc/Dn8Dfn5y/kye3JymaTCIwZSUJFeOVydvFxYskJBfXZ0Yei6X\n1Au/9JLsv1tvlehcYKBYqh4PbN2KdtMm/Jw23OZaPHkHSU3P4PqJLg6WiIqgVosNGRgoxq2XR80b\ntQwKEsPF4ZDXm0xH8+Z4O7ZERJxCJlZoqDykpCQ5TAMCjt6UXlktFsklTkiQdf2HP0jYfvFisbaG\nDcMcGg8VFeiTIkCtxksI623c4XCIbFaryHPNNVKOkJsr2+VUW/iZmzJCFIpjnS3BwfJV0vTs9Xrp\n/LV/vyytWbOgpMSffv3u4s1nawj4dR915kYMrkLig5SEJIdCWJMD44cfZNBeosRvvxWr3c9PIrnL\nl4slfzLBjTZg+XJ5Ti6XGON+fqI/lJeLKrzeMImRD00iLQbC9x4i5vUFbFcH4dIGYApPwRMXx5bC\nEVwU+AohThOqkhqoLpeU+oKC1j982jRZaDpdc6u2k8D69c1l6H37ymPLyYEAVwNDSr+nx/UO5m54\niMTtP3Cn+3UKDtwO2hwICMAQFsBU034s2f6EKWupD4iBsh2YFVWcV5/P4JzPUH+jgDCFTOpvceWV\n8sCCg33bAcHhYMdqGwadkwClDZMmkBuDvkMTPp4+/ZvSne+4A4YPx/P5f3B+V0dxYA90ZisuhR89\ndnwO/1cmHvWiIknpP3hQDq7cXMJmBfHomynkrK1g8PTuPiXM8pn2XFNTg16vZ/bs2VRWVpKXl0eq\nt5XMSSI/P5+hQ4fSq1cvtFotC71pMp0KJ9B8W5hMnchStmqV7HKFQg6P3/YSRA6qsDDocckehq1d\niVFp4NGXIsnuNpqZMyGhdwi99IX0uXwG1En+ZFBBFY5Dlbi1Os7LbITdu6nNreH5n/qi3rCa0VHZ\njBsHF5mKqQtK4rKbfnNwKZXtv2EiIpo1prw8eO89bvKP5NuKC0m/dTyTtu1G4Xbhio5jeD8da9ap\nGOSfTf/VmwkJbMA/PIHHF46gvh6sFg+3Tq4iypgKhQUkzb2J0UVyJx9veA0NktZUUSH77HhlXa1C\nrW6ZQKG6WurAevaUm+TBB4np358nRphZ4MxmfVYofi4bkyI3g/InFBoXMY5KzHZ/NmpHcyB0GP3C\nirgp6gc2m3swtm4Bl142FfBR7uiSJbKm3G6CY2O57rpLcDhgQVIA9fUBXO5tE+10Sk1tfj5pBhUq\nv1JqnEGk6CtYbwxk1qymjgk6J+asMnr0ieTDglk4w85j+vg8HvxHv8MOw9TU5k5SPoFC0XozxI0b\nIT+fAJWKawYuFA1jkTDbOqZcxorK3hij+jA5FmZcpyInJ5ygIMkELijogzLzRuptfpRnm7iXtwjf\nvxXlM09z+ZNPob67G3v2wKgACwqDhsoKFzff6ECdOUM8/AkJbSOS2rJFUv68hDjetiwtoF8/uO/O\nRkp3VjCj22aCPlmA29lIZUws/Sd3J8odwisfTafa5MedaVt5IuMLPj04FLXnAIFFe7F5lMQn+5GQ\nINOv0Yg94hNdZP58ucV375aShBacXFFRMPixCaS+/AFRtjASZw1kzP7XoewdqgnDz2Pmc67jl4pL\niBzYkzkD3iLHFMWIuFyiolIlhNPRNfNeKBTMfCQR7VegrFKhXw+1AwdzhS2LVwdsZOjqlwELmG0w\nbhrY7ajfeI1Fdyj4eXcigW4j0wMWk5lgpc8pEgWfCmpqJKJjLTVy77YqEhsa0NpszAr5DvWVg9i+\nXUGQ3sDAkCoWf9WNOY1fkqKvJrs+jbISmNNrB0nhmYBewmTr14s39fzzJWR2882S8vbvf4uB8OST\nx4bRFIp2Hq7HQUhI8z34wANiLF95pVgPVit89x3dX5tA96ASiS5Z3Jj8I1nyWhGBCjP/91AmBw5o\naaz0Y9DYFAKulxIaw0Nz2H5nNisqe3HD+uUMq9jFXM1fKLWF0r+/+AGXLJFlftllJznmqKjmmvlx\n42SfR0WJUXjggITxLRaJhut04jBNTqaiAl61PoEzcR3jUqspLg3B6RBfweTJEvgAuUbffFNUhFWr\n5Mp5/HGpWmpX+zt/f7nbYmMlKhsTIxHlggKxpCsrJUwcHi5j3rULPv4YZ2UNNqsHhzqQfUETWWG4\nnYpVgTz0kPhAxo4Vm2jhQsmOrKsT0qgjHScGg+jGW7bIozoys6F3b4lAHu6A0F6Eh8sZlZIibQOP\nrPv+/nuxAktKRPbAQHGiDh8ulrfDARoN9cVGntK/TKT1ABdPzMCg96OkRB7ViBHyVnPmyHyUlYn9\ncd11wnOwbJnYVuHhkvC2Z4/4n06WG3L4cDHy1q5tSs/9Ta/1MWOaW4J7M8nCw+VvPv5YfCo6Hdzs\nfJtvDWmkKbaRZLZhSepJSGIjxMeKE2tvE4uZTicM2MOGyVrev18m0pf7+wjExMhHJyXJlLjdsv2n\nT5eM4lGjYP4LtaiK87lc9T03Bu0hwJNOWDct/a/OQBkTztQNP1KgTaFb0AHUWj95E7X6xJtYqz2K\npPRk0a+fqIBGYzOjcCAmxtd/xcCGRWjLbbw8wsLm4lxK6vUk7PgR53l21OHhUFjI9X9MRrsnBlW1\nkrEHt0FFFVeGf8a6lBEkmSFQ7zl+obm/v2weH8DjEZ1o1Uo3l1u/5NmA7dTsKydDV0SKPYsCTR8C\nxx5B067VwtChLKwcwnsHHJQWORip3874bvn0dmwHo076Jk+c2EzwFxp6mKMn/cJE0i/0XW2tFz4x\nbOfOncuWLVvIyspi9uzZOBwOrr/+etZ4Wya0AxdddBEff/yxL4Z35iEsTBaBx3NcZtDoaNEzqIiH\njQq2LalhtSudOicsWujh3avWsHpBJX+cH8Ts2pdI15WgDw1F/ffHiXA40fVIhrffxlNi5Zq1ZTgd\nbtT1erTpUcz65omOkWv3biFySE2FqCiScnO5J8OB4/bbeeevz+P5/AumJOwguOZb9CGXUre3BH9X\nA0FKE+bKelJ2fkvjgN+RXr6Gi5a8LvUxaWmENhRx001DWv3oPXvEAavXi0PygQd8LJvVKrI5nWJk\nDRgA//43Gd+sQFfkRr9OSXxkIylxBSgzM7CUD8W06SDfeS6ld91qsGmwuWqZMMkKVT8Cw/FJy5+s\nLMlf97YuaIoSajTCE3EU3n1XDDWLBWVaGqn+5aQ6iljsmcTWDQ5yS9RotRCxbw1+5noaq3TYul2I\nZcBYtLeNJUBRB29/KKf6Ndd0bnuTbt1EKJcLPB5qPvgG89o9KMLCyeuZwYdZwyELAgJMTMl/INOR\nnwAAIABJREFUC9at40XzHaTFj6GHqoihO/7Jx8bLCPCY2epK4HzNYqiqQpF3kGnTujFtGlB2C/zy\nC+GpqTAqRRTup55q+xgNBjFq3W7Z4//6lyi5119/DO2qWg1XVbwJh7bAihzo2ZMBMYU09orC/45x\nbMkOpuCXIoKsO/hhezKP6b7i9rKPqNldSqEnjtq6EAbv34e//2iGDBFFqLTUR4ZtbKxob4GBxxaN\nlZSIFhUZyZDJkyEjj0kNu8BaDJW7MHeLonp3AzuUPfjCfgkNymDqf8nhzU0zCMzeBhWNMPdPsp9+\n+UUyVzqhn0Z0Qy63xe/lj+sHsS3hSaavvJ9Lqr7GtsdDvcFNiKNB5ru8HEaNwj8qmJTAPHZ7AlC7\nrWQ1duPu5yaDr1LvQTTYL7+UHM42ELVs2SIOca0ngKVRM/i983mcwQbyv93KKOVlWEfM5fGPBuD3\nyRrmlP6KR6liR9rv2LxnKA/vfYaQb2tYvK4bMW88Rd8f35IDMydHIo41Nc2t1QKaGD2LitpfY5ef\nL4yskZESzTxeHXVQkHyuN9S3b5/ci97/BwYKyd769SJ8r14UmFYQuiEHpcuB8u4bWL/+KmpqwggN\nDTvMq2JK68+W1P4Y68p5ac9kBgTnUWqzENU/lD175G2vuKJ9otG3rxhRH34ood+sLHEG9e8v7Yhc\nLjEgnE4xFJctA4eDtTtSWbltLLXmC5k5E4ZKqTRKpSj3QUd03lOrRVdsaJBH6W1r1C7D9tZb5c6K\nj5e00+XLpYi3slIcuStWyKWZnS2RZocDKipwKjRUeiJoMKTyruou9iwNxOWSZ/fss/LWAweKDvvc\nc3I8b9p0LO/kkCHy1RJ8kln5+9+LgRYdLc6yigrpBLF1q1hT+/bJvrbZ5PUbNsiAvD3B8/PJUvWi\nyh6IKWYEeyrkT5KSZM+98oo4FjIyJGPXbBbdXaEQv5+XjqSkRK5YtVq21bx5JyeGVis+1MpKmZKA\nADGevdDrhV+ipkaed2OjGNqxseJH8TY4SM7Ucu/OV6HyoDjjE+zyoJcskfr5mhoRJj9fFmBdnViV\n7Sm1aSM8HjnuMzJkrEqlLMW33xaf8YQJ4LbaGb3yWcLdlWgsVYSzh9sVS+HS22DOTTB6NN3r6ugO\nojdXV8tD8TIndyAyM4Xv85lnZCktX9zIo4rX6GVaQlXdQewBoSSjRGOD8927+dWYTI0mlqit30FZ\nGYFP3M/s11+XdO87o0GfRmLFARKfvg52zxRn0qmG/NuA6mpJUogJtvKfr4N5N3UVniQzjoZGHA1u\njA0K/vWOH4+seZQof5N4U668kr37/YhM9GegYx23q94l3GSWc66wQNbR8uUyDzqd1Gl3KKsl+KTy\nZ8GCBXz77bfom+pa4uPjMZ1U/s6xWL58OWPGjOHv3qKC/yUMGSK5nI8+emJq7NBQ0GoJCXKT3rAD\nfV0xA5KrMX30Ne/8lIC2IAtjvQdndT12ow1PYSG6u+ZIPpPHQzBGYj2HcKn9SXdldSwL6TvvyKWy\ndCnuZ/+C8eb7cc2YSe5eO6UbChloXklldh1p+Uuw5h7Cr6wIP48Lhc1GQGYivTMaUSph8sAKuT3s\ndnEAtIGBOzFRLlybrfXAX7vw0Uei6JWV4fTXU/vSezjqLJQXO6ipVxLcWE1E9X7QB+BJ7YY1vS+6\ntFjMgy6guyoXt8NFgruQUI1Z3mfUKN+RMnzwgdyIBoMYUEOHHvMSj0cuS9fCX45ibnZHRWP0CyNA\n2UiIn4WQEIj1lJCc9ytBzhoqytw4LI7mzPQffxRlfOFCYTrpTHTvLgVazz8PK1ZwaE8dgQ2VQuZR\nZz/8stA1P2B85zP2rqpiqvlzgk2HGNTbRob6IHq1A6fDQ5+IMtFKvP2j162TZxITI9Sqo0e3L22m\nVy+hGnz4YbmkFi8WZfyzz1p+fV5ecy/S+npUpnr87UaYP5+E/hFodUpMikD6qPZgPVCItd6O0+XB\n3eih0hYECxZw9eWNhxlKu3dv36M9BrffLuGhJ588lmjjq69EkV+2TJ6b2Swbr6QERoxAY6zCrgnk\noF8mZURT6w7BYnSi8fPIpa5UitLvdkvU0OHw0aBbQUMDzJuH6z9fMn7b3zCb3GC14DA3EuAy8ZNl\ntJwzvXtLGvz994NCwdXWfxHiqaNR5U8/Xba8jy/x0Ueyzn75RRwJJ0Bqquhvbo0/vZ65Fj7/HPcF\n48is20RqzRYuW/MIytUr4fPP8QsNQqN0kTG9L90yVYS466i169Dn7+Hf/6ihtrIRu1st55G3p2dD\ng8yJWi0K8amUG337rczzli2itB0PVVWy/sPDZQz//a+EyNLTxVjJy6Nx8XLsIZESLnG70VcVoG6o\nw2O2E/zdJyitZiIijiALtdsJXvkDmsIDVDgMuFUqSoJ7MOmaYBwOMbxqaiTy0q4U30OHxIlrNsvz\n2rxZ7qorrhBjt2dPUChwK5W4nS45m1eswLD9V1y79qGryGPHWtPhdGMvMW1LGDVKfHppac1l7ieN\nkBCxknv1krn+61/FmHG7xbjznnW1taK1l5bidrnwOFwUG3rzRfAtDBmuor5exuntCFVUJIpydLT4\nOC2W5gB8pyIwUCwjbwnLihVixO3dK/eVzSbnWJNTFKVS5mvECKnrDgwk07yd3s4dhIfLOdq3bzNH\nWlZWMxuyVitv1ZKMWq34Na3WE5OFHw86nQzP60D4LRQK2SqDB8v1odOJeCpVc+uoij7jqLb4N5+x\nTdwhuN1yzjidIpDLJYZuWJgMuC3swqeAwEBZ6waDrOfiYhmeSiX+PbfVTlpIDVZ/AzGB5mbGrhUr\nxIK32XDZGnGY7bj9A5rbU9XViRwdjKCgw50D0akdRDUWc6AhjjJFDP/0zKbIFUdqWD0m/wiGV/9I\nRMEWOdM8HjweDyUbCqmqopmZeuRIUVw3bBBPyquvyubqQISEiC5Xmm+jb1AeqgYjiu49sCRksili\nEiWuGCYWv0fusnzRX957D+bN4/KhpQQHeRiu24GhvhC32o+yi2+god8IcfKVlMhkFhSIHdDB8Ikr\nXKvVojwih8TsLQZoJ+Li4sjOzkaj0XDZZZcxfvx4+hxRVzd37tzD348dO5axp5BCcFpCoWi70tBE\n5dgv4hAvmZ6mLqU/wf7jeXTHtWRVhWHx9CRdmU2ipoZiSyp7NyYxrR5CEhLgjjtQr1tHvFpB/KFD\ncNkNUmTfUUhOlihrSAifLgon6V/bCQnxkDYsD33kVEyKYNxOyPYfzsz0DfTd8gwGTy2kp6O6/VYu\nvOgiLgwE6saBplC8jKGhbXKte4kpLJZT5zQ5Bk23jFvrT1ZJEJuDLqT8bX9mzbqewnWB9LF9RrDG\nj/DavTxf9zBF26N5NCGbXkkNPJu2g5I9vxLZkIf29ltb6SvRTiQni4ERHy8OkxZu3H/9S+yQ603n\nM067CpVTbpdf/C+jvrqYrMhR3H6Li4SBEPv2fHZv3YurbCOOGTfS514TAXXZBMd0lwvSSy3a7oaK\npwDv5yclEeaXh0UdiD0wnKGDXYQ2lfv1ePYHVhQlY230Y3fOYF54eDfKS6dCyjW8sOhH7Kk9iNlU\nCN2mica4erV8xcaeet8ihaI5R6yoSDQdu/34OWk33yw3+rhx4uD64x9FWY6O5uBBCNbYuJD/Eu2s\nZJFiEvagcNT+e/FzmDjfvhEcifQsXcaLN8TI/Gt91BdWpxPNqSUkJkpYRqMR7a+xUS7lGTPAzw/l\nqrU4V5pw1EgoRoWLvup9+Fn9wRkuCkp0tMjZWiTPl3C7abS72bZThdPuIjZOQewDv0P1x0ex2VTo\n1UZqQhMI87bSaar7PW94MC8VfIb9YDEx00e3M1zWCnr3Fu3Zm751AqSni03S2AjR0VFAFJrt2wnS\n2Kmzq2h0K6n/4zzC/BuFXvX66zGcl8BDfZWY+l3Dr/d8yc+aKTSs28lTPW5hoPFXLr93MqF520Q7\ndrul1tJL9HAq6NFDHJI6XevNWsePl1QDL8naxo3ihUtOBo0GUwP8UjeGiIJcelw4g+j0IBKv7I7n\nkTfQVuYTpwkV0pIjQ1tLluD35Wf8RafmzaRbKE8fRcIfbmJcJlyL2KWPPy4iX3utpI2eFMLDm2ve\nPB4xGr1WSGoq9O+PY3cWztIKtiReSWzcaNKrv2FEzffMde/GZvGnumIM0/55K/PfU7N9uwRQ//Sn\nY22LyEj5uc/gTSXPyZG5GTlSzp6ffhJZli7FrdNhNnn4WXkJjY3B/LnPfzl06TQ27ZJtO2WKBGj+\n9S85Bv74R3meeXkt0yN0OtLSmnNddbrmdiQREXImT5wohnBysjgi6uow1G3i3ocP8FT2UN5+W644\nb11wUFDbbL7wcHkORUXtJ5Hq319KgW224x/BIMdtRoasjawseX1Vldh3L7ybhvvgnTymepHupkpJ\nwd21SwzAoiLZa2p183NJS+vwHrYKhWSJ794tHxcVJdv+gw/Et1xfD3NfDuaC9N8zK3UVfuFXCltT\nfb0Y47m5uCKjqatyYdJEoK7XET9oEIriYrk/j9uI2reYPr3Jx/68jg1ZlzGU7/nSdjNWdTCRY0D/\n79UY/CygVcKeMllECgVbk67gw00TCb9tJ79/bigpbx3RrcSbseJtwdSB8POT/Vq+x0PcO1m4zUN4\n0f0QtmAzgxOXsCN1DAOMK8iwrwUXksUBpJeXM+++++BPm6FBS1aZnnkbLifI7yKeiZtP0OTJomTG\nxfmc4KolnLJh6/F4mDp1Krfddht1dXW88847vP/++9x8883tfk/NEYJPnTqV3bt3H9ew/Z+HRkP+\n9AcpWT2PRF0WaaVrqf66ltSQOQQk1BLpZ6J3RizPOr8nNsRClrInQ8qaeD+GDpWvmTPl5EtM7FB3\natmVd/FNThZ2Qzx7dyq4OVCJqc6BUuvHnGfT+O6p2ZgtCg6oejB+x1NEh1ghNIXGu+9HfcX05qEZ\nDEIDeeWVclu0Ufn19mZvC1wuuZj375fH0+pFdNNNeFJS2T/wWv65IApt30xKt1gJe8jAtA+mo5v2\nOv6WWuptIRQFd8NjbWCTayAZz05FlZBA4saNckNeeGHbBncyuOkmUU6io49LVrR2rehhH1fdTkGI\nm1Cdg0viK/nS+RCGpFqqTP5MzgiV9n4hagYN98dBEEF390Ix72E5cLcMkTmJjhbloEcP38vSAkym\n5pLP226DuDiF1DhPnET5+ly6B7iwZPRB4ZZASW1ENxyqXEI0ZobaVuL6QiN1XXffTejdTW9qf0gi\nE599JgtBrfZ9s/TERCl6qq09tjC8qkoM3iPz2EAipCUlcN55bPonGKMz2Jx8BSrcNI6fQmERPJ7w\nLCEVtWgs0WwrjUbzwnf0TDChNIRIflp7QwVtxaWXikYVFCQGe3p6M7lWbCw119zGhsIi9mf0Rbk5\niPMD9tAr2onCXyvFPevXy1k0ZIiEo47AJ59I6d9VV7Wj7rE1BAdTcf0DbMnZRmV8X8wNbhSJibgj\nYkmo3kuwczfVIT2pMRj4YsM4Qh0ebrhRQeCddxI6frw4DY5TMnJKuOMO8XDHxLQ5la6yUnTxlBQp\n7dTccw/52SpW/lBLsvIQ6VmLIcJPLLbZs3GhwuOCoCsmMHrxMnpW7+FfxZFUR0WzXD+TwcMh9NZr\nJBrqNSh9gYsuEg0wMLD1Z2cwwN13i8VUUcG+yx9j0XuHiBgZx7Up69i7S8sP2eNRatTMLn0e9aFd\nGPYdIO3pWbKevIy3R6KpzCcxxsn9lznhgqOdnYcOycfpdBLUO2nDNihI8kx//3sxFn5rzT3wADtd\n/dm62kKv8uU4Pv6cyusmgdNAaMl+1EojE3ruQhcpF15kZHMpwckGzbyEzG3WJRUK8Y5MmiTPadgw\n0XZHjJBz/pprcBUeYseBcKpC+3JexVLcNn9Ctq9g5sxJREaK8fXmm/JnFotE3nS65oqY6647+ePU\nmwXfbvWktra5ZdGgQULit2KFvPGIETJfjY3y+3nz5FL8619FAUhIgNBQtsZewp5vJJiWkyM1zyUl\nsjzb6iw/knvC4ZBn1BaZnM7mNrutcRvt3St6S7dusvyGDJGAq9MpvongYLCp9WijIlmn/x3dI3+U\nLAidTixmr7M1IED0q2HDZKDJyXIXFhWJHnFkXrwP4HSK727kSElUOXBAEswuv1ye8ddfyzGxquwC\nLr75ArFTdTpJKXc6YfNmGh57joL/ewuPfwB7Qkdy3Y1xqBLjpTi5qkrk6KB0am+wX62W740mBYuY\nxM4+E7h96iHi+oSjN+TBjnVylo4cKU46Pz/o2ZMdhge54q1H8LMacb0+FF5/sPnN771X+mH16OFz\nwq6WoNVC4oAIGuf+GXOpkb2vJKFLUvBk4QCGD3OjmzSI5JQpcGC/0HEfOCCLWKWSr9hY9hb1JyhC\nS22tlsqbHiMoDclcyc3tGD33N/BJxPaLL77glVdeISgoiAMHDvDMM88wsZ1NjgEaGhoIbPJwrlmz\nhnvvvfe4r7333kf59dfOSHvsQpbkE+DT+SYOlY3jfBNc0s1DYEoEI/cvRUk9MUF2/mZ/njxlN7Kq\n5Qx49VXJcj6so0RFdco4l6z2Z625H6U5onh9lfp/jE3IJiBmP/obL+GCsEG8kfACDbuKqahVYwoa\niSEmiBdWzmSgSzIgDycG/OtfQmQSFSWtVprS4H2FvDzxOuv1kt365JOtEM6Fh7Ml7Wpe/R4K3BYC\nvtnLxX7L+eGJUVx2TzJKZSPo9WiT0oiNjqW+qpGRd0TLJWo0wn/+Izlb5eVHRxZ8AW/krBVccYUM\noU4VzsbRD9FQWM1Gm4fGomLqig6SqSliz++KcUbFkT1jDr+btQ3/+Hh49x1hw4iPl3lQKn0ftToB\ntm6VMjatVtoc3HQT2FU6NtgHExnnT+C3b/LnV6IxdQugx4hwHph7L9u2rad4fwM3Kz9EkVUFuzKb\nLSWnUyY8L0+MspkzRbHpCI9vfPyxF+3BgxKeaWyUbu9HGncJCYfrbELqCxn+3XMEKO3sHHM3ll0F\nXJ6cR8b1k1FYL+D9T/yodwTQe9+XxMUFE9oS20gLyM0V5bMdxJACpfLojWK3S8FdcTGcfz5ht9+F\n8qNlGLdVc35YLRXueEKiq2mc/z5+ZU2hjKIiMbyOSMfPyREdRq2WRzRuXMu6ldEoQc64uJNIvXa7\nianYRUB1MXVlQajCLcxrGMwYw8UMNVuw6MLpdV4k2TstjF35Zz5aOYufF17I73/vz/Tpp9C/40Tw\n8ztpAq3//EeCGGvWiL7ep2Ejjr3Z/Lvyem5z/IPKnn0Jte6GnTsxPfFX/uT4I7ZGFQ8/rCHtqXsx\n7NzJjICBvPeTip69mxMMDtOu+goKRdsyIOx2eP99cTJFR/NJwx+o7zaQrdtgyJRLSR4OYX+DmmoP\n1n0HqavPxk9dTXB6KqYHniRnh4Wg3qM46imOHw8aDQqlkphRo47RgtRq2Qcul2zBdiE4WM6Szz6T\nrIvHH29miY6KIv72aexY+A660hzCKaHiDSOLx72Ask8O+yrDmXbheUxRqbjySuFe6dHj5H2FLpd0\nrdmyRc74lghVW4RKJVkqJSUS7rvvPvn5QWGBVwfpcVw5g5odOpJC10G4gYXvFfPfpuXxym37mJr7\nC0VVFxM2LJO+fZU89ZTYxUuXSsr0yRALLl4sfGU9egg3xkm3BikvFyei2SzG2qWXiuXnZUfevFks\ncJNJjAiFojn1PzMTevdm75BZ/OX1MLKywGm1k6yuZM9SFZffEkXv3ifv9PzhB1kWffuKP7g18vf9\n+4UULjBQ9LbWbJtPPxUxVq2Sq+Pqq4U0c98+qRAKDYWoGDUNCTGM1udCUIQoOfv3Cwt2aKg8o7Fj\nj7XWP/hAdK6wMDmMfWTc7t0rOmlwsHz0ihXy/YsvypoBUSt27xafhF4vulnC4GvJ6LNAFkRQEMGj\n+1Ed14fsbA89U02oRo+UiyAnR9L1nE7JiPOyffkIZWXiC7FaxTeQni7+LIsFSsrVzF+YTNhGuGnO\nefiPvJ/UsHoirhgth8x77wFwcemHlBXvAQUkbCgGzwPNHo+4uDZxLPgKbrfUNm/YEMbkyWFkZMDb\nL1uwNThIMBWw3D+dKTNtsjGtVjkwg4PlPH/gATh0iGTdKBTfSbLHYTtj8ODW0wx8iFM2bBUKBYMG\nDSIkJIQXX3zRF2Ni1apVPPnkk2i1WsaMGcOQ4zELAD/9tITc3NsBrxZzwXFfe2roQpbkEyCzcg3b\n6xNY5R5Bd2MNg/r2Znh8OdiUVOTUE6i0EBnZ3LrAZpPASAfXbx+DtDRRmouLpfTh7me70y8pCqa/\nBHY7aYUreHLWWh7yTCavdCL6+lI+Dr2emNQANmyQQ/rwoe7tA1BRIZEEHxu2ERES3d24Uc6XefPE\nfj7ehVxTIwdCUnA9mYq1XBC5jy2rIrFE7yQwMREKCwmYOJo/3xOHB0WzgV5RIUZtWJjI5GvDtg2Y\nNEkCKN98A99+q8MZreOgEyaHfk1y/rcEVJRT5QjG4DxAwYHz4P6poizU18vNXFDgm/TEdiAurrld\npFdPWbAAvvsOhpTkMlmjwtyoIchZS0lJOAGJEbgmTaVvxlqiltbjcChQe29PkA2SlydGVW6u1Lp3\nRssZLwoL5bIICBBl4zdRSy8qNhfS3d+MWaHj4pIPGduvFjxqqJoMM2agqYdtv4C5fzgjE7+GERed\n0FtdUyP3v9XqQ+LLmhoJgUVHw7ZtqBRu7gr9lDumh7F1YTk/DnuGXr/+hDEmiHCrUUowLrpImGKP\ngM0mj8RiEV/N8QKY8+dLlq1WKwHqNpWq5+ai+uFbZru3QEQoDxifJlDvZlW32ShUKjQ4KPDrydDg\nj8k26Ulo2EVA2oX88IMYDJ1eM9gKevSQZavXQ3SoA155F//yKv7Q+Gd+Vl6CvnYnaRkNqDMyqN96\nEHN4A67AEFavhrQbpS1KL+ClY1srdw127hQFqikdubtyJ0tNAwkOlrsgLEwU4O3bFfxcNIPMbZso\niR5I8MGD/EPxR/buV+KfJb6iw/5bP79WWUTXrxf/itl8iu3j9u2Tz7LZxFlzRPuj2KJNzMlcQ01B\nKU6PGpM6hMSQep63XkO9C+oWQb+JMp/tVasqKsRmS0iQ8/Cyy9q4VuvqxKiNipIUVW8Pnrw8ABQp\nyYwb7WTsa5NR/ruKxqp6Vtkv5cB+iWbufvADxg8380LwVrhmLgSl0rOnOFsMhla7nLWIH36Qud63\nT3SHk26hVVLSnDO8e7cYtkdi71657HW65mLmcePkw1QquPFG/vtKMFlZ4izopdhHnN7MHSmLGXrR\nVaA+79jPbINMMTFSmVVW1rrftKmLJmVlMtQLWlFxe/aUrJagoObS9DfegDvvlDOxpgbsDY3ceOhF\nysMC6aZ3y0DKy5sd7X37thyC3rlTDN/aWtG5fGTYLl8u/tCyMlGFvHqql9FZqRS964EH5Pu//U3O\neH9/PfNue5zwbUvgwgtRbNrIRNciJkYYoTEeiiaKglBUJHtQq5U71ceG7a5dEhDWasWhMHu2qENL\nlzb3xLbb4Y03Ffj5DSMkBF68EvwdDhG4oYH4nFXERxTKC4P7nmSahW9RUyNlvYmJ4gyZMgUS3fkc\nUoRyqMaf6YZSMci9fcaiopqDJ/37Q//+DAQGdnxg9rjwScR2/fr1fPLJJyQnJx8mkFIoFOzcubNd\n7zd58mQmt9ZM+RgMBDq2BuBYHB3Bha6L4k67L4XY7W+g9XOzvvud9Ln3cvwO7oL58wm7oA/nRWaS\naJOMjHffFQOs3RGZU8Dw4dIubN06MUYaG5HLpGdP2U3R0RgmD2dWqoa1a2cxaRLUbZEsjF69flNm\ndu214sb1FtgfCZdLvk7hYDAYhOHuhRdEL/d45Mw5HkaOFJvEURdCd62DQ0UxuMZNJCBjO2wLlZt5\nyhQUSgVHrZrkZEkH37tXiIlOBO9AtFqfatRKpXj0+/WT7996C7YVjCI6dgdaVSM6s5uAYA0TZzal\nDUZGSi3SunVya7a3f5rLJQuyncZjRoYYMDZbs6PGYhF9ZH/4SK4O3851UblsTenPtJny+zFjYMmB\nOGrjepHSy3F0uq/BIL01VqwQZueWxmVvYpHsCItmwAB5liaTkCkdB/1u7Evhrp4EOWpIuWMcbPxC\n1kZTveK110oWWVjYeejDzhPL3+ls9Tk7HPISf//mnomnjOhoST3asEGep8cD112HcsECVFMuJr8s\nHldkDMHOYtFenniixTH27AmPPCJKxJw5xydKNptlatzuk+CdCg0Vxbbp2d02S8N3Jj9ihitYtuw2\nlH4qukWZuLrbFoKzK9mlv4ScWhHrdDJqQdK0Bw4UkcJD1RAfT1JaHYVFLhrDE/l+xI1MuGwZ6l9/\nQnPFJah2BKJstDNo0MmGwToJ4eEyN1FRoNNx3WOZjIiVH3vvA4VCsn0P3DKOPd89zBi/tTDzCuzL\nnGjVKpxOldw1bcSwYRLlNBhO0cEzaZJEOYODj81kMRhQ6HVohw2golSF4bw+DPlTf1Y/J8q8n9+p\n86ZFREjAMTtbgtRtXqtRUXL2rF8vjlbvHw4aJNapxQLjx6PUB8DNN+PX2MjvNmtZ/4AcXVWVyWDc\nAIbAw/2E58yR/RIVdfKB/wsuEMM8Kan1cuzjomdPGXtRkRRB/hbjxknbhIAAeZ239tYbqUbWW3y8\nODoeG55LRukqEsPMx5LnnYRMCxc215O2hmHDxEHRlvU4Y4aoE2FhzUPz85MWhwsXis/w2wUqGoJi\niTIVyqX5xBNi8L/7rsh/vCyRa6+VkPCoUSffq+gE8m3dKvINHCh2Z3W1qBhffCEqwoQJzdl6DQ1y\nxjud0NBvJOGXjpQ5W7NGdMEDB0Rh9OokAwbI/02mDiFH7dFDoukORzO79/XXixwKhWSSBQZKdrtC\nIbqKy4VsUI1G/tBbmG40yrrrIqMW5Fzt3Vu2xKhRcraGpRnoXbKJ/t0auOGRy+CvMbIQRX1PAAAg\nAElEQVQZMjNF6BtuaHYenAaXosLjOfVq5Pz8/BZ/nnKqZCstQKFQcOSQ09MHkZv7Ds2GrYIjI6vH\n/t9Xr2n5b9r6OH8rx6ni4K+FbFvVQOalPejTT4mrqAT78y+j85ib8yOQO6mJ9PaU0R4Z6uvFW2kw\nNJfxUFcnUb/09GMG5vGIgzAkpLkux+GQn7eYklRVJdao0ShpReed2JvamhxVVVKbEhfXduXA27Q9\nJARUCrd4CfX6w5aX3S7vc9Jnl8cjl8+aNaIlzJp11IB8uaYcDrkHrFb4dZmbFNt+RkzUo0z1YZi/\nokLqmBoa5DDv1csnMrS4xo6AxyOv0VUXobEZ5WZqepHFIuvquDVg33wjX336yJiPY2H5en//Fi6X\neLgjI5vWUW6u3PSZmccu0uJiec4ulzB0tJIHuH69+FgmToSkJB/K4M2nCwiAxx7DERqN2y13oc5l\nQlN8UFKZ2loEfxyUlkrEols3uZQVijbORXk5VFRgT+kOGg3a/Cw8L79CSW0Aq0Y+xpirow8r1S6X\nHC8GQ+fe4e1aUw0NkJvLQXcKy7eGMGiQ2FgWC2g9NlzzXkSRm4PfrOtk0jsY7ZKhqEgeeM+eRzc6\nbQ3bt2Oe9wa5taFY7/sDQyeF4nbLedaWu89kaiZVbQmntL/37JH8UJdLLL7hww8vpLIyMUBSU8UB\n590j7b2vnU6RpaW1espnlM0m4eTcXJg5k6ykiaxeDcMG2OmlysISHIMuJeqU94jHI/dpYGDLfjmf\nnrVWq6Rn5eeLst4U2a+tlRrhyEiYeKET5YH9WHVh+CXFtasbmVemoKDmK6Q1OUym5k5b7YU322Xr\nVti/uYEJqbnEDU8WT8Nbb0l62kUXnVLWWHvn4kT77Uh4z/j0dDnLAhqNqP72gmyeKVPEO5+efkqH\n88nKYbUen6naiwMHJKI7dOgRamlxMdTX4+zWHccH/0a3fplcXDfffMqXy6nsCy8httd5uGKFbInJ\nk5vq/E0mcdqlpsoi/ugjMcxHjIBbb8VsUeDv7xtqkvbI4RPDtjNxzrA9McxmeOHmHIo3lTAzYxMT\nZ0SIEeRjdLTy3hIKCuTe8erox6QlrV4t+YiBgeJ2uvvuFt/nSHSmHDk5oguoVFIvc1KOz/p6MdaT\nkiQ8/PbbR910vpSjoUFKTUtKJJDcIfX+K1ZIAZleL5fRHXd0yZryYtkyacEaFwd/+MNxLqlbbhFP\na0mJhIqP01uuI+WwWsVOzc+XzgAnTG75/nsp6FKrxTszc2abPsenMrz77uFatqJLbuevq0fS2Cid\nj3yW9nwctFWOvLzm3pKPJH9O6sFl8rBnz241dbWz4Kv5WLxYAi8J+moeq3kMfbxBLKBXXvHBKFtH\np+3vl14SxctkgjvvxDFwGC++KMrlpZe2HLg7GZySHG++KWmdZrPU/B2nT4/NJvs8L0/KcC655BQG\n3AJOeS6ys6V+PjJSLLWXXgLk2w8+kON98GCJFrbVH9Ee+HRN7d8vjvHwcLmkj9Nsdu1auboiIoRF\n9hT9cUDH7o2VK4VULjpayr2PyiKurpY836QkcSK99167e4d35v3988/CKZCiLeHRhqcICNdJ+PuJ\nJ075vTtTDqMRnv+zg/Jv1jN7ZBajWQ2vv37Kqd6dJoPNJsydTXrp95Pf5KuFerp1kyyrk66J/w3a\nI0cHHjet44EHHmDMmDHcf//9R/183bp1jBgxgtjYWDIyMo75/TmcGIWFUNgYQ5jewZKSXtLE8izB\ntm2iDzgcoicfg/R0cTM5HD6vpfAFNm5s7ku4Y8dJ/nFQkOTqFBaKl78t7s12Ij9fnIkGg9SKdAgy\nM+UDnE6Rp4uxZIksneJicaC0iHHjxKjNyOg00rXforhYlN3ISDFSTog+fSS1TqXqNPKGYzBsmHij\nDAZ2NXbHaJT/btjQNcNpCVu3yh1ts8EWv+ESLjMYfNgA+PTAkiWSplhUF0JhyHlSL9cJTJWdilGj\nxCkRHg7p6ZSVCQ9STEwb90xHYvhwuQRCQ1v16hw6JLZ5m/d5ZyM+XpTZqiohG2qCwyFGbVKS3NGd\n0ELUd0hMFLmqq1vdE8uWieOzvFwC1qc7li6VwGxJyeFS6WYYDM2kfWPGtNuo7WwsXix7I98YTrF/\nujixxozp6mGdNPLyoKTSj+DEYJZuj5DU3tZCv6cbtFo50woLYeBAFq8JICpK9sWhQ10zpC5ZwVu3\nbsVsNrNy5UruvPNONm/ezOAmhetvf/sbTz75JF9//TW7du3C4XAc9fvTG7+tu/UDmot7OqsGNykJ\nknoGUqwby8xrnNCz4wygzsaAAXKgud3N9QxHISZG2AUaG0/Lw+H888V7GhDQjl52SqVQKBqNHd7p\nPiVFgpElJcdybfgMsbESvnY6fU7+1R5MmCAR28TEVojVZsyQdKfAQN+3AGojEhIkA8gbsT0hUlLg\n5ZcllNIZfWFbQp8+Qn2pUtGn0p+fNsi0Dx3aNcNpCQMHitEHMGh6MkTJeDvSgdQVmDBBIraJqWqS\nHr4LFBaft+/ocgwdKhk7Gg1oNMQ4pOJg/34ft4pqDwYMkFRktbrVcEZ8vNRg5uVJefppB51OGqVa\njl4/Go3UkK5YIXe0L6KZnQa9XhiULZZWi4HHjZOIbUxMO8isugDjx0vENj6+hUoUlUoitl694gzB\nxIlNEdvuWhIeeBCU9jPyHEtNlTaF5cq+XPl/3WCS/rSoU20zFAqJ2M6YAcHBTPxRyVdfyb7ooO5K\nJx5SV6Qiv/XWW0RGRnLVVVfx9ddfc+jQIe655x4AbrnlFmJiYujRowfvv/8+d91111G/P91TkU/0\nN96xd0YNnt3esXpsV6WNtlpj2w50thztrrE9AXwtR2esod+iK1ORoQ01tm1EZ+zvU6m9aws6UgZf\n7+HWcDJyeAniOmNcJwtfzoev1vnJoiv398nU2J4InSVHR+7zjpTB45HMKn0n6OhdtaasVqkL9VWA\ns6Pl6Iw939lzYTbjs1rOI9HZcjidcif6UtfqyrPWbJbgjS9KENojR5dEbOvq6khror4PCQlhz549\nh393zz33MHr0aAICAnjhhReO+T1wDBsx/Daa+9vft3Sy+uI1J/83R479WDnOPJwNMsA5OU4nnA0y\nwNkhx9kgA5yT43TC2SADnB1ynA0ywDk5TiecDTLA2SHH2SBDe9Alhm1ISAhGoxGA+vp6DE2U8ACP\nPPIIjz76KKmpqcyfP5/bb7/9qN8DXRrR8RV86U2RxdtyZLgj0dXRNV/hnBynD84GGeDskONskAHO\nyXE64WyQAc4OOc4GGeCcHKcTzgYZ4OyQ42yQAdpnnHcJedTw4cNZ2sRIs3TpUoYfQRxjsVi44IIL\nWLFiBUql8pjfnxLcbmEf2ry5qZHUOZyWKC4WduO6uq4eiW9x4IDQKVqtXT2StiEvT1oLeZvWny1o\naBC5Dh7s6pG0Dzab9A/OyurqkbQfFRWyxysqunokbYfD0dwP6SxQGDoEbrc0gd26Vb4/VVRWyjop\nLz/19+osnInnZk6O3E0WS1ePxPfIz5f5MJm6eiRnPgoK5Fk2BaZOS5wp+89qlT134EBXj6T9MBrl\nWR+XbbNr0CUR2wEDBuDv78+YMWMYMGAAgwcP5t577+W1117j0Ucf5cEHH6SoqAiNRkOfPn18Rxy1\nfj288YZ8P2eOVNSfw+kFo1HaqJhMwpzx5z939Yh8g4ICaSNgswnb4i23dPWIWkdlJfzlL6LoDBgg\nfVnOFrzzjijfAQGy1qKju3pEJ4fPPhOWI40GnnxS9smZhMZGWVvV1dIvY968lhtUnm748ktpkOzn\nJz0zzjK2ZJ/g11+lXQjAHXcIO3F74XTKmVlRIezG8+b5npjA16ioOPPOzeJiGbPdDiNHwp13dvWI\nfIfKSjnjLRZpevp//9fVIzpzUV3d/Cx795aeeKcbvPNttZ7+++/jj4VhTaOBuXNbYaw8jfHGG9KX\nW6eT/pDh4V09IqAL2/14w8vef1977TUAlixZgk6no3v37hiNRl599VXffeiRHpzT2eP0vwy7XYy/\nwEDpin62REYsFlHU/P1FrtMdVqsYIAEBZ8Z4TwZ1dSJXY+OZEz0/EnV1chk6ncLScKbB6ZSzODBQ\nHFhnSvaM0ShGrct1Zj73zsCRUbFTjZC5XPIegYGyXpzOU3u/zoDVKpH9M+nc9N5NWu2ZM+a2wmaT\nc16nO/tk62zYbKf/2rZaZS2fzmP0wnuPu1xnbqZEba3sLa/efprgtGv380pTk/jt27fz8ssv+/aD\nR48Wr5PTKVzh53D6ITJSopnbtsHFF59ZtOetoXt3oUMvKjoN+k20AYmJcMMNkiZzySVdPRrf4pZb\nJPKWkXFmekmvu06U/ZgY8ZyfaQgIgLvvlhTTMWPOnHY6V18tFKgREdC3b1eP5vTEhAlijCqVR/U2\nbRe0WmlvtmKFRBK7qlXVySApCW688cw6NzMy5EzJyzsz7qaTQUKCzEdWlrRpO4f2Iy4OZs+WCN3p\n+izPJL3lxhvh229lzGdq9s+dd8JPP4keEhfX1aM5jNOu3Y8XTz31FAMHDuTyyy8/6udnU0H0OfKo\n0wPn5Dh9cDbIAGeHHGeDDHBOjtMJZ4MMcHbIcTbIAOfkOJ1wNsgAZ4ccZ4MMcJa0+/Fi0aJFPP74\n4y3+/dy5cw9/P3bsWMaeqmf4HM7hHM7hHM7hHM7hHM7hHM7hHM5YtLvGtqXa17bWw7bW7gcgOzub\n+Ph4/I+TojZ37tzDX+0yah0OIUw4E2p2/hdhNkNJydlTX+uFxyNynU71FP/Le6Gq6vSvw7FYZM34\ngmG2q9DYKGussbGrR+J7NDRAaenZd1bV1EjZzpmAhobT/77wnv2nO1Pr8VBff2YxU58svPPzv1Y7\n771fTue90xIqK0//u/u3OJvWmN1+WuuN7Y7Yfvjhh9x3331H/eyDDz445mctYfjw4cyfP5+rr76a\npUuXMnv27KN+v2DBAqZPn97eobWI7N12fvmilgEj9YzY+HfIysKVnonrsSfQ+B9t39vtcqdv3w7p\n6ZCZ6dOh/M/B7Za68tZKpOx2KV9TmergqafwVFSQM+Bq8gZcyahRzX+bkwOLFgnB4cg+RlEqU1M7\nnS3TapWPVKla/r3NJnt+7VoIDYXBg0Hxn//Azz9Ljd7cuRAUhNkMX//bitJsYvpEEwG9UqU+rQPh\ncMi/GpUL9wvzcOzJJi+oL467H6Rff6lp9njkOefnw6WXNpVPOByimIWGNtc+ezzSNkevl5rPLoTH\nI/e0Tndsafa+fbJ2hgxpGubGjfD3v8uLH3tMNvpx3nPZMti/H6ZO/U1JrtsNublgMEhtuK/lMZoo\nu2Mu7ooqIq6bhPb6q4XNOTkZYmLweGQ61Gopa1ywAGJjZZwdvITaBqsV9u/H88UXVO0soTamJwmv\nPoLNoSQk5Oi9c9S+Htl1Qz7unP5m7bvdYCupQfe3p3HW1LM64gpyz7uM3/1Oyp8rKqSrXGbmcZdW\np8O7P7Zvl6+LLpLyymOwdy+89JL8zf0PUKRK4eDKYhJGpZDeu4lgSK+XGtiuRm0t7rlP466uQ331\nFcKd0dgIISGAnF8//ijzcOGFslcAzHWNbPvqIPpuMfS/IKTjqRy++042aEgIPPSQsIfq9S2+1Flc\nxoIFHmo0MVx1lYLQUGnoYLUKybRWKyK63R00BU6nENuEhclBcugQPPOMXGpz5khdPOCuM2LPL8Ua\nk8r6rRpSU6FnT1lnNpuUznufa3a27O+BA2HEiA4Yc3vgrQXX6+Gbb+QrNBT+9Cf5t7ERDh7EEhSN\nf4zh8JnqcMjXunUQHAznny9yVlXJFEdFyRl8PN2go2Czwddfy/RNny5Xm8Ui55DdLiXvR60XoxGe\nfloGPmWKTIzbffQlZ7PJwgsN7TQ5srPhl1+E1HjECDl2TSY5sxISoI9jC7z+umzmxx6Dbt2OfROP\nR5xzFotMVlpap/K1WCzw6afSDGPgQKGL0S36RmpqDYbmNeYdZ3CwEBM2rTmio+V1XQSLRfZvUZEc\nXenpsk1cLhg1tBG/ec9LTf7AgXDvvSd+tt770+0Webt169ANctKG7Weffcann35KXl4e06ZNO/xz\nk8lEeBupnltr9wPw448/8t13353s0I4Lj9vDqzftxFnXwJ6vYGDmHpT79tDwxWKK3lxBzDVjiX7+\nfggKIjtb7vQtW4QHIjRUugyEhflsOJ0A9TFNjYOCQjEaazp9JDYb/PWvsgdmzIBJk4ClS4U4ZvJk\nOP98Nm2C+fPF3nt8agHBK1fiqLMS8PMOFNFLWXztzVz29EAAXntN9sjm9U4yAl8iypIP/frBgw92\nmkzLlglTe0KCnKt6fZOgn3wCtbUsTLiJzxeFYTSK8avRyOt6bdkiN8uiReIBf/ppFn/lZNHLhXhq\n6wj/cjuTHunboQQeubnw4ov/z957h0dBZv3fn+nJlHTSKyQkdEKVKghiBxWVVXdV2GdZlbUgrrpr\nWdeyih1XEQUbAiLg0hWkdwiE0EIIpEBCes+kzEymvH+cDEMvIYF9fu9zrmsuyNS7nPvU732OyJQ/\njzNj+XY/hytCCNftZr7Fxmtv64iJEeUyb57ojooKePlpM7z1lkTtk5OlGEdcnFiMP/8sk3zlFYiN\nbbOxX4xcLpgxQwzAoUPF/lLggrVrKfltP28dGs++vEC8vODr6VZ6vvsOHDokCiQr64LeR36+7LVG\nI/bdvx45IiXuQ0Jkrr/9JsWQ/vGPVi+ekL2tmKIdZZidBqLfmk/XxfNlzAEBOBYt5oP5kfz4I3TS\nZvMny6eEKP1YmTiZuDg/unVr1aFcOVVUwKRJkJJCU52Fgz63o87I4G/3NaLcn8pjjTMYOcKFbtZ0\n8Pdn2jTR6W5nsA3iBJdH7pY+er0En0JDxapy8/7YsTQNH8VH4w9Sm57HRL9imvxDSP81lY/9xlBV\nJX7LBx/I2w1qKx/EfY7+5FH44x8lsnIdyOkUtt26VZIGXbpIsOff/z7LJjlyRFpkFBVB585s/eIA\nRxf8QAhF7PcPIyS5FJOlQoqdvPqqGGQtJYdDWgPt2SPK4aabruzzO3fS9N0cMtYVUKyOokPtRjqs\nWSNW2eOPQ79+TJ8usmzaNPF5335b7MUDk77EtT2FEq8AMn94i6Q+xpbNITVV5tChgxREu5CnuWeP\nrNXWraL/uncXnjq7VVduLpsnzGFW6ghq/J3U1kYwfLjsncslMYUBA0Sn2myi9lol8H7oEHzxhcgw\nm00iAkOGCL9+9pnIyMRE8S6GDsVe20Da6H9iLSgn26cna7tORqOR9V26VJy+4cPh0Ufl66dNE4cr\nNVXGGxTUCmO+Glq5El54Qc75559LC7j6etHjhYVi+M2cSd6iXWQU+3PogTd56u8mjhyRM1NQIB/1\n9pYOQt27w/z5ss12u/iGPXte2ylt2SKiS6kUfXX0qATWy8okTnHDDaIjTx3Z4mJ5MTBQCgCtWiVn\nMiFBhENjo3jEwcHw2GNXXwzuMsjl8vDKnj3iGL79tvhC3boJe37Q/RCBSiXk5UlxuX79ZNIdO0qB\nP5VKWuItWiROYpcuwoijRrX5+EGW7dZbZfxqNXTtKus/PjtVFn/vXrEXnn0Wdu+G774TZfH738sH\n9uwRh+PNN8FkuiZjPp1++QUWLBCRVlQkfFVdLWwRGuzAPn8pN+9eJlGHtDThGbVaWhAuWCAyY8IE\nj+Pq1p8nTkgwJShI9uL3v2+zOVxxXH/gwIFMmTKFpKQknn/+eaZMmcKUKVP46KOPWL169WV/z4Xa\n/VgsFuLj47n33nsvK/t7Wb/lsBNgLaReZcJld+Dq1Al7fhF1GPCtzad6TQrMnQs2G7t2yaFqbJT9\ncDr/93Sj8JAdKSbleZjN1we2kZ8vTm27duLPUV0tnkJlpSiT8nLWf3kMb0sVRUWQU+kHajVOpRLv\nJjMOpYbIPYtPfV9AgOgfL6UVr5oSeSIz85rOae1a0Xt5eaf1pU5Lgw0bYPdufp16kGBDPcXFwkdO\nZzNiY+xY+ZBeL1b81q34Fh7B5RAmMzmq27xZ965dYreYzbByo56Uhi74NpWzun4QdnPDKWSJwSCy\nymptDtYWFIgiDAwU4aVWw8GD4knqdGIQFBe36dgvRmazGFPR0bB5c3Pl+cpKmDsXx8lCqlOzsNQ1\noVRCyopSEbr+/mIEX6RPtl4vRsKpoPXKlSIQMjPFanCHxUtLW3dCVisNeeXk6JLQVhZzzKePGMUm\nE1RUULvnKDt2CG91yl9NY5WFoOpsYswHL5QIurZ04oTwjFaLU6UhoKGAfZF3sX2vlntrv6eo3ofa\nHYfFCua0c+11nROBx44J85++p6fz/tatlGw8zOHUBpQKSMlph7WokpXaMSiVYv+DHG+VCgKqslEd\n3CcTW7z4wr/bxlRdLfZSTIxMy2yWNT8n0L5ypQRtmpqwo2JlQQ9CFCWUNAUSVJyO6kiG8P7+/Vcv\nq4qKYNs28TR/+unKPmuzwcyZFDb4kV4VgdFVy7YTEWKo63SCyEDmePy4xN0qKmR7AYwFR6j3CsBg\nrbo6SOPixSIg9u/3bL7NJkJo924PxPPee2XhKyvl9YwMyYyfTUVF2MprUChcUFdPfb2IG5dL9spu\nl6K0VVXy/I4dLR/6GbRsmfzAvn1ieEdGiryZMUOchupq+fHmarjl2TVYCspAq0Wfewi1yonTKW9z\ny+ENG0R/wH/R+XbTjz+K8KyogG++kedKSkSvuYOcGRlkndAQZCmgYH85xcUyJ41G5mk2y7647UN3\nkletvmAyvk3JZJKtcrlEX+XmCnokP1/4v/REAznzdnquGMTGiu6zWMRrtNsl4L56tcerzMyUDdu+\n/ZrMQaE4k1d+/VXW12aDk7k2nAUFNHTsIYtdVSVzWLxYztMvv3gO+Natoptra2Ve2dnXZPwg8iYn\nB7RaF40NTpR11TRZmtPoZWUyuYYGmD1bvMayMjkoW7dK5Mc9t+sEtf7tN7HXs7JkCHV1wldVVaCo\nrKBhxz7ZqNRUT6cAELvQ31/mcbotePKk/O3lJfavydTmdu4VZ2xjYmKIiYlh586dF33fgAED2HEB\nqXuxdj+ffvopDz/8MDddafT2fGSxSHjt8GGeG9Od9KyTxI5KxHvsFMybdmDeV4HdpSK84aREq8LC\n6NdvDFu2yHnv3VugP9cte3Ae8vEJuG5OaksoMlKMqRMn5Azg7S0GYnm5CKWZMxmaZ2Hm8ZEEDehE\ndIQTHnsM3dZt1OXWkliRTrDVWwyVfv2YPFmCyzHRenx2jvBE+68hDR8ucZDISFHggMxJqYR9+7hJ\nt4bFm/QMuaMP3bsrCAuTqB3KGyQc+f77on06d+bGPkZ8jsxBmZNFj1Az7C0Uh/+Pf2wTqEbfvtI9\nw8sLRt6i4oelN7PjWG+6ajO5xzmD9qqHIMdBRGwsLw/eQsnSHSSrIyB6rEREc3LgrrtEkfj5wUMP\nSWT0OrdAMZmgf39x3AcPdneQ0YOPD+FrfmWyqY6P7EZ82yfR49YwCBgkWn/cOBm7xSIWQGSkKJpp\n08Dbm6DJk3n55UAKCgQYQEqyOPQmk5TrX7FCMtidOrXuhBYvpuv6pdT7h1Fs6MWImiUey6lfP0yj\nBtAvU7ajOKQn3QJ3o/UxEvZM7DlJoOtCCQnCbBs2oL3hBmpGf0j45gzuPbiAFEt3bmU1vj7OU+mm\nyZPFYI+Jubok4FXTuHHw7beyp6GhAs9YuFCUs9MJEycSHORDUkA2RwqMdPf3p12sHf+gaDp5S2JD\noZBM2pYt0D06HN3PgWIVNEM4rwf5+QlqLDUVJk6Us9K163nemNzM30OHonr1NeKXBnEo/xa61e0k\nJDIKfU0RHD0hBvCmTRcNCl2SgoIgIkIyZIMHX9ln1WoIDyc0t5DsDnezqjKA+/QbZZ/8/CRddvw4\nk56Mwc9Pwfr18lNu1GLs64+h/mQhzuiBdPzlE9jkLUx4maizU9S7twRnAgI8iI2VK4Vn3IzQu7es\n6yefyG+kpcn716yRz06c6Mnk9+xJl1v3cOeKveyNH8eECfK1jz4qtvCoUcJKfn5iC/fvf2XDvSD1\n6iXGZkiIyMAjR+QOyrFjcjCHDIF//Utkpt1O4Irv2WH2QtNQgyqqA6PaZxN/WwKJifJVe/dKQken\n8yxDerqo/OuQhDqX7rxTbAeTSXgvL0/0txsqGRYG3boRseQn1lkGEuDbRGiovPXAAWGv3r1lPj16\nyFfef7/wl5/fBSD+bUz9+4vecydds7NFpd1xBxQct9GjcgvtNyyEgjDJBmq1AiMFYaqvvpJzvXWr\nrIHDIWfUam2G2l0bOp1XUlPlERzk4F7DGm5X7iZynRk+eF8gZWvXyl4pFBJpePddsUNuu01S6B06\niJF2Grq0rSkmRo572i4bnf1y+Yt+JXfa/CDxdyIDXntNIg/R0XLv5sAB+WBcHNxzjyAISkvFUf/T\nn645pn3ECPh5kYu4+nTudS3kjdA/oYyKZNgwiNi1hVuO/QwKq8iy01sq9ekjgcrISI8cdUfloqIk\nQHzHHTKfBx9s0zm0Wbuf5ORk0tLSzvvaxdr93HHHHSQkJLB//36ee+65M+DOcAWln202ePhhitcc\nIMvQA023JPqv/IeHSerqsB7IxJ6ZheGXRSKB77wTfvc7LBY5J20ZWWxpKe5zW/sAnNvu53zvae2t\nvtw5OBziN5yKYlZXS1grPl4wVSdPUlfVhFankPvODz0kp2vePPj4Y+jRA2e7EJYOnEpGhiiQ1lQc\nLdmL+nrhD/XpoaH//AfeeANXXHvMQXHoP38ftfY8oIjKSpwOF8u2BXLkgI2J+a8SYC2S6OjQoSLU\n3n5bBEQbzON0/raW1WJ/8mkMepen+brDIWdhyRJReBYLdV/NY86aEOxWBw8/osLfWixGgbGFEL6r\nnMP5yH3n1Gg8LRNVWChwJV9fbAodtvc+wehlh8WLKazWM6f2LsIiVDyU+zaq4/rmbwQAACAASURB\nVNmibGJjRUDbbOK8nt7z2uWS/fH2vqgHdtWl9r/9VrIlpaUyoYQEMUSefVYsGIUCZ20dNT/+glKr\nxndkXxlP891CN+XlyTGKjYX77juLXy9BVz2HqiqBq5rNosA3bsR5MJ2iai/0RiWLuvwDy5BR/P4R\nZZte4WrRPKrlrj+7dsleR0SIkdEMx3MezyNv1m/85xcdvpoG7nutC+phg8+fqamvl8xBaOiV3fPK\nyZHweY8eMGDAVe+H0ylDOf181NXJDYqmJkGG+fs187deDyYTrllfU7s2BVNTJcrkHp4Lug6HGGFX\n2Gv+1BwqK8WpMxqFnyMjr/xiuNkM2dk4dHoa3/4Io65Jgj9PPCEGrs0mPS1HjqSuznMt5Az6/nvY\nvBmX1cbars+yy96bO++8NIz01DxcLslG+Ph4FNzcuQIvrK6Gv/1NMjVuKiyU93/9tQTTg4KEp6ZO\nPeP76+vlrF7IBrHZZD9tNtk/p1Ometbxv7w5gMyjpET2Q6WSLJjLJZcDCwrONFaXL4dnn8VubWJF\n4wgOR9zC7/7enva/6wfIWMxmWZJrca3xis9FQ4Potpoacd6/+UaCEdXVAmsdM0bQVatX4/p+NvV2\nHa777ufH6ttobBS2Dw1t/bIerd2exQ3nXbcOOoVXc9eGKWi0CmGS5jv055DFIjpPr5fUe2Sk/P+T\nT85/l7WN5wCiRpT1Znxee5ZlJ5NJr43k3s9HkpSxRBjt3nuFd2fNEhlSWSnnbuNGmUMLYL1XO4+m\nJihdtoOwb/6Fcn+awLlvuYUDY//JsoUW+sSUc8v/RKHQauQQl5XJOL29pTeswSBy+K23xClsAV3N\nHOpOVuP96AOotCqsen/sX36NIchbriW4oRhvvXVKUBYWwrwfHMR6FTNmQiAaU3Ph37lzRYcZjaJP\nQ0KuyTz+69r9ZGdnM3nyZP71r38xbNgwbr/9dlRnRSwuq91PSgq23fvYZ+mCv62EuRXP0NOuQuf+\nKqMR3cDe6Pp2h6BmOGFz9OECxZj/j1pIKtVZ0Bx3RB3ECPntN4w2m2QAtF4SJe7bVw6EwwG7dnHi\nyfdZskRk7KxZ59gB15zOMWAbGyXClpCAoqQEn7ffgvM5tQABAZzIFduhndJMzu4SAm4NlhBrcbEI\nsja8hHQ6f+va+aB7/3URVnq9KHijUSL2bsitXs+2ldVsSQlFqVTTLgzGjQtrs/G1lBSK8+iu8HAR\nwDt2oB0wAG2gDhbLfaIFh0eRGVxKhn8gt9VlE5TUTjzBkSMl3ebtfe4dOIWiRcL5imnsWIFnhoWJ\nlatUimEZF3fKWlT+tgr/LcuaC374nfeO4pw5Akk7fFgydOfN0rUVlZeL4eHrK7im5GSUdXVE5Ofz\nm9doNqaaUDZWERwayLhx13Bcl0NlZWL4RkcLOiEp6QzDThkbzbqIP3DApxCbS02SIZRBF4IfGgwt\nwyZOmyaG5q5drVKBSqk893xs3y6srlKJ7TVu3Jn8rcg4jK++CTbtBZVCcJjt24ts+J//aflgFi6U\nH3c4PFmVKyWTCXr2RAUYn54gTD5ihKSpGhvl/GZmwsiRF46/de0KGzdSrmjH3N0J+ETIVdMZMy7T\nKVMo5IyeTn37wsyZYqju3HmmYxseLs9XV4sTXlEhdwDPokuxi9upWrNGllGhkNjLPfdcxpgvNA93\n8b+1az2XNfX6c7+0pga8vam36sjRdSYvvD/fHojmzWbglFJ5ZQ72Nae1a0XPgThu2dmCuNm6VZ5L\nSpJ/hw1D0dCA0elkvWEEm5ZKsCEwsE2vB7YaqdXiV7hccOyYHzf87inCS/dd/C67Tif8u3evMFlx\nsXjIH38sTs11IH9/wN/EiQee5z9vqjHEBzPrrRI+0P8qb4iJEYj80KHCt4GBciYzMz2w3oqKawoV\n0Ggg4q7eMMt+qnqqKzeX2Z+bsRoDmZ/iQ/LYZlGr1crhdVOfPmILh4dft8voxuqTUFkGZjO6xER0\ngc1G40MPyZoGB5+B0FuwADKOqthnjaD9EEFtACKTTSYJ7FZVXRvbievk2F6s3Y+vry833ngjGo2G\n+Ph4SkpKCD+rKMvpju0FyccHZUg7OhcfIsvYG9+hyefPVmg0F4YpuFxywGtqpGKDt/dlzvD/6LIp\nPFzwe/X18igvl/1QKuVvf3+w2wnJ2U6Eswf5dVHX1ji/XFKrxSG0WASjlJAgxvzMmSK0Jk6U4Mnu\n3RAXh09gR/R6KDEHUHrDaHBuhTfeEKUaGHhtoyuxsTB+vOB/PvxQBPGMGfK8xQJGI+2idKj3ypE4\n2477r6dOnc6EChsM4HIRrq8iFQ1eWiWaAJM49/fcI/s0ZYrs2zWsBnmKyss9mNHt20WBjBwpCuJ0\n5WwyeS7fpaVJJmXUKIFhNZMbVajTXYepxMXBjTfKHJKSxMB/8EFYv56geUdQlzpxqVRnFtOurBTP\nwm6XoFdw8DUedDMVFsodUJ1OHMw+fc6x1sNidDgiY9BWlhGQvx/sPa8sJX4p8vMTo9tobLOq70FB\nMmSX66yi5mvXigyIiPAYXiqVBCQffVQcnqvBjJtMsscqVevo1eRkgY1Pniz6pFcvMWYvBUHs3Rve\new+DTY3vez5UVQk6/qoyjQEBIv8vVE3Wy0uytLt3i1M/dmyLfyo42JPobjWb0V1W3uU618Pev1/O\nc2wsquA4Tp4YRb1XIL1ir3EJ4Kuh0+fk5wcPPyyXOV9/Xc75Tz8J+urJJ0We7txJu8oc1OpEnE7F\n9S7+f0UUHS03C3x9wTSkJ7jaS6DMbD43oJKeLkihuDhBjG3dKlXwQkOvHKLf2uRy4aNuwBAUgtll\nICmyFNy1UN1Rq7FjRVcuXCjjvvlm0ek33dTirOdVkUYjcshuh9JSFLffTuDWGjKO2fGLb4fRqBQY\n8uzZInTGj5fPPPaYICXcGdzrQSaTrGVtrZwBt0AMCBDI5LZtIr/69gWlkvDw5uvBzgri5k6HFS7R\n3w8+KPPr3v2yMv6tRdcFipyWlsaXX37JjBkzmDRpEuPHjz91x3by5Mk8/PDDJCcnM2TIEDZv3oz6\nNGPhstPSLllYa1EFdU06dK+9hPGGZo/o4EFJ+8XFwZ//LDtSVydG2OmMlJ4ukCanUxjtkUdavB5n\n0/+foMjnJatVDNjcXIn8K5VixA0YIJeaN22SKOHJk7IniYnUdOxD7qjH6dSpdWHiVw2fqagQZe+u\n3pCYKFbGu+/K5eK6OoExvvGGGMxdu8Lnn1PsaEdxMa02nyueh9ksd9ArK4W3n3lGsuVarUB37rtP\nzoavL65OncnKVmC3i4/SVhCztoAyATLX118XHvvrX0GrxYGKdE1P2pWmEzbnfeGzvXtlQwIDPeWj\nW0CXPY+6OomEl5WJIdWhA7z8smSOvbykJLufn2DKSkokKu12KBwO2Z+mJrkfFRws3zN9+qn+WE1N\nEjQNDLxiZPvlz6GxUc5yXp444507e16rrIQXX5QASVycnAGbDdf8n8jKAvutd5I0wN/DTytWiGGp\nUomD3gqp3CvmKZdL5uHrK+s5daoYdxUVcl4sFnjqKZxhEWTM3o33/G9o33hYotl//vNVj/cUVVWJ\nroqNhejoNjkbLhdkrcrC/tkMksJrUbz2qjBK376e9gwLFwrPnTwpju1VZD5OzcFm81QKdvc5Hjz4\nyqIvLpcUAdq2TQynTz6R8ZpMYpRfYXCwokJYuGPHS2dMz9gLp1PG0NAgNoSXl+i1kycFRn52AMBd\np6CkRH7o5ZeF31pALpenDsuVOuSn5mC1NqOltHKX1l1EyuEQ3ps+Xc74U08J/zc0SLBfr6ewVE2Z\nK4hOXzyNNuQ6BAG5wvO9b59cgzKZRK5GRor8dTplftu2SSEtl0scpZISWRu1mqw//BNbeCydOrWN\n/muL893QIInLyMjmWjEffyw6Q60WHX+6w/faayKva2vFJpszRzK2d98tAd/LOJttpr/37YMPPqCk\nwUhR/3tIeupmvA7vldeSkyWBsGyZFMFy24z9+rX4XF32PCwW4Q9vb5FfZ1+nqKyUojDt20NGBg0z\n55JpDifq8TsIGjNIdGNKigRR33gDHnigReO9qjlciDIzJcjeq9eZftHixaITSpqLt959N45xD5F+\nWEFoylKCN/8sn0tOFtl2sT6fbTSPNsvYzp49+4KvXazdz4svvsijjz5KbW0tEydOPMOpvSJSKGD4\ncHS//ILOYIAArQhwnU7akzidYsQuX+4RZJWVYpyAKNv168UxiYjwlPf7P2odOnJE4EBKpafUvvtS\nyBtvyHobDJIeNJuhqQnfvonXvIT+ZdH06SIESkvFEHcXVOnUSWCMRqPwVnGxGAv5+dDURKiugtBO\nxmtfJnLPHhmv0Shej14vSq6wUAyWgABPhDYxEQICUCgU16UgRquQyyU8Nneu8NSrr8K6dagUCroD\nlIXCUpPAA318mi8fW89tWu+WEcZW3LODByWA5oaBP/20KEutVnjFXdHxs8/k72PHPD35+vQRw1mt\nFkxibq68dppBr9F4ipu0GWVmSsbYx0cyHac7tna7PLRaMY6PHYNVq1CsWUOCXg/aEzDwFc/7Y2M9\nWc9rGOE9gxQKyWakpUmAyp2p3bNH9qqsDNRqlG++SZeIaji5RYzBhQvlfl5rpXT8/VtecMpdBMfP\n76JZZIXLScKsFyEjDbK1ck4SEoRxHA7ZN39/Sf3ExbVwIuchrVaqC+XliUHtcIhO+OtfL+/zNTVy\nXn/7TfZowwbRJXa7xxkfPfqKMLGBgS1MTKWlSXYbZEzjxslaXWi9VqzwlFr38vJ40RaL3LtVqSSQ\nfhlZeoVCRPRV0apVgiUE4ZXBgz1Ywt9+8wQ716+Xc7F2rZx1l4twQw3hrmo4lg6/5cpd+v+K6nXn\nofx8Ty+Zbt2k3c/SpcKDCoVUso6P9zgncXEiU5uaQKkkPqweqrbBjyckG/jfVFX0AqTXi39xiiwW\n2eP6ein6OHCgyNmAALFXVq2SvV24UPZZp5Ms/YQJ120OgOyBy0WIoZ6Qpt3wnzKRjQEBnn1VqcTe\nGjJE3t8qfbAuQStXis4DOcv9+p35ekCAR4bv349eZSW5cTvsUcFN3eXsnzgha75xY6s6tldNiYln\nCpfaWjkb7iItubmi6379FZXdTvfAQEiOhOU1YhO4XLI21wG332LH1nSeqK2vry99+/blww8/pNsl\nGil+8sknZ/ztbvcTGhp6RW2D3ORyCcKioECq1gYEICnzvn1x7tjF0Uf/RXpZMI1TXuXh7j1QLF1C\nmTaChdu6E5R9knuDt6E+va/P9u3yUKvFufpvYrj/rWS3ywa1ayeHJC9PngsOlnVWqbDYlMz9GipK\nhjMwspGAFT+g0egwDO1P+LBhlJWJzA0KkiCiRnO9J4UYUuXlYpgtWUKZxcT6oAdI7jmajq93F6FV\nX09dfE8W7wojxe9+nl2QSod9P8vcX30Vl9HEhg2iQ+64ow1lcnGxVN1zj1utluxJSIh4QL6+uB55\nlN2aQZge+AfK0mIOxN9Dv7fGnOrbnpIiKJSICPG5Bg9uxeqcV0Nms2S5zi5Ec/SoKI2GBrDbsRr8\nWb4IIqPEdlm2rB3RQ9+iS3gVL77rh+JQFVM/UBJxtkOwfLkI6pAQcY5bo3BWVJRYH1arBxr27LNi\nRHbrJmelqgqHA37IHkLKzliGtzvEXa5l1DRqsXfvRfj0V1G89JJEqt1zdzpxnDjJz5uCOFag53e/\na0M/MTxcHIi6unO96OBgnE/+heVzasjSdqP/+A8JbzxGTNYWXAEBZJX4Mt8OOq2L348sJqpjpFRf\ndTrPvHd0jWlD50kczD3BDbeG0q85Wr2tqD27tvVjuGMtwTVpHAjNobi2Kw80gMFm88A3rze5XNIY\nfOdOCTI8//wZyAOrVWrnNDSAnw/4FcSzpXowgcoqLAsj6RFxkhGhYShGjxajrCX3Xy+XnE75V6m8\n/L56qakiw7Ra4bviYhFAzz8vldKOHROHrL6e7d0fZ8kS0RNjx3r8NasV5k2vorRayx/+bDijBXV9\nvdj0RqMghi8J2nDPAS5vDl27ytiNRujRg93eQ9n8zzqG+6XRa5c4mDa1N69sGMmxY5L0aGnx6fR0\nSRgNGnQRxIZ7/C7XmXMBEZDuUruJiaKYYmNlDgcPSlDCx0cazPv4wI4dbL7/UzZsVpOQIHHThgaJ\nMdx4Y8synaWlkhTr0OG0u3stIadT5ng6r8XHe7D4iYkiv156SeyThARP1tJdav+rrwDITavmpbwn\n8fKS2ztBQfIVa9ZIQn706Iu3NS8qEj+6U6dLNxNoaBB+NBguzY9u1u/dW/rWlpeLveTvL/yv+eMf\nZZC//krZrmwyPtxNaIiL2D8MRnv3HSIvoqNlP7VasQ2uOnJycaqvlyEplZ6rsKNHnxnXOaTtxW+G\nV7ghMIuBmQvEqVq3Tt5ksch+Wq3s0Q9lQ8Db3NDXyZAbrwH82OHA4YQThRq++9if9rdIXOtsBHFt\njYsF+/ugtVi5v2k63llZgpBrbBRnpUMHQSueRtnZUtg5Pl7Ac9eyOPKRI2KLRkdLsryX7hD9tn1C\nlcOHBdHP4xMUx9ib/NBZa0WYLl/OnvIYVsY8yfAbXmCo6kOxa65Tr9QWO7bPPPMMUVFRPNhctnn+\n/PlkZ2eTnJzMhAkT2Lhx40U/P3nyZFJTU+nVq9cZTu7rr7/OkiVL8Pf3Z/To0UyePPmyxpObK2g4\nNzTnvvsgKkqJV/v2VL3zFQcPqzG4TjDv3ycZtvpuIvv2YcGCIHangD2/Fx2aMul9+knSaOSkhYYK\nRv+/uhrC/xKaNUuq1IWGCva+Vy852DfeCElJuPakskr/IL/8Ajqdhh2Hu/NYgYFyVQgxPx/B+LyC\nRYvEsbLbJTB8Nd0mWo2eeEKk0MGDmA+f4LsKFYcSYN06BR99FCf+T2Ag/wr/N0u9dDhr9dz+xTO0\nH6xCUVICJ09S4t+J2bNFIB4/LgHINiGVSvj6xAkPXOQvfxEDZsMGCAsjN2QAP085yh0pORRZ/PAx\nb2HevDH87W+SKJkxQ77ms88kiJSeLj5ZKxdIvjKqqpKm5zU1UkjidAirWi3KY8AA8PdnWtiH7Jin\nwGQSY6+oCDbb/dFq/dl12IHWruLThTqmDjrrN7ZulZROcbE4ke4iI1dDkZECWW9o8FhCUVFyj9FN\nCQmk3/ws07bForbUUVCpJ4INKE16mraXYNlSgDMhkYiIePReSAT7l1/IXpXNioyx6Af04LvvvHjz\nzasf7nkpOFjuZJnN53VGM429+bkKSjMcpB8ZwDPaNOq1fhQTz/q8eGbPhiEROayau4w/3XBIin1d\nB6e2tlaM6IAAmP2jBh+fePbPhZ6Doa6skVkfVuNljSa1/n/4o/cvfDBNzahOOeS44ujWI0IE0n/D\nBXS7XZzaqCjxLNwojGbatk0SVdaiSpS1VeTU/I32EYWk10aR3LiPAymlGAIPkPjsnQQMuniA+qop\nJkYg+Hl5IkzOR/n5ngAzSFRNo5FAytjmNmTh4fKcwQDvvAMOB1VNRr78Ut4OAkj59FMxnA/M3sfa\nfzeg0zj4WdGJp173FGlZskTiV3a7+GruTjwXpF69JKNVXy934UFgehaLWIZne3NDh4pzOGQIDem5\nzHj+GF46FxlBkXwWrsFLbWfDXl8WLZJpT54sY7rSbHJVlSBPHQ7RmR98cAHHctQo0QWBgZLBO50S\nEkQ+2e2inP7xD/niUaPE0YuLkx9o7lNZr/Xnu++VGEyc0mc2m6x9hw4tu+o4fbroRIVCxMzFHMbz\nktMpBqK/v/DaiRMeXuvSRebncokcq6qSoElNjWTfSkpkTSorQaOhtsmb0noDH2UNYHeRfPW33wrQ\nIDtbQEEqlciR11678JCmTZMlW71abjpcLPm7ZInUpXS5hHfPTgq6yeWS/XY6JfbTsaOgRnfu9NhL\n/foFUzziYWwpxWzapiKuZjXpxh74zl5ByJ4dYue+/rrUQwgIuCatchYvlivOubkCMPHz41RrJRD2\n+vd0FWpNJw7mdaCzei1+TVWiM/V6qWViMuH0D+Qz7w9xVQVxfEkxXbvk4d/jPOevNemuu8jM8eJf\nh6LZeqIDUSeFjZrbPZ+iVe/uY9NPDTjtQURED2KEq7lX36BBoFTiev6v5Pl1x7vUU1bi+++Fj0rS\nCukT4qDDsGtzT9hslmCNwyHObc+eoDqaRpcIWJrfie35TuwhNxD7eB8GxhTApk0433ybL4vHordW\n8K1iAIm/fw5zSSPtRg7glOdUViYyOza2zcult9ixXbZsGQfc/ZeAiRMn0rNnT6ZOnco777xz0c9e\nrI+tQqHgww8/ZMSIEVc0HneCxm4X+/zEwVrurv6OUSMcKH2M9Lf+TJXTF70BfHwV4BNFUCTY11ei\n0qnw6Rgqu3jffSIZ+vYVIWizweDBlJVJ8M7HR9DK/1dHqgW0bp1kbPPy4PHH5T6azSbhxXffZVVq\nMPNKy9hRGYyPDwT7R3JE251E+yEORv+O/grRvXa7KPzr2u/ydAoOhvh4mjKOsfNYODsbQ8lvbOKG\nZCsKhcfbM0X6Yde6CLAUo3bWsX9JLl5d40mMicW7SXiqrq51/KVTdOSI3Fns1El4u107gWB9+KE4\nVW6oaECAKDCNBuUJBQqXg6oqFz62k6zQPkaCt3zEjcKtrZX1N5tlT6575ry4WGCAfn4Cp0pPF0f2\n1ltFo0+eDCUllIR0Z+kTwRSVQFxUE106q8nOVlCQ78TkoyCo+hg+TRUkHswBy/1n3tO76y5p45GU\nJML5aqipSQRKYaH06TgtK1ZbKy+5XILi8fVVoB+UjHcYlBQYCQyEE+H3Ep69hRLfjixfHUvpfCdR\nUfCP21JQz5oBaWkEJfTD21lPQ4WF6IFtXIzM11ceBQXwww/kNwYyR/EIvQfq6NRJ+MOlUJEbOZgt\n3rXodZs5dFjJAuVdNCpgWNYshrk2wvZqsRCvsYNoNovNXlkphmNgoOjh6GiRNV6NVRibqqkMjEVv\ny2FVx6cJyi7jnu1TCLIXQ0WQWN2nkd0u2ZITJ0RnREcjm1pTIwepNQtNnU4ajcA+fvlFjPJVq2RN\nH3wQwsPxcTXha2nk1qw3KW0wMtf5IEcie2IKBbs9lDKzN586/4L/u0b+2bmNEZcKhSz4haz1HTsk\n+6xUyhkuLhYvrbJSLPfk5DMrhyYlSSakshJd8iBMmfK0Uik+r1tOBZZmYHPFc7gsDP+MRhwOT0ak\nulpMAadTQFuXdGxVKqnG7KasLEEdZGd7HPdevTwpKLVaeq8vW4YmJADfPBtlFgMhwRrUf54AGiX+\n6l6ov5exOJ3wyivCn3V1ghpOSpKrjxfrkKRQeEAEF+2ktGiRlMb29ZWU4LFjArHs3Fmg9e71PXpU\nHD9/f1mgp5+WtCPIHCsr0XbpSdDnSvbulTPlvt3h5XWuzeRwyPk4flxY040IOpvc7WXdMdkrpkWL\nZD7e3vDPfwqvHTokkdnu3SVxYTCITD5dj+Tlyb7t2wcPPIDZP5rXVG9R1WClNqAdrkIZk9tZ1+tl\nay2Wi19Hzc4WdKHTeSby+UKkUoksyc8XvRAefuHsu7+/B9mq1YpadzhkXCaTbOHUqeCon0T3ntlY\n7Go6mVNo8guUNdi7V/bS7UXfdFOroVB27ZLM7JAhkstwk3v+Go2HV08PkrsbApzMd+Gnd6B78gko\nOS6L8M034sX374/j4BH6ZX7JT46xdLMfwKhdCX/+Y6v1D3e5xAHfu1fOXteugLc3NTeOpngtYJbz\ndk6A3+kkoOwILlUcyoZ6fKiVjExkpMjmG29kQ1lXZn8Mai38/e9issTEQFPaIe48+iHhXzjB+8lW\nhcY1NkogxmwWO8Mt5xUKWfOmZpvUYoGciCGo9DsIDFLgNCtQH9qLz+4yGHwzdOmCIiaaKJWT7AYt\nAf5K/lMymJ07we+I3HLzqcmX/1itknQ42/NvZWqxZtXr9fz000/cf//9ACxatAivZiNQcQlvfNeu\nXYwaNQqAkSNHsmPHjlOOLcCLL76Iv78/H3zwAT3Oc0HsfO1+3H0aly6V5/tatxCVthTX0Tz8w0Jx\n3ToQ/d4DfGF8gZ3vPsvJjiMYPRo6RBrwWZFFQspWKFdJ9spqlYzBCy+cKpSxfLnIcjcy40r7yf8f\n4WmkCKJUysvF8WguJHLw0G00NBTjq/LF2+RPYKiBTs8+SfSiDxnuWoBpv4F77hlMe59yfH7+lo7f\nVQls8xpXTrXZJMpYXy+BTT8/sPYZSN6MtZidRv7k8xOzypS8XvsNhswnBN40fTpTFv3AMGNf7ENH\n8NPKB1ComjAfdPLu5HcJfW0ir74aQV7eebs/tJy+/VYkV06OBBA6dBAGfuEFSb0GB8sPLl0qk0pO\nJnbSJP4Sv4qGZfvwxsJObQ379om9ZjCITzdwoMip0lL5yhZfOTWbxVq70h6fZ1OHDmKwHD0KNTUU\n1vtQvfondP59KHW1Y//+ntytWk7J59OJqbmXMF8TiSX7eEZZyE9Jt7NiZwWB1Q3cbEyjvzaV/hWZ\nUDDwTPzukCEycaXy6iOO6ekCN/byErzRCy+cesndfg9E940ZIwbQzDeLKHzufdpXpxHesTcf3TCD\nOpuWEwfriS7YTNPWKupWf4W1pBJXaBQh5nzeuP8gJfcOIamNE2+n6D//wXXsGAWbD6FJ7sG84/14\n7z0xzEv2F1E14ye89u8iMziWhR3/jJcxlruiYfTxHPwPHIdii6TLfvhB7rGNHQsKxSmYX16exBda\nu2tAZaU89HpBs8bHiz00blxz15P2obzy5BZytxyg3Y02NNmr8TNloTUXoLVWQE6tx5FRq8HfnyNH\nxBDS6WQ6L7+MWPIrV4rl8tJLbXe//oEHYOxYXMeyKHjyLY4fV+Cz6n06+xXRe/dOOmoDcQaH8tea\nV4igkdGq77k3NJWSvneyYLk3FocWs08oJSXX+Sphaqo8amrkbGdliUXmljEd0wAAIABJREFU4yMp\nweboptMJvy23UnW0jJG/70G73mr0eGrHBAXJ/91xqva/H0jMkuNgtFBKezIzPVfDe/SQIITJ1EIk\nXWGhYCoPHxbPeP58kU3PPCPBtpAQURxjxlCaVkrki6l08Krl7n92ZcGB9litwvbffCOZPV9f0TUl\nJRKjrKyUeGWPHhe/XuDnJ5nEjIxTra/PTxkZ8iOlpVLMZutW+XvaNMlmPvigvOe22+SLjhwR/oqM\nlBQhcOiwki1pMDhK+HzqVFEtpaWSxP7d78RA/vxzGfMtt8jX/PKL7MmcOc3n4zw0adKpQswtu76e\nkSHZve3b5e8PPhD0mN0u6eAff5QzW10ti+vrK4MaP17SVU4nDlQs+A525wTRrRv4aOCRCWL4N5uy\n+PpK/Li2VuZ7IfrmG+Gv/Hy5LXepTPyYMTKsJUuED+bNO0NdAIJK2LFD4llOpyTSjUb5bGysBOnc\nIEqrFby1MKhuNQkJR2jMqiTi2H44rpHzVFoqP9SxoxQLs1plv0+rtn+lZLMJittgkNhwr16eGnT3\n3CMOuFIp2WWFQsbf2CjlbxwOMcvz3v2RuPnv4L28uaDfrbfKXt51F3z2GQ4U3ODYxsiGxeynJ0qb\nVYz2VnJsi4okqGQ0Sqzt3/+W5/v1E949fFhMLIBPP3Fyr/k72h3ZysacSOox8qzXKrzKsulia4KD\nSSKQ7r8fKioIePglHj3ZwLKEKZRkBtLeaOMPfwjmpCWPUJ0db2+VpLRb0bFNTZUkoEYjvOu+Rm00\nCn8dOiQBtMJCsHy5nrxf0xnepQiTJRtVeQ7tP0qFwFdgzBgUGjV/U0wlZ9yrBD/Rk7feEvlTXS2i\n0KesyJNhz8yUAFpVlQSwWxStuji12LGdO3cuzzzzDJMmTQLghhtuYM6cOTQ2NvLZJfpdXayP7dNP\nP80//vEPsrKymDBhApvdEcHT6ELtftaudV+fcFFcZySmIQOXtQmMBgI6KCBEzXH/DjT9Zxlr+4zA\nZIKxY3XQ92HoN00kwqFDEk04ceJU70WA8EArjmMn0TqbCNSEA9cmXejjE4DZXHVNfqvNadAgkWxq\ntUiJmBiRtnfdRePJCjpZ9lJrczLOORtrYQDzvf/OHb77UHkfFctk+XI0gwfTp2Yd2A7B+kxxEN5+\n+5o26ExJEYGrVMpUHnkEdtp6YzF0Q+8wk28L4cmkDQQEqWjcvJsGZTsC1qxFa61ngGITZGSz03kP\nB4v86aHLIHD1PKhIJ/zjjwm/oZXhJnFxotCNxjPDyPHxohRALKZ33xWrYdcu6N2byOPbaNSUUOsw\n8JDrRybm/omiouYuAZYUQjYsIUjXk/Z/vL/lTl55uUTQzWYR8M19pFtEWq1oP5eL+lf+Rc78TOp0\ngSyYZsSpk5c7pm5i0BAVg0oOkF/jy6M3nsBr5zYGlB8gzTaSOyt/opdmPwG1FaAKES/K5RLLw712\nrXXRJShIjCer9ZxURXCwe0ldtMtNgY+2wejRdNEW0aVhOQQYadyyldL4Mmp9ItHXFuFwuHhM8QPH\nCr2JqSrHWV2LJbk9IWXphAScBG0rFv65GEVHo0hJwQsrRRmV+CRXYTD4ExwMcSmb+TJfQZe6KppU\nAXSzrKe4IpKnRjYQOOh2SFsvluL8+QLFXr5cjBejkaNHxfhVqcTIO9uwu1qKihIDfO5cUeQlJZK8\nGTAAOre3QF4eIX+8k5DHNVLhfGAUrDoENjM02cCgF8tt1iwJ1Eydin+HoafqkJ2CYG7cKOcsJ0d+\n4EJpqtYglYqSfCvOHSkk2qopKwilIkhJSGMjPg35oLHQOa6eLE00A058SVB4ECE7v8L0+Wy+X6in\nW9y1qb9yUdJqZdPdrd8qK8X4rquTNezZE377jcrvluG7vRyjSkv6jt4M+/lpKC1l29xGmmqCCUtb\nhELRCM+ME4srJoYuT8aQ9ysovc4Ujb16iUNQUtLCvrDJyZIJXLtW/nY4xJaYPFm+vHdvsSbr65nf\n8ASHY+/Ebgf/A/Drzw2Y6orQKyMY96gXISHw9dfCP0lJ4kvm54savZzbUR07XsYePvSQHK64OPly\nk0mcQY1GePSDD+T/a9eKnH7+eTFIjx2DkBAsWh+mTfMUh545UwBZM2dKYmriRFE/b7whZlVKiqgf\nf3+J6zQ2Xrxie2DgVaJhx42TsUdGCt+4C/Dt2cOp/k4LFojh7XLJOvTrJzUO7HY4fpwDxWGsX29E\noZCtfOcdmVtFhTjser0A0tLSRHanpFxYnUVFyTInJHgcoYuRlxfceacM12Y7d63MZolR63Rivn7+\nuQeZYLXK+2fNkqnV10NCvIugXWvolvsD+phgyN0lHygpkcHFxUnwJTpaNiwmRrzqq3Bs1WoRe/n5\not9Oj+d5e4uYX79egh0qlSQy/fzkZ202ec89KZ+CoxBsDoGPubsEtG8Pb7yB7okn6WDeT65PN4ar\n96I61AhqhQj209v9tZDc3fZqaoQ13KRSCbJ9+HB5bfJkCLYXk7dzExWBXhj2b6dQ34P2hjQCOhuh\npFwm1NQk3uVnn5GQn85hTXfGOH6mz8JsWGBDO3Ei7R8aAOYDsggX6z/cAgoMlH1xOs+F93fo4Ama\nVRY0oly7gkxnDIp9R7F5+ZNs3k2NUoP2sy9QWywQGIgmKYnEhv3gfz8PPywBmOHDm5FK6aWy+UFB\ngm559VWx/265xVOwtxWpxY5thw4dWLFixXlfG3yJdObF+tj6N2uY+MtpSO9yidF+/DiMGkWIToM5\nKw+dQs3dLGaDZQDhmjJC6yDiww/hvfdwpVbylW0SWftPEzx1daIl3NE6q1VO32lww1HG7UT5/YK3\nxkH77D7Q/yKb4XSKIC0tFSf5tPtNV0ri1J7dyud/KfXrB/X1OG+7nR8/Kmbfchg33kCHdXt5p/Y5\nsmyBTFR/TZE2hihtKSPql6L8fr0YjpWVnn5/nTpJlLWwUDLr8+fLvTwQI2LtWpEwt93WJk253V19\ndNZaOh9YCStMqPxu5RPf19Hb87n9sWBuqv2EylIv3tw7lro9Bl5SxdNBkS1aaP9+/uLI4EhQD+Lr\n96FRqOT5rKxLX0LKyBCtOWiQWAeXogkTBF4QHOzhw8ZGyRqpVHD77aR9sI4fTz5F16w9PByfgmrG\nDLDb8Tao8HY2oH5wJHFlYpzU1jjJTTNzSH0P/j/8woj4TbKvLSnpfvy4hDm1Wk+4uaVktUr43+HA\nNfFx5mwsZFdBJOosb7p0cpK538oHlqcIyp3FpLvyIdwBmw5AWRkdAxy84HoPb18bfionNOpEkaxa\nJQEYHx+xytwVGDdulCz31VQyiYwUp76q6hzsef/+zYZ2cQkdv/hY5Mj27VJEID4esrOp7XMjhw5q\ncDSc4KZbjbxmW0hJhprDKXXssycRoLbSrjgfooPFkDt0SIy0225r2x7Jd90Ffn50rPuS36tTidJv\nxXD8QTmjlZVEO1Rs4kYO1HRDVe1AqzTz2/uHiJ9/Iwp3U06LRe4wd+58iq+8vYVdbbY2OdIolYII\nNxhkW2oqmsjZ18DbT9bxTOKv9GvcLIN44gnh95QUwaP95z+eIng6naw1wBdfkHVrNIOPrkc/oDt3\nP9iMSLrjDsnadu3agsuCV06mLb9QplSR7WpPmTOUOh8TIeXNZ65dO554HDKPHCYqPICMRekccSXi\n/d5ypv54hdVKUlIkyDhiROsWm7rhBknjGI0ynu7dxdnq2lWQJ1Yr/PgjaqeGTsUbyA7oS1D2Otja\nC157jTuK1Rh1o4iv3YtPmhJWGqVvKcJeS5fKtjU1eX5SrxexOXOmZJcmTrzCK98mk8iLigqJlFit\n8rBYZI3q6uT/JhNdTL9SZBmCUu+Fjz4Cy+ZdVDc6yavbB4/cS0KCgnff9Xz1H/8ooJGQELERS0ok\nnqLVys2e00ypy6fu3aWtWFGRBImTkiQdvH692DIWixihSqXAcr/5RtL4u3aB1Ypq+Ch05tGs3RuI\nUq1k2zbxJc6+0x8QIMkaNyx5/Xrxp266SdB2bUZJSXKoZ88WwRoTI5s/fLhkwX7++VTlYxoaRPbM\nnSvnPC8Pdu9Gr0hC7ZpCQoSdATd5s369gs8+k6UJCxM73dfXE+O92DWp8eOFrUNCLh8NERUlV1+r\nqs4sOg+eq+VVVeI8uo9terrwsd0uU9brZYwvPJiP908vQN4JOHlMdFFWlucgPP64bKDdLpD6Eyc8\nd8dbSEqlAFSyssSsPl/Bbx8fD+zcz094JDNT5qXRQJb6Je42/404XRFql0ucwjlzJLgVHY2isQHf\n5A70zDsiUYOQEFmMo0dbzbF97bWLl9fQamUvSisCpD5czn52NvbgC9ujHKYTU3y3ETpggMD4335b\nzlNFBQZnI31du8FQD+UW2cgDBySy+tJLVz3281GnTnK9obHx4svj5edFblB3OpzYQLlCzze68Qwy\ntOehhlkoS4skyhMaCidOsL7PC/z2TCODbtLx/vtKOQ9NTXLG+vUTW8ZmEwhBUJDs4X+TY5ufn8/T\nTz/N1q1bARg6dCjTpk0j8jKaJQ4YMIAvv/yS+++/n3Xr1jF+/PhTr5nNZkwmE+Xl5djt9gt+h8MB\nP04rI+PbCh5sn07XnBwmN1RTYy+nusLK1w0Pku9qIlpRQmJiKI+VlLP5UCCzj4zAUVfJYM06qsuG\nAhpPPz2DQQyXoUNF+p4WVlIG+NElsMSTwbkYHT4s2DOFQnLxf/nLJdfk/3kqLZXQs0pF3cz5LGp8\nj5ogF5kb4b29bzG6fjs5vl3ICb+V+/zXUlbkYOVxBx9U92DS/9jQP/8kBARQVQUzf+nKoGNB9K9r\nRL1v35l4/bQ0UWAKhWidVuw97Kbu3QWxpV+0hJhja+BHJ7Fjg4k0BXB/1Vf4/miBj8aRr+5F4fNl\nGLSF/Dj47/z1nUn8+OeNFKcVcq9jIV2D89B0SqJoVx57t5go1VbyB+ta1Hubw71nw/AbGgT65XKJ\nsffpp5e+3KrVnpvNXrMGFi/GYnFhbjDw+c5e1NTkkOO6hSHe1cQpmmhSebFj1D8JTFtPcE0dLwV+\nRXlUDLV9bmLmC6HENhWwL8eXETNnSpj+5ZflfuUXX+Dy1jM36Bm27zdwzz2CKD0v1ddLwKK+/urh\nQps2icOgUGDUalH2GE1iFGjsDbxY9AJlx4tJS57A3NDncO58n5OH0+g6bgCxXbrAgQOEj+hEuVc4\nOWt2E9SQiclZT83qFD7VTKG+QcFTB6qIGhYgvTKrqwXD8957Z97vu1IKDz/XubFaUXz/PYnFxVTe\ndB/VWeX4lWWjyMwU2dShA45JT/PlogTuzXiLJDL5Zcl4Xnrg3yTfnMum3ExctbUMNOynT2SaRN/d\nrR1AFP3o0S0f86XIYpG2BmV5JIfbcYV1pfbhJ9AW5OLlqGdk7358UfUgyqpKQpoKSCCLTEdnHH6B\nqKdMkX0cO1ayXiEhp2BK0dGi38vKrrIy6gXItWEjx+bsosLSj/79hxNw8jAH9jkpOKDkw5R2BDqG\n0t++nT/sfxLlSy+IUVJUJHJm717hg0ceEaMQqE/ogWXqNJJUZqyLttL05HtoooPkXN98s5zbtiqg\n4XLJdzscGDJSKXa6KCGEvX4jcHS+kZ4V6/hPxVB+238Hd/51Pff2yeeYf1/m6AejDfKDwxbus1ov\nP1hVWipBF5VKrGk3EuRqaMcOydgPHCiwQxDneflySZU9+ihoNFgtLo5ZEwhJXY6Pr4butVtRhrSX\nKEVlJZF+/vQPb4+iuhTH9uMsqR9AVJJkyg4ckHhfebnI88REsTcDAsTeTE0VM+DXX6Wt5xWRQiFQ\n3qeflmDkU09J8LK8HDQa7JU1lDb5E9TzCM851mLMzqXqp5tIdEVzu2Y5tRl+OEuHMm9NO+bMETH+\nxBMSlzq95d3atZK4bmoSP/OWW65izcPCRKbZbOJZrF0rmcxly+R1l0v2V60m2xHD5sLODDvxPXGp\nqfzN+R091Xexq99kVqzQMH26xJYnTpRAXVSUOFm9e8uxtttFDfn5iSprrkHadnTTTSJTvL09gb1u\n3eTh7S13hQsKPG3J3P3Ao6IgJ4eORdt5r/sJFA31FB8YzPNHJ7IrRUFAgMSY8/PlporJJPswe7bw\nzxNPnHvbQKejRW0Lo6LOH/f28hL1m5UlDpcb2fnzz3I03W2HlcrmVqsn8yg+3kiA1Y5W5ZKM9r//\nLfxZUyNRnAkTJGryz39K6q5FfbDOJJPprNZDZ1Hv3oLEaWqS9bFaRT327Cki9ubyNI4H9EblW87K\n6mGwpgFDvR8xhZUMt0xDqVRI4MLXV86ZzSay4oYbrnrsbmrX7uLBCG9vuSO7/MsKjFlOKgwxBJks\nhFtLKDPGseqOcTw2yShybPlysFiwN9qYXv8IOy09GJu1nLGxR0XhuTHubUiX7MyVkUHYF3PJ7RCL\nSRdKTTW8qPqELzu+j+HIHJRFubKx+fnYwmPZ83UayT7rOTIvlPI3nuHRP3uhVKuFMQ8fliBK587Q\npw/O9MOsDHqMVZOEBVsJMQ5chWM7fvx4Hn74YRY09z+bO3cu48ePZ82aNZf87MX62P71r3/l0KFD\nOJ1OproV2nkoNxfWbNdjatLzQ9YApvY7gHd9Ja5Yf44eraTUZuC4JpigQB3D7vLi6/fKmbnrfjQ1\nZUx2vE+AtQG/nHyou0+yf3q9XFT49FM5RRMmnClFevYUy8pmu3R9dq3W01PvKpsT/z9DtbXixGi1\naDtEkr1DQWkpaJvq+bd/P+7o2Ejn4nRioippp7CxM70ddoWaA+Y4juTl0eu556C4mFK/fpyo/gPd\nT9aQZ0ikvVfVmYU71GoxKpzOy+oDeEVkt8OBAygMBrp26QgZ3nDUAUolfsFahmp3YnJUk1i+G145\niE9jCLl571Pt8CO5Zi5b9N2YVfsAFa5qUgOGM2mSP8PMK5i6qx1KnYuKvb4Mm7mKuHCrGIpffHGm\n8atUikFsNgtftdQwViioq3Vy6JCTdYUWckvU6CwaDK46fCpzoaSUOmMUyrI9lOkjCPzxJ5LiDJCU\nRO3NIey6ryslR9pxq3WtGPTHj3t6HRQWUlajY425htBkA/Pmyfac9xqFySRCzuW6dC8al0uyjiCO\n+tlz9/LyPOftze9/D9/NsjOudAYJR3/Fx66HYwvA34/3VvfE5lDS//09PPWqP15PPQUREXz6VST1\nyUcYt/ZxOvjUklYbzzGvMHSBRtYci2XCsObfsdnk37aov3/oEGzYwElHGG+taqK/awy3OH8gXFUs\nFlPPnhz/cjUF6Qpuc+xAiZM7C79i0zeFVNzVH5/OkdSVWxj0fAKMmyrnYfNmTwGQ1j4TZ1NKiowz\nLAyiotiwx0T50ViinQq6OA7gOnycyJp0hjetIpAKjpLAPX7rUSf8DpK7idytrJTMp15/hkF1dlu9\nViOLhZVv7+ObzOE4a+swDK9ncLyNPak6is0GyunISPtx1itvYlTOHsLy8iRsv2OHWI3R0VJ8xx28\nA7w6dcV7w9vYC8rR++vRGU8LQLXlHmRnS/DLYJDs/qZNBKDkJ8axom4svTZksKa2F8sZg1dTAz9U\n3MYte6cQfVs0USPHcCSllvETDFemtzQa4bPGRk9P1qshh0Owk76+EpDp0UMcrKlT5dytXi3eUrdu\nbN2m4HvHFG42eXGT/yYiKg5BuyA4mQ92O+XlCqYF/IEam5XurlQ6Njby7bdiRI8Y4amb4e0tjkFq\nqsQdwsLkp+z2q2iTpWm+s/jKK6KPvL0l8+znR2GeiyK7P7odW2hqp8FHU46+NI07/Auoq/She6yZ\nwl35zJvXjh07PIV1Ro48M5bZvr08r9G0rOLwOaTXyzgXLxZvv6FBAnkBAbIYnTrR1C6MDYe7E5a7\ngWJHEDEndhHUK4zelnSy7CVU1Edy5IhM+eWXpfjWiBESHHB3NDGbPcjyswsxtxn5+wuPTpsmTuyf\n/iSZvb17ZSDgCTjp9eKB9+sH69ejqKsjZNNCGDUK7cntZO9/CIfDREmJfCQhQXRcba3Agu12SdiP\nHHltbkmFhJxbd2DQIMnmNzQISCAqCjLXneSbHalU2v7ALa5f6a7LRltbKxk3t0675RZZj9BQgfy6\nexy3MSkUZ5rWer3ECn/9VURmeaOeSGs9uvochvgq+aD2YXJct9Gh4iixijQ66IvljX5+Ip/d5Ylb\nuyDDJai6GvYf1pBYpcVbaaej9jh/4WuUDgM+J+vhuQ1iM2k0UF7OUV0PFltup4hQdlv7k2h7jq71\n9XLX/RpUEL4guVzYps/k8FYLYfbj1Nc30LHhEDaXjhcc7+CdGAM1JSLTFAo0mYeoqbuN6XX34q81\nE7WigOG3dSA2ViH47Px8Eax6PTz9NIUnYdHLEiiYN++/xLEtKys7I9P62GOP8XFzIYHLIXeBKfe/\n7j62M2bMwOVykZyczNGjRxkyZMh5Px8YCKZQI+am3vRsXwBP3Qi7dqFcsJQGn1Ci9S6iAnN5s/dS\nFDf+lU+2hBCjSSfXoUeFk26mXNrF1shhDgsTML9SKYZBfr4w1TPPyOUGGei5GJALUUICTJkikq0V\no0X/a6mpSZy0Zu9GN/lJhtc7OTI/DV9HBbU2LzpE2ul4dx8Ux46B00SyYh9lLi2ZPv2IcJ48ZewG\nRRvobN3JZt8xdNXNFI15+j21Hj0kSl5X1/oac8UKMbRUKlH6Y8aI0DQaMSb3YMzbehTPz8ewvxKy\nyin3iyWRTAyKOqxWBUHr52MIHEJBdSTV8ZEEDAIcVpK/WcX60i4EJUdKNLCmRu79nM95e+kliZp3\n796yqqo7dsDPP5NdH8Kvtq4UlekJsBRzt+YngjQ1GOpLYdhAvKstFKp60fPYQjTeGhmT2YxPlC+v\nv6UGVzsUq4aJ0gsLE8hWYiJs3IifyUFUiI78YjEgL1gboGdP2av6etHCF6Nt26RiA/8fe9cd1vS5\n/T+ZkEAIJOy9VXAATtSqdXaorW31VmtttUut3a12/W7r7e2wtbe33rbaa/d0tXXUUUete6MiKLL3\nJgSSQHZ+fxxC2ISQkMDN53l4UCDJOd/3fc979gHl3LUtd5gwgS41vR4YMwbjFXVI9n4bjLS/ABcW\n/BkKcP42HF6RTBzbxoWnoQbF+gCwd/0APHAvEByM2Fjg4LVAnBHdiXjXrYi4Iwm8upHQaIA4Y03N\nc89RhoexSMwWuHYNJXUaKPw4uJTwCNyKXbCA+Rtp3qmpEPkoUcZbAQObgwBtAVQMHty19RiVtQUr\njn4A8HimrZOXR/MmJ0yg6ESbWXlWh7Fwh8EAUlNx47I7Mjm3IltTAk5ECGI9ynCf6gCgkkAOdwx3\nyUTyg8l02ZWXkxw+eJAMJF9fqv22dcttLhdp+jgImfXIZ4hg0LggflEC7scNKLZvRV0dkIcQjGBc\ngw+nqWUuj0elEHl5tDc9Pckpcf48sGoVWABG/fQ8ao5chs/YKLBEfTQubvduurtkMgptC4VwU1Rh\nKDcTF/gyBKrzUcCJRqQ6G8ddZuAWrwzw2Bowq4rx4mNFMHwxs+d6lJcX8MorFDq0RjidyaRMg6ws\n2gMFBXTmdDqKIgEUsf38c/B4o6Fju+BI7EoMD/VDUIEryYChQ4GMDJSFzEB9HQfu3kBOeTQUguDm\nmtPISApUnT9vGmFmrD6KjqagvFLZyzLof/7TFFI1jk4pLgY3W4b6BjFCDQXgKmRAlBjsID8kPzwD\nhj+PguEThrqEyObOxkwm2chtRf64cRRgY7OtmNleV0c52no9PW+DgR6Ejw8RERePXNf7EFN0FB4N\nDQDbFS6+nkhIHoyEF/3wy26KEcjldHT9/Cg63hICAQUDKyt732C+R7hxg/aSuzuVETz4IJV5qNUm\nR6VIRETHxlLYcNAgKv50cQEKCuC5eDHi9e5QXyEx9eKLJn9Oejpt2ZwcWjN7Tv+aOhV4/nmqnLly\nha7Z8R7FyCnhQ8v0w++MOfALOYkQV1da14YGOmPGoExdHemydsSCBVTWvXYtcOX8cohrRIhW6CFt\nEEEMCRh6LdTgotzggyh3OTkrMjPpvPn49C6jykK4ugIKvi+ORizDkooPEKEvQpS+EnqtHm6HrgJT\nb6WMgKZOaH4CPqQSb3A1avgwy5DDG4ahAaCMidmzbadndAWDAfjmG7AunEVkjQZZzEEoZCVgpOtF\nMMYMB0OsBVRiEj4hIUB0NBjffAMZU4QYZKGQPRgNnkGmKkwut52HUCymR1Bebn1V3WLDViwW4/vv\nv8eiRYtgMBiwZcsWeJu5iboa9wMAe/bsga+vb5fdlb28qIylqsoLUVFeMLCA+lHT4P7Lb5gwpBaj\nCjZA8/xKvHltA2o3umPKPcDxCi9M4P2JGbqbEEweBTy0hG6EV181pd7k59OhDg2lbgBNhq1GQ8LZ\ny8uM8H1b19P/OjQaKpQIDARUKihYHli9QoaMUz9je90MRHOzIXrvJTDUpcCWLdDLZBDH++M+bSG4\n4/3BmzAN+CIP4PEgDnTFPQ/EQy0KQDBvKNU6ttwnxvERbaBQkPJSUUHZgt2uYQvU15Ow4lZXm3rv\n19fTYZ00CXl5QM0lYPjwWHBfXgW8VQuUlSFeUIoEjzqU5Ktxm2IH4hrr8e5b9SiQiZCQQLrb8eOJ\nuDQhBiMjdFj2rBDuypdNRmJH6CwfyVz89RcgECBUUIt6jggcVzb+b/hhyPWxCG3MgOuUxUBREVzj\nAjH1X0+g4WA83P/4FnXSRrBWPQ13Hx8wzpwGgoJQIh6OspRtYLtUY4jyM7h8tA4IDQWXw8HrHmJU\nVnajbDGZ5nf5q60lRYvBMHnXW4LFanYiyeVAxtYcDM4sgbu3N8BiQTF/GRh/ewiDXRoxeUMaMrKY\nWMz4BWydGjh0CPW+0SgqAni+Hpi8aRHcQmYhKj4e70lp+zZ34/T2pk4XtkJDAzBoEIYy3TFcI0GV\nOA4jVy8DlGOBmzdh+PEnlGuj8QQO4ovAHzCp8HtMkO7Hgy574Xc6V4OhAAAgAElEQVTrdMi0rpAW\n6BBcfQUMDpty4mQyUtzuuadbI1GrNbUcsAjDhlHBWWUl8PbbuNP7HApL/MAYMQwNAj0q/GIQvmYu\nsramwLW0GIeFt6FmTCLmMJlE65UrZGmMHEnnS6PpkWFrMNDR5PN78DIGA/MeFWHzN1wExkVi2lw2\n4hOAYdcuQ3byKHShLmDMnAEPpgfYZbdR1GfSJChv5uN39gKc1Q7C5NpTGBVQgoAWXUX4IWLwH+5d\nbVpPIJUCO04PQVKBCLH+bLiLRMAjj4BRXYdY/8WY9Z9T4CpqMZv7J1wSw3DvU/cgTqIG80QiPSyJ\nxPLgQGRkz4RqV2AwyDGcm0uyzjhbLD7e1F2GyQSOH8e450aDywW0GhcM3XyUNi+Ph4qX/wXWD9/B\nX6lGIp+LEtEoLLhbDaEfD5HhehguXcHGbV44WRiOh5dSHSub3Trj0qIOvG2hUJgi2tHRVI924wZ8\nFxUicfW7YFXXQyjmAIsWoXri3fh0EwuNrNvw1EpP+AVysGYNRd1UKqqHa7s+DIZ1S5oBkNFnvGeq\nquih6PVUwlBaCk58LJ4eJ4FEGoeYS9fAjBkD5fQ78YnqcRS9xMSqVVQVIpFQBPzmTYra7ttHfmhj\naq5xQlifIiCA+GtooEBFfT09RJGIeExKIiWvuJj0wcBAqgEsL4dSywZj3t1wiQ3DC/EMvPsupdbG\nxBCPjY10NRQUUAbsqlXtM3gVCop3BAVZnvAjkZA472p/pqRQ8gifDzz8sKlv1lA1B4Uvn8N3ZdPh\nH+mOgNs5QPpVWuexY8lZl5tLb758OTnw2374hQukvFi5s5xWS4F0Hx9qb3HsGF3pUVFUW549WYjw\n4KUIPecOt4sFWHE+BZvPDYOvvgIj2BnAS6/TAhhLCY1ZK+ZApSIHpZtb56PHzEBaGg2i8PcHbglW\nQZQqQG3lIHgUXwczPg7q8mpwrl8Hc84cstjr6iD29sZXuwvw3boyeIg4mCC4AZR40MYyp6GEUknO\nGQ8Pujd7EeE1GOjsnjmuxUuZfyFw6hT4CdNRLB6HhPoKSCuGwysiAnieIrANH3wChcENQj0b3KQk\nLE7/HT9wlmLK/Ag8/nfXLmvNeTzgjYfyUX0xH0HThwCwXmTdYsP2q6++wlNPPYXnn38eADB+/Hh8\n/fXXZr22u3E/P//8M+6//34YOpmf1Xbcz6BBU/DHbw0ofv8HjMrPRoSoHiJ1DY588hd+qUiGzr2p\ne/2C08CXPwIsD5JIH35IwnrMGHK7NdXl4PPPTQ16lErA1RVbt9Jh43KpgLxPvYz9HXw+sGIFDAf+\nQEqKAWdv/xmlw2bh/1hnMaL6V+S5DsaHS0Lxjsf7YPp647fcBPhmFYLvwUbcA+HkXGhqPAVXVwQ0\nW0vmu6jT0qj81s2NnNHPPdf9a8rLqQzixAly4L6+8h4INRraTEFBwIYNqGb64p2L90LfqMItM1zx\n8JxEqsQPCgJ//nws/nofGm8cA7+hATJhAJLGcZHUNOfMYCBd3tPLHZcytFjwyddwN5RTdwlrpPR1\nhKlTgc8/R0VeA8azzuEaZwKCX7wfopER0FZKcG1fDjz3f4oQyXF4Gwy4NOxhvHNzBcrKmfD/lxj/\nOvsJ3PLSAD4fh4JeRaSKA6asAWWNUQgHmrusuMLKCtetTV5OIw8tkJtLx3SwXy2Y27bgl+18fJp7\nG16sdsEcwQ2UBI7GOyfuA9K4eFv4LzwzNBUIlABVCkALYP9+XM0LRlrRHeC5sXC+JAgJdxIfVigt\n6hwlJdSdRiQi7YPHI4eGSAS3+nq89A8PYDiAwlJg7xEgLAxXk5fjXxtdUa0SQM1oBOvW51Di/RjW\n+H8LiXsI3lytQVDOMfyt8Vt4CAGulxvc0UD7qZumUSoVBUjz8swcM1deTre4hwfRb9yz0dFk5Nx+\nO8J//x3r3L/CHvVsFNxoREpDEgp+D0eFPAKZCnfcmszGL99IcGv2FrhLpWS4AKQdPvlkq5TY+qaJ\nOpGRnSvEe/dSUkVQEKVBmpVRe+MGBn2xGh9U1+Aj9Vv4NmMMrtYcxirtJ2DkVqGOG4Aq1mCMuTcU\nNWv/DRcmB+55echJmo+dktG4CX+c5P0NicN0eG+EB/paVzfiwgXgDMbDUzQKXLdyDF2yBFq+B95b\nI8XeHxh4tHY/bjMcgA+7Fi4qNvwKdpNgy84mbdKcFq19BVdXOtj79pkMrZkzoa6ohfS9jXBvAPhD\nhoCpVWPUKC71V3zxBlBainKDL95kBCOn5gN48DSIH+yKf77KAM84SPXPv5C3bit+P/UApD5crKsM\nwh9/WHGssHHg5alTZE34+NBzfvZZ4isxEczQUHjfO4UaMal5wF9/4fjFYKQc8EejioXnS4di5BQO\nUlIocD14MCUMNalbtoVMRmc5KYkGXJaX08937KA7WKOBf24u/H19AS7VNRY0+mH7b0zU1gIVGRL8\nNPsnxAwehLErpuPyFQYefJAcL1On0p3X56ioIAJiYigismMHPdjQUDJyjfnoUinVZ4rFJgs8IgJn\nohZj82bAYyOwaEYlfninCrFePJSUhOPgQSa2b6dg58KFVKbcERQKagBVWUm21yOP9JyN3FyS0RoN\n1S+3TcBRqykovXkz6TuVldQKYNMmOkbq6hhkCn2xRLIVfI9QsGVcCuYAZNCz2SRcg4MpY/H4cfJO\n3HEHGbJ//zu9qYcHOWmsOAvss8/oo3g88iuEh1OkNimJEjBefRUA2NiTsRD7yyV4QvIEPuC9ASYM\npM9PnEjGuFZLWV3z55uG+BYX0wUXGdmx4bd7N6XfG51qFmLbNjo+x48Dae6DsSTHFd4MPspHrwUT\nBoRKDsBfJUW46DqYgadoj507h8TptyLxwhe090aOJPp9fIh2g4HkCJ/fsTdkxw6SkywWFSm3bNnc\nQ0gk9FY+3mzsbZyGR4qPgBUbjerTEmzPSEIZ9268MroAM0pLUbf/JNJSWQCUUOqHYtqmxzHmlVcw\nhrMdGFwNeK9s/eY6HXl/jIN+ZTLwP34XoY2NwDU/OjhWSru2WJSHh4djz549Fr22q3E/Bw8exJQp\nU8BisTptHtXRuJ+SH/5E9I09+Fi2EPfU70NypAuCck8iWpeCysYgRF65BogUdFpKSoAtW1A6ZBrO\nvnoBQz8djdhBTXkjAQG0sWpqSCJ88QVQVISKqgfB5cZDrWagrs4ith0aHY0VEgi8UF/fQXTMHKhU\ndGmXllLd3OjRuL4rG+Un9iNElQFDgxKKhgYUIhRV9Txo07Ng0J4A/HxwU5GErIB7oalXQjThXkQw\nGB3XSdTXk2syOLhbz1xQEN3VSqV5c2Jrakionj5NdgcDBtT8fhrC4nwS8jt3Apcvg1WlwdAcCcZX\n7oLPeSXg+hjdOlwuwGajNEuOBkMQ3JiNYLNDIGyhaTNgwHBxKS5dZcPfsxGeV44BPAZZ04891sMH\n3gmOHiWPzJQppjmEIhHkd70FX5c6jNOcgDx4LnIvqXFu7TkMT/kGDEku3DwbIdqzB/ydN8HJnQk+\nfCG9oUGDWybc/PmASoVwsRy7/R+DD0+Ov60c1S0pvYK7u2nQ2sWLJMwTE3E9fj7WfcAERyXHmzXP\nI7guHSG5YRjLdAEaFZCrlchWs6F3k8Dg4QVZngQBvu6mIq+SEqCyEkHMo+BhHLQaHgY1ZAG14bZP\nAdq1izSVGzfoYh43jiLTajUpk++8g8ZHVqHou6MQ1BbCT3QFyumvQevWCL5WAb0GaDh8GnGcXYDP\nWZR5JEOKiRjhXofc64ArV4/LMXdg0SoRvEaEdstPRQWRExBA26Zb7N1LaV/GvgMty0aYTDJMR48G\n/vMf+P55FV4KFW498xOUp7k4L5iO97mvo7zQD1ElJ8DLTQca5WTYR0ebjPwm6HSk0JWUkCh4++2O\nI7J//UVB9eJi+jIrqJCTA1y5AoNcAQEOwF9UgxpXFtTSEtRyglEalozd0umQbTkJ+c0AuNWVIKKk\nAP61hxHOFCCFGYOYSA4aOYCiARBa0pnWCggLA7IqPHDc8C4SfBrw+YVf4frlp5iY442kRuAIYxri\nWCFQMD1hyGEj8tffwfVwpbPQ2Ei1q3ZOPWxGbi6dcZmMnB0GA+DhgW/qFkBePQsjalIx4f/ehuvv\nv1O+YmIiWX86HY41zIYcAly/yUZcHBv5BXSVNweU6+rANSjhzZKgUhWFAE8rl8sXFNDA2YsX6f7z\n9CTa9u+nMBRA6ew5OcQXjweNmydqrhRCWhcANlMHXZ0CZ896wM+PbC3j5B2bQamk+7qiwjRstKqK\n6N63j7oEDxpkMtgNBsDHBxlBU1EZNx/8yZNR+xXZ7XE3f4MmIBUuFy8AsbEoLg5DWRmd4UOHSHnu\nxaCInqO0lCxKpZJSwcPCSK+rrKQghkpF8spgICNv5Ehg8mT6u7AwYORInFhPvz5+HEjfJUWjgg0B\nW4aYqbVgs8XNiSVG32tHqK6mj/T2psQUS1BQQHa4qyulPbc1bL//nrbYzZv0t15eFIhuaKArtErl\nga+D/47ltStRUaRBHDeXDKaYGDJWVSoybA8fpjeXyYjgP/6gLvDHjpHhmJRE360EvZ6eiYcHOXA0\nGloK41irlnv/r7+A0Y3HgPo66A0A08uTBP2ZM8S0RkN7+ZNPSPF79VWy7PV6ChpMmdKeALXatAda\ntkjvAYzNzjMy6MymybyxSv4+7gxPR1B1HabX/YL42hPQ1DCh49WAWVNFNPn70wsZDNog1dX0M2MN\n16+/kk4YHU2Ga9seDSoVCTCDoddrIhDQI8vJYaAq8kGMXHwHIjathjAvH3Mb0vCPhr9j8898zMh/\nC3LvEdhpuAt+Q0SoEkRjmrqOFpDDIT6+/prKOuPjqUTw++9pfe67j4JVOh3Ry+USD1aExYbtkiVL\nsGHDhuZRPbW1tXjhhRfw1Vdfdfvarsb9fPnll/juu+/w888/94iexHEuKNzHh5TtjX2CBRiOrxGe\nyMKa7M+hZrpirICJlHND8OfZCXhEvgGezHqsLxgKSdBQHPiQgfXrW7Ro9/Ex9R3/5hvA1RUPCivx\n88T/IDDa3SzDqL+h/VghQCbrhfckPZ2sQj6fFJSXXkKFTgy+qx5SFQvRylSUIQh8Qxn2aeZjmeFr\nMFkAPD2xwPcifq25Bbfxz6BwRyy+2joV8+Z1UL61cSPlh/N4pOl20SQgOJg61ysU5mXy1tXRZRAV\nRQGN6aPqEHJ2B+AvBr79lnKqNBpowEGU5CJEDUXw4BgobywoCHB1heHgIQxyyUc6gwkd1xXCJ5e2\nKjiVnLyOWw6uR5xWiITkKLgWME29+a0BtZrc4yIRKVrjxwNCIQwiMaKGu6EsSw6/kbHQaID/PJON\nCWlHwNeWIcyQB1YDB2B5wc+PhRklJ/Gr6g4M9auHx/JFQG4GEByMyb9/jCgRD/Wewfhqx1SMyKJs\nV5v3OvjmG/Jk7tuHavat0Gh8MazmJBhF+YCqCoO9XCEsLgQfDSjVB2AsLxUnvFVghACiVSuAc3vJ\nu3v4MCk9paXw8y/H4PBGDDu2HmMMJUBNRPt5FdZGWBi1BHVxocIsgG7whgagtBQXGuJw+v4jSMAV\nSPlMsEd6YYS4GDPdM6BUN2B2YhZ0V68jtPEmkNWAaJ9GjBrzADJEs8BqkEHL5CLFZxamD3KFlxlb\nKiCAPOPp6XT3bNrUzQtCQ+ly4nJN9LdEaiopRPHxGKzNQ/WOoxDqa6CEHxJkx7Fm5FaMeXYJPL8+\ngxvn66HxECPm30/C/cQBynpoEfLXaEjn9vQ0NbzsyLC9/XaaABET04OMgfBwwMUFTKUSd7gcwzu6\nyRivOI1aOQd61OO4y3TcOUUB8VvfoFQlgLjyBsrkvlAx2Xhu4l7MjOfhnOftSEhoU1OXnU3nLjaW\nOj3bYBB9S8TGAhPGG1BYxEJ4XS4Yhw+BW1+NJOVNFCEEYwzncY2TAKZag0vqkbirLg23M8+SzBEK\nO15De0EgoHNRW0vf6+oAPh9112WYoDkJob4WqGykRmWZmTC4uYNRXgaoVBgfWIDPy1lwcaElSEho\nM65nxgz4SurxcFgjTvmJ8chKk8zS6aiXZHY2TQWyyM4XCEydp1gs2rzZ2eQ8YDLJWBCLSclrUkj/\nKo3BL+q7kcA7hhxWNPxG+OO228mmvOce0nPvvpvevrGRxHpNDSVKWKW29to1uq95PFIypVKiv6iI\n5GRYGB08nY4cyno9qnKkeM//RejzYjD4KAX4/vwTmGaoBVfTQLOd3dwwfTo9/6oqso1lMvMM2/Jy\nEvXGhBCL+3BWVpLhwOORM0GjIetaKiUdj802Rceqq+lZNDTQgx0zBjh6FPPl3rjvwgOQyF0glfth\nFD8dU4KysfgVEVyixaiuJr7mzjU1JQfI7/fTT7SP5s+na+fqVcsnnCQmmp5hR01zi4qaqwqaO37H\nxJgCq36pB7Gs6gyUci2iQmX0RxUVtBeZTEoJeO01+oCqKnpWCgUJ3HPnyFGZmUnMWLGAmMmkaPfX\nX9P24/Np+61dS0vGYJBv4uEJWVgh3YaUIib81cVgalTEbGkpvYFeTzSnp9OhuXaN7iC1mu4pY3S6\nLe66i34vEFicufLzz+R49fSku0chY0KsrkOgqwT3B55C2g0dtI2NELCUYOvFtB+N9PL5FK7WaKgE\nUiIx1QcfPky8ZGXRoWh7sc2fT14LL69el0ByubT8//wnkJ/PwKffC7FOKEIg4wbyEAsO1BCrKwEG\nA4HpB7HUswAH5ffiUdfPgF95qL99Ac5vL4ScEYo70n8G98ZV4i02lg5GYKCpxNPTk4TGlSuUwmBF\nxdFiwzY1NbXd/NmUlBSzXtvVuJ/MzEzcfffdKCkpgcFgwC233IJYM9zuiS9ORxQzHxW/VEM+YiIE\nd74G/q9fIjnWBZDJUCfTY1N6IoTl6bip80WSqAF6/0Aw4uOaG4ZCraZ5i1VV5NlRKJpTL3wZDDzz\nPAdw6ZIMJ4zw86OD29jYrB0kvDAd+/T+YHI5mOV/BhkbFagxeOEWQwpUajf8B09h7mAg+vl7sHr9\nesjBR8p/NkA1RozNVcOxcVObjS+XA66u0Kl1yLimh5eu60teLDY/tTQ8nGRdRgYd8sGRfDDXBpAA\njY6mKMGQISjLF+KaPBsjLp8Dg8um4pqQEGTuy0TlpWLUMuMxw/c4XKODgZGtP/zMn43wqlPDpbEE\nlQfl8H7tPpQIBqNOFIFBOitEEdhsYiQ3lzQLPh/Z2cBHH4kg9HkfLz6aBdH4wcjJUwJFRSjkRGOO\n+jdwOQZwGCogNBSikfG4YyILs8d6gRkUSAYHYzpQUQHGzp0IFgPfndahQE+lwaNH26Dmqy1iY+kS\n8PLC6El83JQAvAxfiLxCUFwTird0a3BBKcYwyQ1oGXXwGsTB25v9ADEARACjm8ZvSaUkZA0GNOaW\nIYfJxRh5JYpq+Ihtcry1RX093Y2RkaaMGotx++30JocPU+lDaChdqsnJMGTcBDv9Km7XnUAqOwlc\nkTc4y57F6b31uFTDxoKI89CGRiEg+wwYKgYQEQGXkBA8/RwLSBYgN3cptmwBZkWbr5xzOFSRoVa3\nH1HRIYYPJ4+Rt3eHtRnKjzdBrmTDkyUD66VX8MPv0chUBOBRfAF3Vz0mPBSDkLE+2H7lJWQU3kSZ\nWzQePFWM5GvX6EGPH9+szbq6UlfVQ4fI6O4sU3/aNAoc92iaTlwcZUgcOIAgb298+rQQ516sx8/y\nJTitHQN1fTyeHOsC9kgRNCcroGOxIVBXoUg4GMOFaky6zR2TOupx+PXXZH1kZpJ1ZctoqMEA/PQT\nXs09giPsWcDMZAivuEDi4gcOuw6+BglqOcHYwnsI9XIWBrFzYWDeoBo6Hs803/Pjj8mSWLjQtvOO\nu4OvL9295eUkx/bvB3Jz8Vj+b1CW1ULvJQQ3yAeQy7BdORv7zodgiuASlgh3ISRAiztd8nBFroLB\n2wfLl/u33s/u7uA88hCmPgJMbfOxWVmm3mUbNlDSwaBBPdS5xGKife5copvHo32QkUEbk8cjZc4Y\nIWIyYWhUghvqi2NuyzBzJul5v/5K4mD58tZ3wdWrpkbnn35Ktbe9brRtvK9VKnLCiMWUkREVRb8b\nP56MneLi5i74gsocLFesxnHeSmgHz8Ajj5BI/TrzGTAnZCB5lgfg7Q0eKEXzl1/Icdb2fpBK6e6I\njm5tvP7+Ox0dlYqyKzvpI9o94uLoxcXFNFeksZEe7I0btLfc3WmRfXzorpRIiBB3d3oGUinCKyrw\niksOfhM9gHxxBEaODcKiR/3hEU9e8sWL6aN27aJkrgkTKMHoiy/ocd28SapBbxOxamuJhZiYjvfk\nkiXk9PD1pekqHA5tu5ISIFhXAPYrqzFep4MuKhDsoXEkv1UqiswzGPQchg8n3beoiKIAHh507z/w\nAG286dNtMjJuxgxKVb/9dvKJuruTSBIIgM8+kGFO7ga4fPQdwkcFIyIuEMwxk8HYU0dMDhpEa2xs\n1pqVRfvVw4NGrAmFxNPtt3f84e7uZCD2AsZgb14eEBpqwPjgYkxgnMG9i1xx6uRYjNj3f+BCA6WB\nB/bI0WC9+jI5iqRSuh/27qWDEBDQenFnzaI06SFDOi6s9vCgTWEl8PnkeCrKUUObkwtVggdE0V5g\nXeVCxGjEslsygYkTwThxAnFsOeK0XwIRg4HCQhwa8jp2uXPgW5WFkXI2QtRqU0F5cDDpzy1pHT7c\nJv2ILDZsDQYDJBIJRE2uN4lEAp1OZ9Zruxr3c/nyZQDAt99+C51OZ5ZRCwBgMODxwmN4vDk9PgaY\nPpI2fVERdn0qw75jYfhA9y1usodiiEiLlz4Jw+kyNoYObYrWnr9C3h0XFxLyd99NLrLqajocZml7\nTgCgzfzPf5KnvakbmsibicXrmjaxJhqhg0ci9awcCd+8gyxpGOIFUvw1ayMeHscC4uPhsmMntMzB\nqLopQVxiLYA2bt4nngAOHMD2wvHY960/XFzJq9fKO28hmEzylJvQ5MoqLiZpy+EASUkYOgKQeEUh\no/AgboksBRKHACwWZF8tR2NIDDxz0lHgn4hBEe7tOvS5TUzEmcP3QnDzEm4JYKDgu2P4B/82qDUM\nzJvX9vMtZGL1avLGBgcDHA4OH25yxDcIkMZNwiQ+EFl1DE+G70VxKQMeQ2LgUlNEFz6HA9xzD9gd\nTe/28wOeeAInf63C55ypqDhJRq1nX6RhLl/e3OCC5+lOyoIhEch6HWf28qFODUIgX48U9UpMTzgE\nPL24vUejsSna09AAAODr5XBh6XAkejkWxV0FVrUfvqtW05auqCDlbO3aXgbhmEyK2JaVkfYTH08a\n3PPPg5GdDUAGj7wzCBLUg/e3ORAlhOL8FjUCwi7jP0XzIBYFIThuLh6/V4JwXQ5d3qNHAyDDm2qS\negYGowdibudOor2ggAq6WnSAl8uBPzPCIKq4Dp6/JwwNocgZswj89BT8xHsNT34aj5CmOmb/eDH2\nnB4PBgOIvL6RZG9mJiknLWY5Jyeb19S5x0o+i0WL+fLLAI+HzCwGPvQfjYuZCnC4DAR6+SMti4NJ\n617HyD17UPPyB6hxCcI0zlngzd2dN1wIDSXlkM+3/cGQy4GDByGICcbdxfuAR+cANW9C+v1plG3e\nDbVSj68bHoOc4QVBoAHTxpVh+gsPASOHmZSor76idVSrm8K/3XQqtzWCg+kLIMVv+3Z4NjSQ4XHr\nrcDjj0N15Qb2PslGkE8O/tTMwF0xJfB87DEs+/wzHA2IRzCzDJFeTwEwr6xALCajtrSUbNF33iGj\npccjJYOC6OvOO+n/xhRDlYpSlBUKukuaanCnuJ6D/nkewCLlftUqMk7Onyc1pOWdZoy+XbpEdv/m\nzWSA9wqhoSTcZDK6r+fOJTlrMJgs+3vvJeH3zjuAVgtXZSPCJwXDt3YHPB6fgfx8OrZiMQc7c4Yh\nuUWWyODBdH22hVJJiTHV1WTYvv66aTuGhZEd1VlCiNngcttblP/+N+1z47g6Dw+SO/v2kWFh7Hge\nEAB8/TUYTCbukG0D/AIQN94Tce8sbvcxOh3ZH0FB1JdjzhwyLm/coLfvqpGOOUhLoxHRej0ZzR1l\n1EZGkg5kTItWKsnYEgoBXC2iOekGA9gVZYCfD+3L8ePJ8h05ks7b6tXkbA0JIQtaqSTHV2hoLwcl\ndw8Wi7bdv/9NQYrt22l5Ci/VIFR5FlouB8jMBCs8HHj9NSA0hA7qypV0cb31Fm2aV18lxv38SD73\nQf+AhQvJ8VBfD4T5NiI8/RTmjzkDHNYh3HckKgR+kNXXQuIaiKyAJzCvbfncRx/Rc09IaK2v3H03\nCSBXV5tn/RixbBnwV8VFhNQfQOCFvThfPxherkp4cXXYEfsaRicdp41tHI6ckwM8/DACuRwwGEC1\nVwzqHn0TIUgjOZecTAasSkXnzMaw2LB94YUXkJycjAULFsBgMGD79u14rSPJ1Qk6G/ezbt067N+/\nH42NjXjjjTcsJY9g9DiHhyONAQxK1CP7ciKm+qTCZfF8CMeHYX7LfeLlRRJBraZTFRhIB6Wmhrwl\nTvQMvr6d30gcDrynjcDU5AZIS4aj5kgprgVMxZhRHIAJYPVqcFQqJGVWwtflBKJXjWj/HsHBwKOP\nIv89wLUpOFxdbR3DtkO4u9MN3QIsFulYQFDTFwCDAdzRI8A7fhXSxCkY8f4cIMCtnQI8eSoLQX53\ngvtRGsI02bjETYZayYCLK9kKVgGP14rmpCRSltzdTTVnDG8xxgyqw5gYPbDgeRJSZ87Q8+3qYSYn\no6QAiCwDxHUUSevt5W0WuNx26wAGA4iNxVAdcPA6EBDEwiMvjYY4dnTH78HhEG9RUYBUCv7saXhu\nmTfUjCBER48FOvCGK5WkLBhLc43lIb1CUBClS7m4tDZ+Jk3CsPr9qIufhfjHH4bH5CQoNUBoFBeF\nnLHwbVIaC9RDUBIOhNvDCPH3Nz2ENvW7Mhnwe+TTiArLRHWWF3sAACAASURBVDUvBKsH8+A5NBiy\nsGA8+CCQ0CJUNnEi6Y9sNuCXMZayZry8rDSY00wYZ1eC1pjjJ0bkJDEkEmBQXNNZ8fICY+ZMeG/Y\nAO/aLCBpNHUH7QxLl5Kx7+dn1SYrHcLNjRwj6enkDODxgJAQRL28ANxxI3HiqBa8Y4NQXczAkERg\n4WZ/cNtmHPj5mVLL+7QI0kwMHUqO5+BgSqfx9AR3cjISHwdSTg/DED8JBO9sAtxc4XXgAO4xnCAF\nkW++IuXjQz6OgwcpgMJikW+i12h5F/L5JF8DA0kO8fngRkbitjtYzXInOZlqCcPC2k8siYoiQ/b9\n9+kt8vKsQB/Qfhhq2878HA45k7Oz6Usigb9rPbDoVsDbZIBWVZnSpruD0U/h5UV3nl5vik5Pn078\nN21l68LoMAFaR4xaZA8CMDkgCgrAVyhwX/BZYOS8Dt+SyaTM5XPnyB7k82ntJkwglbK3d2NFBdlq\nbDbdP13httvIyaBUkkNBIAA5q265hd5o7FgyTFgsMmwTE00vjomxa6392LF01Bsb6TyWlgLRERq4\nlLshiKcCpt1B1ntAQHvv7ZAhdtPVBQKKmBcVAYo6DkaHVJCVGxuLkDtHgnX+NHJSfXBh5ArUGEah\n3S6KjKSOYB3B4jx8yyASAffM1QHleYDeG94GFTKr/FArjoFcx6PwekgIHc4Wd+A4A8kAmtgWAaDN\n/dgHRi0AMAydtR42A+np6Tja1GVk6tSpiDNzzmtKSgo2bdqE//73v1i5ciWWLVvW3BVZq9WCzWZD\noVBg1qxZOHnyZGuCGYxOuyV3hRs3qNzJ31uL8bHVCBrhDbFfB3Z9bi55UePjrdxRojXM5YMM/5Z/\n1/b/Hf2s479p+XkdNYvq7jUd0daL7WOCSgV5sRQaL194iRjNJUm+gkaIK2/Q7d1Fb/uCAqpLDwmh\n2pWejr20Gh8tYNDqkHO2CnJXb8SPYHdNU00NkJ8PdXgsvt9JQ9+XLGl995oDc/mQSEgJaU6lNRjo\ngatUqPSOg6SWgRjPKrA8Bd0KopoaqoPicqkOypzu9NbgoSsYm7u17JxbXU0KV3R0i/0hlVJUUCgk\np4MZVuqRI9Q/47bbup69ZjYfxnogkah1jp7BQN50T8/mEKqx46Vx7OB33xHpDz1km/uiWx50OqK9\npZekBfl79lBUad48ckI3NNCXtzetUUkJvaxVxqvBQIvl5ma1y7yne6qmhtJQWSzKTgsJaZN2XlhI\nuYXjx9uue3kH6JYPrZaenbd3c4vfsjJTSec335Cy+Pjjnfgb9XpaTz6/3czBPuOhO0ilAIMBOUuI\nwkIyfFxdTY1smzsby2Sk2YeHW9TavKGBWinIZHS+2rZv6DUfdXWmZi8FBWRENm2yggL6sZsbiYWO\nxJJeT6m96elUFWOm6mUdHpruK11IOHIztfCI8oFfAEUIlErS5X18zEvfNhjIV3H6tGn4QU9hi/u7\nFdRqCsXJ5U0zc4Z2qBtKpWQDe3iQzcXhUOT20CFyfpMDvHN0x4dcTmdYpaI92dV0zcJCWqaoqDYG\ntUJBQkAsNuUqd5bXbAGstRZyuamf0/r1AFOvxXPTU+HlCXJEWK2FecfoDR8KBZ0Dsb4KKCxErd9g\nlNW7IcKzFr8fYONGsQD332/1aUnt0Ou1MBiao7I6L298tNEV+dXuWLnSMnljKSzho1eG7YkTJ5Cd\nnY2lS5eiqqoKcrm8yUrvGhs3boSPjw/uu+8+/PrrrygpKcFTTz3V6m+qqqqwdOlS/P77760JZjBa\nRXKnTJmCKR3lZHSCzZtJ2AgEFIy1l2Pa3oatue/bJ4ZtG/z3v8DJkySQ33rL9s1pbcGHRELjPGUy\ncpJaq8lxV+gtH+XlVK/V2EilKAsXWpE4M2HrtZg0iWo1bQ1b8LFhA2UxenlR1mBvnQjdwVbnW6mk\nlENj09WXX7Ztw7Ge8KHX0zQQYxbiW2/13FFmK/R0PfLzaZ+o1WSgz5ljO9rMhTX2lFZLcqq4mHxB\nb75pUx90h7DV2bhyhTISAUrJNCf13lL0loetWymqzeOZAmj2gM0NWzPQ0ECR0ZoasrtefLHn72Et\nPtLSaJKlXk96x8SJvX5Ls2HttTh6lIx5JpPaAbRN1LIVrMVHfT3ddVIpOW1WrbICcWbCmmtx8iTZ\nTgwG8NJL5k0WsRYs4cNit8ebb76JS5cu4ebNm1i6dCnUajUWL16MU6dOdfvarsb9AMDKlSvx22+/\n4Ycffuj0sy1FdjYZTDKZHdrOO2EWcnJojerrTWlK/Q0SCXkdPTxoz/UHVFWRUcvn0xoMFEgkdN4F\ngv6zFh0hO5sCuFIpfdnasLUV5HKKsIlEpoknNu+kbSa0Wop2iMXk6GlsdBzDtqcwNoN1dbViuqoD\nQKWi9ESxmIxb4wjSgYCSEkqEYLGIN0dGdjbdFQ0NdHfYy7B1BBh1FZGIkoDsKdNKSykRiMUiWdaf\nYWzWbJyA11eGrbUglVJyhqcn7Yv+ioIC2s9aLe0vR58MY7Zhe+PGDeTn54PJZCIsLAy//fYbLl++\njJFNRdlBQUGQyWRmvVdX434A4LPPPsN7772HGTNm4Ny5c+aSaBYeeojarycnd10eZRZ6Kb1u3ryJ\nN95YB53O5I3w9HTDxo3/BtvqqRbs5npmR8eSJdQ6PTm5TVmqI2nA3SAigur9b9xo0drfwekfPJga\nUuTnmxmtdXB+jIiIoJ4XrdbCiH7CA0DlX7/8Atwy0YDg4P5BczsYDBCLGbj3Xioz/Nvf+qwfhlkw\nptQfOEBnoNO6OKMH2YH3zvDhVN9XVUXp4B2iH/DRFm5u1NDpyBHgwQfbGLX96Dx3hAnjDcjIYECn\noyZSjoyFC4FvvzEgNIzxv9GCpIuz4udHdcUXLlDzYHtuwXHjKEVdpaJSyE7RD87K7beTIeXuTl2l\nO4QD8xEcTP3jUlOpB0kzHJjmjjBzJjlJeDyqge4UDsJXl6nIeXl5+Oijj7Bv3z4EBQUhMDAQBoMB\nZWVlOHfuHJ544gkcPnwY6enpUCgUSE5ORmpqarcfevnyZXz++efYtGkTnnzySSxdurS5xlalUsHF\nxQVqtRoTJkzAhQsXWhNsrfD6iRN0M7q7U7L77Nnma1gGAzU4OXKEiu1a7VjzwGAw8OOPP2LZso+h\nUi1v/jmb/SQqK0vg1RSmtGYqctd/0wepyFVV5PJRKimPKTKSOi22zSNTqWgIvEBA0ozBoAY7n31G\nkuLZZ61a22azVCa9nmq2s7KAlBSaXxAZSXy0LAC1ErrkQ6ulEICPj+nZ5eWZ1mHUKFMX2i7qmQGQ\ni/7jj8mNt2JFq861NuWhp6isNA1ALy2lWcceHpQb5OZGeb2bN1Ph7VNPWXW8SYd8lJWZZiZ2BY2G\n1qW0lCzxlsXWhw7R70aNovzSS5coH9MGrmyz1sKY+hIS0rn8VCioCD4nh2RAfLzpeRcWksdh+HCb\nhXx6vKcyMmjWyqBBpjERt95qsnLLy4F//YtCa88/b8Nuda3RYz6kUuoUx2DQPvHxIQ+PcT8VFVH7\nUQ6H+OiDObZm82Aw0P53dW1dI9vQQB4RkYgKtxkMCuf89BN1fALoXHRqyVsHnfIhkRCNQUGdK3hV\nVVRXIJfTXRYWRnLqyy+p89B995FeYWOYvRY6Hc0YOnSI9KWICDoLx4/THlq+3Kp3QE9htTujvJxk\nmI8PFf5evEiWlUJBa3riBMm7Z59t11PAGuizlGqVipou3bxJXfi9vEj/dXPrWo6bgT7j4fp18iJU\nVpK3NymJunVbqfu81flobKRucFotPe9XX6W75fPPrTSIuj2szkNZGenqJSUk50JDTW3AFywg/rZu\npZzrRx6xWn2I1VOR16xZg8ceewwffvghOC3ysQwGA958801cvHgR+fn5+O9//4uvvvoKj5pZvNbV\nuJ9nn30WGRkZUKlUeOmll3rEjNmQy2m0QWEhHQ6xmBpNmFsYIZORSz8oiDqk3HmnxblQXG4UVCpT\nJz4W63mL3sfhkZlJbRy1WlLuWSwSTiNGtO++uHMnDYQzJvQnJNBzZrNJGGdmtu7i56jYsYMEV1ER\nKZlubtSRcPduCjX0Jb74ghRCX19q+8nnU3eUsjJyJ/76K4WrDh4EPvig68stM5OMEaGQeLGjUtMp\n0tLI+DAYgKefpk5LBw6QkhYQQD/btYvO7bVrlFc3dKjt6Dl/Hti40TSCqe2eb4n0dKLV1ZUuihde\nMP1uxw6SV2fOkGOhqIjW7Z13undIWBtSKRU7SqVkMLULhzfhzBlSClNTyagyGMjIjYwE3nuP5KlI\nROvV18WSHeGLL0iR/eMPok0qpfSRjRtJoT9/ns4xk0nFR1acIWhVbNpE5yA9nYyn9HRyrr34IoVy\nT5ygpjg6HfE0e7a9KTbh2DFTV7rXXiP6AZNDmcWinw8aREbX3r00qigyks71HXf0/Xi+oiIqalap\nSL5Pm9bx323dSl8aDe2jH3+k7ydPkmzasYPOkwNEPgCQ7PzyS9or7u7kcOZy6T4OC6O72RHvgJ4g\nJQX4z3/omS9dSvtMIKDmDJ6eZEAxmZRCduSITQzbPsPOnXTfMxhU1D11Kv0sJobOjaPKMyNKS4H7\n76cc37o60sOPHCH5Zu8RZZ3hp5+oeL6xke51jYbkxZYt5FR0dJw7R/eJTGbqbKdS0dlITSXdaft2\n0k1OnSKbqI8cvh2hS9fMtm3bMGPGjFZGrRG//PILnn32WaxYsQKZmZl466238PTTT5v9wZ2N+/H3\n94dKpQIAeHfV9s1cqFQkePftI88uQBeeWExeBybTNMXaXLi5UYSkpIQiDfYcZN9fUFBAkVomkxSp\nwkLTzJS2UKlMhpVGQ99HjaJDJRT27RiQ3iA11STEBAIT/3l5dFH2FVQqUvbq68mQlUjo5yEhpMBz\nuaQourgQjd15x0JCSKDJZF3kB9kZGRlNA/AK6d9CIUVFmEzTeR09mowWkajnLah7ips36fPz8kiR\nVSg6/1uRyLQWbS+HMWMoshAcbJJder3pnPQFysvpQv7zT3p+np5kXHQGY7tasZhoFYmILyPdrq4k\nm/X6vuOhK4SE0N5ms2mdmExywh05Qr8fPJieO5PpuMVGFy5QxEmrJedNTQ39nM833XVDh5Jyy+V2\n7WixB4wdWxsaWhebKpVEc3k53eu1tbSf+HwyujQaMrJ6PYfLAhQXE70uLqRkd4T6epIBcjnJXAaD\n5K2xK3p5OZ1xRzFqATJ+fH1JKVer6by6uRHdV6+2bxndH5GZSd+1WnIyeHhQZF0mo7vazY3WVaNp\nPR6oP0KppHVUKExNG1gsuiO7kuOOgvJyOj86Ha1HQwOdH6Pzy5GgVpPtcfq0STYYdWAut3+MEa2u\npoyrykqSAUbZZdRpXVwoCm3UTUJCLOpEb02YXch56tQp5OfnQ9tkiHh6ekIoFGL9+vU9/tCUlBQo\nFAocP34cK1euxMWLF5tTkR966CG88cYbqKurw9y5czG1t4Umhw+TEmYw0AJMm0YX5uuvk1fhiy/o\ngLfpytwlWCzyeldVkcB3pEvIUTFqFHD2LB2M2bOBdevoYPzyS3vlcN48WiuhkFJMACoWGTGClJc+\nHLHRK8yfT5dGQACllul05LnLySHv19//3jd0HD5MF/b169Qa1Zj68uCDtC4+PmTsXrpELZy7i5qJ\nxcC775KA64P0RYug09H5NBrpq1ebZmcsWUI/mzOHhLGHh+3nxE2bRoZRdTVFu3ft6jzCGRpqioS2\n7au/dCl51UUiUuoPH6aZDn3p7Pn0U1Li9Xoy8ioquvbyJySQvNVo6AIUCk3P+7nnyAibMMFxujQ9\n8QQweTLJp61bKbPB1ZWiGmPHUunK+vUmI93RUFxM5Q4sFilW69bRHbVnD32fOZP+bvhwU3aGlVL4\nrIY77iDHVGRka0Ni0SJSpg4cICX8228pNXTtWpJhPj4kb+1xJw8bRs6C6urOo99bt9J5iYkh2btq\nFT1/Fxc6IxKJ48nURYuAH36gczx7NhmBQiFF/YwZDIsW9Z97uSNMmULZDRwO/XvKFMog0etpvWbO\nNMk4awRc7ImsLNp/Wi3d43w+Rdlycyml1NExbBiVD6WlUebeY4+RfuWIDpZjx+jsaDQmR+KKFXS3\n8Pl0phwdmzeTwVpYSHrM5Mkkg6dPp0CJceb8smVkUxkd83aEWYbt4sWLkZubi4SEBLCalN709HQk\nJycjLCwMbk0CjcFgmFVje+7cOcxsulynT5+OM2fONBu24U3dgrhcbqfNjlp2Re523A+LZSpobqmw\ne3qaN1ysM3A4NsuNH5Dw8qK0HoBSSUQiU1pyWwgE7RVlBsMxBVdXGDEC+OQT0/9LS0kh64xvW4HF\nIoXPx4cEjzEazuWaUsgCA3uWiuvm5tiKjFhMFyBAfPP5lH7cEgxG36XvBgaS88yYHt3d+oeGtp5r\nawSTaapF9fenLjp9DQ6H9jCXS5dZd+eSwSBFqiPExfXtUDxz4OpqUjhefZWcJJmZdI6MZ8fRDMGW\nMEYCjef7llvo5x3N/XBEwxyglM/332//c09P4K67yKjV6UznKDy8TadBO8DdnWaSdAU2m85/aCg5\nqVp2sHRxcczWwmPHtu4Yk5REz/7AAXKcsNn937nv709p5C0REUGZZmFhpND3d4PWCBcXMkSMM2z9\n/YGmJrD9AhwOdery9SVZN3684+qGRvnE4dCcwVmz7EuPJeBw6E4cNYrSplvqJS37hbTUTewMs+bY\nDhkyBNevX29laObn53f4t+FmXC7vvvsukpKSMGvWLBw5cgSnT5/G/xmNniasWbMGiYmJuP/++1sT\n3NNCYo2GaomYTLrY+9Kg6ALG5lHLl/8Omeyn5p+7uHihrCx3YDaPaom0NLo0kpPtrlz16Rw8G/Ld\nKR8OegY6gtXWQqslngFS7PuY5w750Ospa0GhIJocvISh07WoqaG62YgIx03FbYFe7ykH4bdHfKSl\nUcRz/Hi7y9eWsMr5NhionraiguSZHeZeWcxHQwM1XTKm7tnRIOz1WpSUUG3q0KFWGDFhOWx2f8vl\nVPfs7U2Gn43Xqs/0EBvKsz7jQSajtfH1JUeLldfGqnrIyZMksyZO7NOsJKvxIJVSRD842C619Jbw\nYZZhO3/+fHz88ccItFKE8rPPPoOPjw/mz5+PX3/9FSUlJXiqRSrwb7/9hv379+O///1ve4IdYBi3\nNfA/b9g6EJx8OA4GAg/AwOBjIPAAOPlwJAwEHoCBwcdA4AFw8uFIGAg8AAODj4HAA2CDrshz5swB\nAMjlcsTFxWHMmDFwacqdZjAY2L17t0WEJicn4/PPP8f8+fNx5MgRLF1q6gqcmpqKzz77DHv37rXo\nvZ1wwgknnHDCCSeccMIJJ5z430KXhu0LLcdMWBFdjftZvXo1KisrMWvWLAiFQuzcudMmNDjhhBNO\nOOGEE0444YQTTjgxMNClYdtlU6ZeID09Hdu2bYNCoYBUKgVgGvczc+ZMvPbaaxAIBPj5559t8vmO\nDJVKAZHD1ESxW9VVCwReqK+X2JEeJ5xwwgknnHDCCSeccMKJ9uhyjq0RAoGg3VdwcDDmzZuH3Nzc\nHn+oQqHA7NmzUVdXB41Ggx9//LH5dxkZGfj+++8xbdo0/LNtl7r/CWhAta7GL3tC24oWmazWzvQ4\n4YQTTjjhhBNOOOGEE060h1mtQp955hmEhIRg4cKFAIAtW7YgJycHiYmJWLZsGf76668efeilS5ea\nx/14e3sjKyur+XfZ2dl49dVXsWvXLggEAshkMgjadD3sbAxQf8MDDzzQ9K+2kem2/HX3f2v9Tfev\nafvsB8paOPlwHAwEHoCBwcdA4AFw8uFIGAg8AAODj4HAA+Dkw5EwEHgABgYfA4EHS2CWYbt79+5W\n82kff/xxJCQkYN26dXj33Xd7/KFSqRQVFRVYu3YtgoKCmmfjAoBOp2v+t1AohFQqbWfY/q92+nI0\nDAQeACcfjoSBwAMwMPgYCDwATj4cCQOBB2Bg8DEQeACcfDgSBgIPwMDgYyDwAFhmnJuViszn87F1\n61bo9Xro9Xps27YNrk0zGC35UKFQiPj4eFy7dg0sFgvl5eUmgpjM5vesr69vHnvjhBNOOOGEE044\n4YQTTjjhhBMdwSzD9scff8T3338PX19f+Pr64rvvvsMPP/yAxsZGfPLJJz3+0FGjRuHIkSMAgIqK\nCsTExDT/bvjw4UhJSYFWq0V9fT3c3d17/P5OOOGEE0444YQTTjjhhBNO/O+AYbBDrHr9+vV47bXX\noNPpIBQKUVlZiaSkJFy9ehV333039uzZA4PBgPDw8HbNqQZSeL2/8zEQeACcfDgSBgIPwMDgYyDw\nADj5cCQMBB6AgcHHQOABcPLhSBgIPAADg4+BwANgGR9dGrbr1q3DmjVr8NRTT3X4YcYRPT1FRUUF\nvLy8wOVysXjxYrz88ssYOnQoAGDt2rWYOHEipk2b1jHBPWDSYAAuXgSkUmDCBIDPt4hcm8AWm+7G\nDSA/Hxg7FuiLiUH/ywfHWqispD06aBAQFdW79+prPpRK4ORJwM0NGDcOsEafAnuthV4PnDsHNDaS\nrHBx6d372ZoPgwFISQFqaoheNzfrf4ateSguBlJTgWHDgJAQm32Mzfiw9p7pDt3xodcDZ84AKhUw\ncSLA5dqWHkvgSHdGXh7dmYmJQEBAz15rCz60WuD0aVrHiRMBtlkdUCyHNXloqWtNnAjweFZ5W7Ng\njz0lldJZCwkBmlTXXsOafBjpCwsD4uKs8pZmwVo85OcD168DCQlAYGDv6eopLOWjvp6ee0AAMHy4\nDQjrASzloTdy0RawhI8uRWdc04kYOXJkhx9mKfz8/Jr/zeFwwG4jwdesWQMvLy+sX78eI0aMaPf6\nN998s/nfU6ZM6XTe7vXrwIYNdFGUlgIPPWQxyQ6Pigrggw8AjQa4dAl4/XV7U+REdzAYgPXrgfJy\nwNWV1k8otDdV5mPXLvpiMon+xER7U2Q5rlwBPvmE1qS6GliwwN4UdY3MTODjjwGdDigoAB57zN4U\n9QwaDfDee6QI7N0L/OtftjcMrY3Ll017pqYGmD/fvvScPw98+ik5mGQy4K677EuPI0OhANatI6fE\n4cMkh5lmFWbZDidOAF98QftJowFmzLAvPT1BerpJ1yorA5YssTdFtsXmzcDVq+Q8eustICjI3hS1\nxqZNQFoawOEAb79tH+PQUjQ00NlUKIA//qC7oUV/WYfGV1+Rg4fNBtauJcdCf4Jc7nhy0RJ0adjO\nmTMHAPDwww/b5MNTU1NRVVWFwYMHN//s6aefxhtvvIHs7GwsW7YMx48fb/e6loZtV9Bq6ZJgMgG1\n2lpUOyZ0OrpU2OyBz+tAgkZDl49x/foTNBo6WwYDnbX+DCP9DAbx5ejo77JNryceuFwTL/0Nxj3D\nZDrGnmlJgyPQ48gw7j8Ox3HOj0ZD56C/yKCW6O/yqKdQqUjXMu4jR4NaTfQZDKRb9CcY9Qku13Qm\n+gvUajLC+6tO5Ihy0RKYVWN78+ZNrF+/Hvn5+dA2rRaDwcCff/5p8QdLJBLMmzcP27dvh6+vb4d/\nM2nSpHaGbU/C0no9cPQoIJEAs2YBHh4Wk2t12CJ95sIFICsLmDoV8Pe36lt3iN7w4OEhgkxW2/x/\ngcAL9fUSa5HWI9gzPa6wkDz1w4b1PnWlr/mQy8mjKhAA06ZZx6tqr7XQ6chDqVCQrOhtam9fpCL/\n9Relss+aBXh6Wv8zbM1DVhal8o4ZA8TG2uxjbMaHtfdMd+iOD42G6FEqiR5HKr0xwpFSkdPTKVNj\nwgQgPLxnr7UFH2o1cPAg6S2zZtk/tb0nsKeuZY89VVkJHDlC+8YRy3AqKoA//wQiIoi+voK1eLhx\ngzIPx48HIiOtQFgPYSkf1dUkg0NCiHZ7jpG1lIfeyEVbwOo1tkYMHz4cK1asQFJSUvPMWQaD0WGK\nsjnQarWYO3cu1q5di9GjR7f6nUwmg0AgQHV1NebOnYvTp0+3JtiBLsbeYCDw0RseKJW95Wvt9zwG\nwloAA4OPgcADMDD4GAg8AE4+HAkDgQdgYPAxEHgAnHw4EgYCD8DA4GMg8ADYoMbWCA6HgxUrVlhE\nVEd49913cejQIZw+fRoCgQDbt2/HTz/9hA0bNuDJJ5/E7t27odfr8Y9//MNqn+mEo4Pdqm7bnhFc\nJ5xwwgknnHDCCSeccKJ/ocuyYIlEgpqaGsyZMweffvopysrKIJFImr8sxeOPPw6FQgGpVIrJkyfD\n3d29ucOyp6cn9u/fj7KyMuzatav7N8vIoBwYmcxiegYk9HrqJnLqVD9J9teCIrj01TJN2YkWKCmh\nHKjycntT0nsYW/ueONF/CjpqaijHKy/P3pSYD2P73tOn7ScLNBpqoX3xYv8omupv9FqKzEzaz3V1\n9qbEulAqgWPHqMOPo62fWk0yLyXF8WjrKTIzSf+qr7c3JdbDzZv/ezplURHpFZWV9qbEMqSlUW1O\nQ4O9KbEcZWW0BqWl9qak5ygvJ9pLSuxNCYBuIrZJSUmtomjr169v/jeDwWg3Y9ZcdNUVOS0tDcnJ\nyQAAgUDQnJrcIYqLqYWXWk0X2LPPWkTPgMS5c6aWnfX1wO2325siJ3oLlYpayUqlgFhMLetsPRPC\nlrhyBfjwQ9qjlZXAvffam6Lu8e9/k1HL5wPvv2+b4lZr49QpYONG+vdDD1ERXF9j715g2zYqOnr+\necDCMpY+w759wNat/YdeS1BRQfenSkUNGtassTdF1sOOHbSGbDbw8st9O/OkO+zaBfz2GzUlePFF\noIPJD/0C5eW0f5RKcgC99JK9Keo9SkpMZ+LyZTr7Ax0NDcC775Ih7+dH91p/aoWbnU0jJbRaatzQ\n30YEAORIffddoLYW8PIi3c4R57V1BK2Wzkx1NY31WL+exmTYEV1qxfn5+Tb98I66IutatHATCoWQ\nSqXtDNvmrsi1tZhSWoopgYHUwcMJE5RK+s5gOJ/NqfDMIAAAIABJREFUQIFOR+vK41E/9v7WRrkt\nVCpTK83GRntTYx4UChLaGk3/aV2qUtF3BsN+z7mxkdZZrzfJJkdGf6PXEqjVJFO43P4d6egIDQ2m\ntrXG/e8oaGwko9YRaesJWu6fgaJjGHlycRk4PHUHrZb2IY9H56a/ZRGoVKaRIP1VjhnvGR6Pvvcn\n3c5gIJnG45nWws6wONxTXl4O/1603pVIJHjqqaewffv2Vj9ntvAU1dfXw8vLq91rmw1bg4HSjfLz\nu41IGoNCQqHdnQlWgXHepptbJ90vJ0yg9DKVyhmt7UdQKEhGeHt38Es+H3jmGYrGT5zoMB692lrS\n03rcCXPUKGDRIvIUz55tE9qsDc3KZ1Cz5zR8xkWB5eNjV1okEmrL31lCSzNuuYWesUYDzJzZJ7QB\npCPW1gI+PgBzzhwyrPl8aoPs4JBNng2NnAuRD6tf0GsOpFJaguZZ2cHBwKOPUsSjD/dFn2DBAroc\nxWKL280bj4xIZGXa7r6blHAPDyApyeK3USrpivf1tVP31ZAQq+wfjYYqPHx8HGBeaXg4sGwZZeXc\ndluv306rJT3N29s6yVX19WR3d6AWWw4PD+DppynqPnmyAyxCa9TVkb7baXLUkCE0OLmsDLjzzj6l\nradobCS54uPT5sy6uADPPUflQsnJDmmkdCpvOByi/eRJYOxYh2jHb1ZX5I5w5513Yu/evRZ9aFdd\nkZ955hksXLgQw4YNw+zZs3H06NHWBFvY6WvbNsqG8/cH/u//AHd3i0i3GnrbsWzvXmD7dhJwf/+7\nlQWdmbB2V2R7dUl2lO5xlZU07F0uJzl96609e709+EhNBT7+mO7CNWuAqKjevZ+jrEVH0OkoSysj\ng/TRp5/uXKG0NR/nzgGff0734WuvkY1ibfSGB5UK+Oc/aZzVlCnA0qXWpa0n6CkfxcXA228TD48/\n3rfjMrpCb9YjPR346CMKQr/0EhATY2XizIQjn++WKCoC3nmH9sDy5e19G/bmQ6EA/vEPyga+4w7g\nb3/r+XvYmweAjNr33iPbeOxYYOXKnr+HI/DREQwGOnNXrwLx8ZR13lWGb3d85OXRs9JqgVWrgMRE\nGxDdS1h7LbKy6M41GMh2io+32lt3CVvsqfp60u+qqoC77gLmzbPq27eDNXlQKIj2sjKKk91/v1Xe\n1ixYwofFifSWGrUAsHnzZhw6dAjjxo3DrbfeirNnz+Lpp58GALBYLMyYMQOBgYGtUpR7i7NnyUtS\nXg6Ul+j6T+pjJzh3jjzvNTVAca66/6RFOtEaWm1zqmN+PkVV+Hxynjo89HpcPU+pdEol9RHp99Dr\nO01nksnIqA0OpvIre/a7unSJHKUyWVMfK5XKoZrEVVWRURsQAJw50/RDg6FfpLrl5ZFzicvUIOWS\n/dOqrIFr12hrq9VARrquf6fAdoWGBqukwuXm0tnicOis2wRdyJruUF5OXz4+pNv0OVQqq+gcUikZ\ntUFB1OuyRSWafdDYaDUiGhvJqA0OJsdSbzObs7JouzAY5FC2GRxITl+/TjJLr6f+UN3CgWhvi9JS\nCl6IRJ2cWQemvbycjNoeyxs78WRxcoRcLoe7hWHPZcuWYeHChZg3bx6OHDkCJpOJcU1ucaFQiJ07\nd2LatGk9f2ODgU6BcbJ5airdSpMmYXF8LfI2/gFN0hiEfnsCKCsAHn6YUi/6IebOpYjNEFE5oj99\nC/DgAK+8QsX/RqjVpAFnZwPTp5OW2R3y8qjxRkwMfUh/aiLQnyCVUhrBwYOUPhAVheEcd4zwvR/Z\nigDHzh7Py6NOqlev4tZsJfgFvlCHD8bIYQsAOEZ6tEXQaIC1a6m74syZlArRAkIhMG0aNcy8807A\npboE2LKFtLL77rN9I6+CAtozkZGYOX0erqcBYcEGxDNuAqs+opzkV14hizItDZg6ldIF7YCAAGDi\nUClcf/0JiWM4QM09RPvZs8CkSZTul5NDja1Gj3ac5j7FxRh5bCvuyOHiVM0gzHDLBJSPUmqYXk9K\nL4fT6u/x559E/6hR9qO7G0ycSM5QlkqBsdteBT5MoVDkAw90/+JjxyhF7rbbHDNMlJ1N+0gqpU7D\nsbHA6tWt16ktMjKoidPw4cRXm9SLYcOA0FCKsliiinQJrZZSrrZsofv13nsphMNikcG4dSvl8C9a\nRJpkBwgNBRISyGBassTK9HUEnQ44dIjoiogAvvySvFfx8USnhaE0sZjEwalTwD33/D975x1eVZX1\n/8+5/eYmubnphZACSegQuihNQEGwgdjREdvYxq7Yu46Kjm3UUceuYxcRRZEmHaQHCKST3tvNvbn9\n/P5YCQGkE2De9/2t58mT5JZz9j5777XWd9VTGAVbWQmvvy764oAB8OCDUkhqzhzZDJMmHXW8t9ks\n3vRffhFxcrxRgpmZsHChGJE7VW1VValo++mn0KOHLMry5VIw79ZbT2lo8tChMhS/X7LrDkkbNsCb\nb0qOzrhxcO21EtZ4mLN0siglBfr0kaLb117b9qLHA/PnywSbmqSonN8PN90kSsYpyTH4M+3Nb2bM\n2OsNv1/k4oF4rarCRx+JwpSc3MFQfT5JFUlKOmHjPeZQ5K5du1JcXHxcNx87duweYNtOTzzxBD/+\n+CM2m43Zs2fTf7+KgQd1SwcC8PbbIr0nThSOcvvtsllsNtBoUM1mlMJCEYBxcQLenn32uOZwrNQZ\nYQKqCso7/xJh7nSKsjh2rLzx1lvCqJqbJQfBZpOYUbP50Bd95BExK7lc8nf37idkDv/nQpFra0VQ\npqfLGrz1lihWu3aJ4GhshMGDUfv2hcyBKCPPOGpQ0unzKCsTIREfL2AvMlI05DvuEKVm0SLQalE1\nGhg7FuX22487H/GUhpWVlUnF4NJS2f9PPy3xY/uRqrbJm9mzITtblNH77tsnl69T59HcLErlTz91\nKL833YT67XfQ1IQSHSXr1Nws+TnLl4sWFR4u1SKPkY5pDj6f7Iu2ZCL1119RsrMlj0tVJd+3uFiU\nyPvv7/Ayv/pqR25Oc7O4zFJTjyFx+zjn8fzzkJuLunIlDBuO4nTAiBFSuXb+fDmnt90myi7IWdi9\nW4Dvq69KAtIJouPdU6oKLFuGcvll4pIODoaHHxZEodfLuqSlSW5qOzU0SGXY4GDZd2+9dVyK7lHP\nQVUlFESjEYP1ihVyzvr0kfe9XskJ8Plk38fHy3rce68A94PRHXeIUul0Stx5QsIBby1jPsZ52O1i\nvElJ6UhsrqoSi/SiRRLvnJQk8nbiRDkPBQVyNgwGiYG/8cbDPp5j1X2PeC1WrYLPPxdZVVIir2Vk\niPGsTx+RU2+8cWyDaKOTMo+DUV4eTJ8uLlGrVUD6Sy/BBx+IHHA6JQ7zGI2ERzq3I5nHofbkUVN5\neUehlosvlnMWFCQ6SteuIg8/+uioAMiJkN/7zLmxUULbunff11JQWyt8aunSjkJGV18t589gEB5+\nww1HfM9OmUddnegSaWn75J3usx8WLRLckpMjnzWZZD0GDICXXz6uHKNOXYs2XqYmp6CEtfGymhqR\nly0tAsTLymRy48cLr/Z4pEJ1QgJ8953wjB07RIdMSfmT46Az53FIF8NLL7100PfsJ6jH19/+9jce\ne+wx8vLymDlzJsuWLfvTZ9qLR9ntkJExhquuGoPJ0SCgNjFRTGQTJ4p5ob5elKMJE1Arq1GcTnmt\nogJ1wlmUl8k++p/QtWN/UhTEjLV+vQDX9tDt7GyaXv8IT4uXCGcFmpYWef+NN2i8/l6cTsH1B2SO\n8fGohUWo5iA0naBU/n9CNuoTT0BTE2rfvmyfdC/hdUbigiwoGg2qwwnWMFrzyqltspJQU4/2j3XC\n2E6Vxa6sDPs9j+NqchMWqUMf8MhYwsOFaXm9eAI6KnRJxPrKMOr1pybRuxPJbY2mpsEETRYSNC0o\nH30kSrPBQCDQEbywZ0ni4qRlkcFwYhnI55/DypWouXmUWdIJ7WLFm10FOyqxJgSj8/vB4yHQ0ISy\n4DeUXTvFgxgff+LGdDBat06UIUWBbt1QXC5oaKA5YwjN2WUkFO2GkWewa7eZSLuBCKUFJSQENBp5\nxqpfjI0VFfJ8n376pLW0UlUoC8QRXJWFtUsXFEeLeHLWr4fffsNlCqMqKIWEBYvRtQPbbdugoADV\nZIZWF/8d9vUDk6IAyUkE3G68fgVNQzP6hQsFrLS24q9toCw6k8gn/0aQpW0mZrMo+/X1ouCe7Aie\nVasECKqqeAdMJvGQv/jiHoP1nqq8sbESTZKUJN+74QZcHg0VFaIftuuZPXuCJSFBIrpCQw/qSjsu\n1uv3S0JkaalEUT3zjBgP3nxTDNHFxTKXsjLcXdOoLPATt2k7huR40OtRPV7U6Fgqy+Uo9Op1YJv0\nCRcP1dWitDY0CKgID5f5tAMivf6AfKapSWx+ZnOHLXdvHnrS53Eo+v13AXkejxgeLBbZTwkJwt9D\nQv5Uoc/rFUdUdLRgkHYKBGQue8+nM+d2uGvtD3xVVfaPViu4IzJSMCuVlfD44wICBw6UtdVoZGKR\nkXJ+bDYBildf3XkTOELaX956vVBe5CHmn3/H1FABXbvieuAJtmdriIuDeLNW9BJF6agqvHixnO+I\nCOENJ5McDtTHn0BtbELTuyfMmkVVlazDPoVB9XooKcFTUIpHYyCopQWN1Srn7FQXAmqjgNeP5rnn\noKwMJSaGilufwRisJzw7u+O8vPeeyAig1atjR+LZxMfpiRs9WvZQbKzMVaeT9TmS6NHjoENqDA89\n9BD33HMP+v3czKqqEjhBJZ3bqyB3P4Sn8PHHH6e2VoqmLF8uhuTbbg4T6+G2bWIRsFrFUuJ0gsnE\nvPQ7+XanjqFR27gh6l20SoCFyng+e0jky6OPnho98LipTx947TU5MW1VcqsaDHzSfDFDmhYRF24j\nPSUAaWmUbW/kqVmyr2bMOHCIVcOFM3nxjwtodIdwe0MwGZ3ggAgNDcdubzj+C/1PJbtdfkJDKVu9\nm+e3gtF/KfeMS8JyRTAvPesh0NhMIDIGe62b09nFDSN3ntIhF29t4NkFEyj2xnFR3HJmDt4ukkar\nhfvuQ12/gVdqrmF7SQipyQEeejAJXVrqKR3z8dIr/9SzwPk2kUoB12o/5KxE8Kh63nhZ2MqMGfsV\n9Lr4YtE4w8PbtIUTRHo9BALM0U/nB/9U9J4IjL84Oa9gEQkNTnq/MZ3Nvt68efsuEjyF3N39PwSP\nH3VyKzy0k1YryoWqisY3dSp1b33F47+PxR6ZwvmT4umabubVFxVCXbO4fuhW+l/Wi58Xm/j6axjc\n389fK2vQhoWJUu3xnDRgu2oVvLvtMroE+nL+TREMOStcKpcUFeEJDueZnEsottsYGJXA7e1fSkqi\nUpvA7IKpeJ4M5+5HT2iE1XGTP6ErsxI+JW9XgH667dxMITGqCo2NfFB+NsvXJhGtqDzxpCJOBpNJ\nvLpFRWJxP9kIpLJS9lJ7a5x25ahd69VqpU/t1q3ixfn0U/HSjB2Lx6fhuusk+j0jQ8Bta6s45O6/\n7RZBXgkJe5WJ7kTy+WTsYWHi2dh77O1ewb/8BX9ENC/eU0tuaTw9lvbk/mes2O94jNn/NFM6JxrH\nf0RfHzxYAtBOOnm9ojBYLLL2vXoJsL3lFlFWq6o6DOptFAiII2fhQnHmnHuuOJ/nzpWAnhtu+C8r\nvDtokKyT1yuetcxMAbY33dSxR/YzXD71lGw1vR7ef1/8C1lZ4riOjYW77+6UYJOjospKCSLyeOT+\nSUmC2T/8UIIYwsIE4z3xBCQ01cu6BgXJIt1/v3ywWzfxsr3xhuzVU9B5Yd48+Pbbjr2i0chwNq+D\nrjtO49GRS9FXVPDev/ys3aghKAieecZG5KxZcq6+/loMLzExcNllYllpj/A4SVRT1MKLS87GqQnm\nrsBCGjbIHNrUJ9LT2z54+ulUDz+PRbuKifcUEdknlt4vXCMM67/A27ZkCXzyoUqf7H7cNrSVddvD\nePdBMATBg9f1IDksTDBWZqZsNuCtX5LZ5ACLReHZZ64hfPp00X+zsoT3GQwnvArYITWGzMxMLrjg\nAgYfIHfo3//+d6cMYH8Xs91uJyQkhNraWnyHKIbS3NxxLsvLkR1z113yRliYMOF776Xi3R9Zrwzl\nw59jSe+tsLZkJBdMhrjUILJWJGMyybkuKYH42IB4efX6wwvxzq7jfjDyeMQSEh19cHPnfqZcR8BM\nc3J/fjSMJnRQOo+OWQabNlGSehmOX0RGbd0qwDYQEAd3RYWk1O7KM1LijSM4WKIfMzKOfwoCavcP\nJfhv9m10ArW2yl6Kjxfr1NSpsGIFO4ZfhroVnAQx1zGO3F+gOdWP3+On3q5nYJ8GNpYlwN2nNr9i\ni7sHm7VBROpqmaubzhVnxPBD/Ui8G9O44EIF3Wmj2RELcZkKBY0mHDEKJ0A9PDHU2Ai5udSHpfLL\nT36sXUKYeKGZvDwoD+uNoqqsSbmWsz4ZQ0mpwpYtcvx++GE/YKvXn5ycw0svhYQENn/TlxBTHGX5\nblStjblnvEhkiJve+t38/KkdY89u5G/RkjPkCgZePxEMBqqq4McfJZBlwoST4HAbMkQUQpdLDIx5\neZSf/ReaGpOwRhnYsslBSIgLj8fMlqo43iuJ4zmbpBbFxsK6TQYunHoj8ZvnS97ySWwdUFcHPkVP\nkS2TCh0QjHjs16yhyZZO8VvdiI3ysbnBSKChCXtzgN9TbqcsN4uqiB4Y6t2sWGYmacZ/k9a+L1UX\nt7LCOQhNssLnzjO5ZNgCVpkzCQ1ksz4rjMhhSVTXaKit3ctWExl5kP5jJ4HGjROvZ0NDx1nr3Xtf\nMBoXJz9er7SfMRohIoLmOnG2R0QIKzaZRNetqED21aBB+9xq7Vpxpk6YcMgMnCMjo1HGsmCBeMSK\nimTct9wiFpSUFOjdG6cdcnt4iYtT2Fmq4CqqJNuZxG63BlWVyOTBg8XbdiBqbRW+FAhIF6FOOy51\ndXLz9HTx7M2bJ6WXJ0wQb3RwMGqLg2VrjOxaH8SUczscA36/4N2WFlHLiosFWKWmipHhwgtPvgNt\nHyoslP3Ut6/w8AEDBHWvWiXrFBsrSHyvPeLxwM9f2nG3eDnnyvA9aqLHI1Gkp58umQp6vVx+1y5h\nhSeT1q8XG4pOJznLSUniLMvPF9Dbnk3Q2AgJKcmStlJXJ3n2KSmyviaT5J9feKEcnJEjT+ocVFXS\nmmNjZa9ccIHI3q1bIbargc15Q1mau4u+N19K2Ro9cUolEQXbcOT3IXJYN0kxmDFDIocsFlmYU2BF\n2VIRTUV0f8zNVSxJux5Tm5+irtzFxw/vZuqlRgaeHQUWCzUz7mL+tjqs+lYST+9K79H/PXVK5syB\niGgdW2vGUqKrIqvHJPTNepxOKHZFk/zii+DzUecwMTfnNHrUr8bT6iM4WPBui0MhPKIt4uEkeg4P\nicg++OADIiIiDvjeH3/8ccw39fl8TJw4kS1btjBx4kSeeeYZPv30U1577TXuvfdetm3bRiAQ4Pnn\nnz/oNVJSpObCrl3yG5ANvFc4pCM9k0c8meh0UFsHQaXQPU1HxLSxYIDzIuCf/5S85t69VJEQ33wj\n17njjoP3mAsEJAdjxw7JvbrzzhMDQtxuCWHavVsYzHXXHf47dXUkf/wE19FMbuhwut06GJKnwJQp\n9GmB3iXiCDn3XPl4djb85z8y5eZm4W2hoSIw/4trofz309tvi5ZksYh5t6AAKisZpXxP4bDeNDgM\nbNkiz7mwUMvgwVoGDYfS0nAufyAcYg5/i04ln0/ix8LDQVE4Y7SO6OGp2HcauCX0C+q+28oG/VBK\ndyhY/XVM2fgkF9Ul8ZNjGlP+knTSrdPHTO0hgmVlNGxsJLHVSosxih2xj3HnnWGUlZnR6YZw2UtD\nIALizMKP28vcnxKyWGDiRKbFw3t3bWdk42bGJ+fyW+osLo1bA89/zLCyDD4NvQXbyD4k3dZnTw2v\njz8WNuX3C1Dp2fMEj1WjEUALsGwZvPsuaQEDmXGPULjTzVTdh/R0uVka+Sj5+WFUVYnuP2KEKGHJ\nyRA5aSicf/J7x44dKwpg+9+AALopU4hU4awiWLlSy+Wjy9Dc9zhVOSorQ++kQTMIpbQEpaac/hO0\nwKiTPvZ9qLlZtNsDoJyIr95mrDaJbXXxnDEqEuuSuYTmzuPn3veRcH53KithZOYBU05PDYWFSY/r\np5+WXMjzzjsw6vT7xV21Vy+uiBAP48/w89tyE8OHK1x+uci788//89fr64VlGwwCgl9/vRNE+mmn\ndbibFi4UT9ioUR09u/1+gt2NnD/Vxm8LVKZ5vyToiV9J6TcBq/VK7HZJ/dRoDt4aZMkSMVyByO1O\naQfe3qurvbnsE0+I52tvqquj6a4nUFY0Y+9+Oe9VnbUnZU6vl7Y9iiLPddIkueSKFQJuO70v8NFQ\nUZHIY49H6rBcfrm8npoqZ71N/u1PG+cUE/zEs9hUD6vr/8q99w5l1iwxlJx3nnxm2DDZX2FhpyZq\no2dPwaV+f0e5h+JiAbJGozgtBw6EHsku0StLS6XAYEqKfNhqlQ31r3/JprvrrsPXZOlkUhSRBb//\nLksSESG66aWXwmefQZM5ji+63MeStXD9Jc14r7yFhNpNWG4JF/09IUG+dIqrb6alKQRndMHt7sLA\n89vA+QYPgZ8XM0nzPhEL82i98AzMzz5CjwExnHtjAsXFbW27AgExvISFnfLQhhEjxGAT1z+G2Edu\nZ2I15L0h+7t/f/b02/3iI8iY+wapFb/RKyqUb6f9h9hze52q2pWHBraHarcTexwmt5qaGurr62lt\nbeXXX39Fo9EwtK3ozKOPPsqVV16J2+3Gc4h+GorSwVAORjq3g7716ynzRjNoUE/uGb2OqJps9DXj\nISGB7t2lzxgA33wr0qy+XsJtGg4ROtvSItpily5Sz93lOjEMoK5OQG1cnJivrr328NK2rg7NH+vo\n2tpK1zA7JN8heSIbNhA8ZgyzZu3VaDQvD9uWUiz+gdgDoYSGihL/wgvC9/+Hp0yeWqqoEGlSWChx\n7gsXQlISJkXhxjvqqNbG8cxddaRXzieoXwLTXhxNaNgpqkDt8QjYy80VIXf++dh69OCri+fTsmwj\nES27JaXKIzkU4Y4SaGxkSm+VKVEfw/RHTs24j4V8PjFrl5ZiK8ol33wG1pAK4t9/ioj0KH7+4uZ9\nYsiCgsRh0dx86pxW7dSvH7wW8ywYGsAJfa+qhcVVsGsX46qWMaBfHkG3P485oiN/xWqV5TUYTkHf\n9NpaAEy4uDPuS1jyuQjq4HQuOreMwgYJtbJY4ILzVSaHrSKsLh/DkhgZ+JAhJ1Wwh4TsVV+krg6W\nbBXtKikJRRHHxhVXAG/NhR07sHijSPBlYanzcbX/VcJCLVjNV3NKgW17ZVCzWSpk74dQDbXlPNFj\nNQ3lTiL7DqVmg4o+4CamcSf9h3bn7LPbPtjcLIa5hIRT1/S2nRobRS7X1sr8Lr74z5+x28XlGhws\n3pr6epTZs3ndW0Htw5divWQiBsPBdQa9XnQ0u70Tswp8PtEKCwokZKKmpuO95ma45x6UqiqmTp7M\n1MfPhVm/Qnw8MdlLef7VK3C5lcOCwL3T8I47Jc/vl/CtqioZq88nntqWFglHT0yUB7RhAzQ2YnA2\n4jFaSaxcR2XYWftcatAgSbtrp0BADAo226GLVZ8wqquTtWhp6WCIFRXynsslef3FxVK+uFs30bMG\nDdrDf2z1+Xj9LXi0QcRWbqbf8KEsXbrvLUaPFvBoNp8CXosMe/ZsedbtAQ3JyTJdi0WijcPCgOJq\nAbXtbtH2HFqHQ9DjypUygbw8udj27RI5cSLTbfaiv/xFDDR775WzzxZQ/uCD4gkMDYXUGAfoC8DT\nCLl1sncnT4Z335WJ3nBDR4eUk0xJSVIGwOfriCh+/iE7Gxd9jaW8Ar3qReuQRHStL4vptbnQJRys\n58C/PpUeeX36SEz5KQS3F18sto/QUHmUycmyx/YhVaV79o/0KvoFLwrhTRXMTPgVzs4A5dSM/ZDA\ndubMmdx0000MOUhMxdq1a3n77bf54IMPjuqm4eHhLF68mAsPYIb8+9//zjPPPEO/fv2YMmXKEbf9\ncbvF+5qfL/hv4EAwfvERNzT9hL20kaDQXjgeKyRbl0iXjbmEv/n0vhdYvlw0x3XrJETltNMOfrOQ\nEAnJWbxYDtKJsmrFxMg41q2THbYfqA14/cz5LkBhqZ7p09v4jsXSYRK1WMQL98YboNHgXL6Bd3Q3\nk1K4mNOvSSNyyTfEu908EdeXvIwpDPT8AUVjsCQn71MY8//T0dG8ebC65Eauz3+AJIMDZcECyUPa\ntUtc5dHRRFeU8ljlHVSXNIIvFkO2FeLCpUpenz5i/j1ZVFMjoLalBT77DH9OPiua+9Flw/d0UcpQ\nhmYScdlUzs0YykQdDOqZDg3poghMmcKuXWIs7dv3gJ0z/rvIaCR71A0Ezb2J1sRM+thzCY4NJ3jJ\nOuxzA+QsaiT1/YexrZwnnHzyZIxGg3QKKCmRkLXu3UUB6qyJulwiwfcTYFlZ8PPPMLRHM2Ob5ojZ\n1+WC/HxaFAsLL/oEQ0oCEwOg0emI2LEcZj8l1XnbNIIZM8ROFxV1grwIbreM+0DpGOPHy97SaDoU\nqc2bIT2dfoHN3GpezVtV01i/3kbVynxOW/gvwi3VUFO5JweRCRNOwKAPQ6qK78WXKV6+G4ffROz0\nUUSlhcE55xAIQP4nqzHvbCY0pIlRT2ZgffUpuurdKIpftIBTSevWydrv3g3PP49j6pV8liNG48su\ng5CLLkJ/661ER0bSWlhOXmUIdrOBAdcNYdx4RAvWaMRrs3mzoL1nn+1oI9fQIC7CqCg5AydD6erT\nR0JbVLUjrvW330QOX3ihgJTmZgEvW7eKu72tkbISG0tU1mKYMfHA125pgXnzCDEaefCeyeSXGNiw\nQUDKwIFi1DrmVLf168WF5/eLjrD3Xn7ySWnGz6lUAAAgAElEQVT3YzLJGfrLXyRscs0amD6dIItC\n0EFksMcjnbPq68XDc+ed8vr+AWaBgNRxW7NGovoPe5Q2bpRCdRqNMIudO+UcOp0iHxITBTSsXw+1\ntQSpKqcZ86kePInoSx3AwZUGjeboC4bX1Uk0WWWlYO0BA6RI9DFlfn36qczP55MHpdW2uceQi7c3\nLn7pJTHkaDQdFam3biV9+GlYx3SB5mYibxt/0NvsH+BYVCT5ot267ds9cckS6eo0cKDoq4c6RoWF\nUkbFapVAwkPtx71rXO3cKUcmM1OiGvd8Lz5eEljXr5eH+tprwreWLJHXWltFtpWXw6+/yuC2bz8A\noukcKiiQIYSHSx651brvXgkERL8oyPFy9QwtqqIRb6E+TPZkbq7MqbhYLI/Z2SK7NRoJ/T/BVFcH\nr7wix+T22zvwf7BFFXmNGacTvvghAsuIqxlSORerpxRDeIgUCG03JA0YIOkUCxcKT1iyRKI0T3KI\ng6qKfSPvh21Mi15B37+eDqZk+Pwbea5Tp+7x1AKQl8f4nDexhyiYHbU4PaHUfL6W+LSlBE3p7F5p\nR0aHZBF33nknL774ImvWrCEjI4O4uDhUVaWyspJdu3YxYsQI7jlAO4zDkdFoxHgQS8q2bds4rQ1U\nhoSE7Mm53ZvaqyIDjBkzhjFjxpCXJ3LYZoO5X7YysGIxvPce5oICjCjUz6/G7VSptUWRu9nGNBBh\n+Msvwo3OOUekgNEI+fnUrM1nraMvacZiMiLrRGtv56iKAldeKYfoRGrxWq20LLjxxj/fp6mJXXe/\nx5ylp2Hs3Y2PnDE88giiPF5wAa4lq2lIHETM/F+lKrJeT0ljFEl/vI43oKHpHyuIjGkBo5GYrEXE\nLP8W0tPxLlvMruSzsQ8azdALu5zqSIj/WbRqFb7fFrNp7TgC/U/j95wzGK1dj8WiJ1KrpfDqJ/gj\nK5oB02aR7tmBb3cD4Q0VFDYEWHj9F4yPy8aUHCsxWykpJ7R1yN7U1AQrNsXRu3whyVE6XNkFeB3B\nxNdvR6N6Ye1aNO++S2aMGHBWzm2lJqsbvcaPJH3AAP51t8jCHdsD9A1k0SVRwZPRl7p6hejoUx5N\nA4hcLiyE04b4WPmbk8EhXYkr3Yo9PoOdLWkMaMjD49PQUNzEmru/YpI6H4CmbSX4zjyLiNN7iAui\nsFC0yupqOf/Hm7S6erVcNyZGiuCEhkpFxR3ZfPhqIsXuGBa+30Byr01oS4rwuALE9xhA09pcEv1b\nCMv7nsq0roQ46gmJCxFlZOFC0cyDgjCbOyKDO522bpUol9BQ8Q7u79IODYUbb0StqGTtP9dTl1VG\nrM5A9B9lxC5/kERHMLdFLuCd4rvJj4ojqVJDRKiHcJ1O+J3DcYIGfniqLbRTWBWEwV5P1gfFjNV/\nQfi2XBqnziSQV4DJ72BDSyZF63xc1FqK0tIgRsg2raaqCv74AzLSVdJqVonSNX780fVSzMoSjW7w\nYDpcqYehsWNFEBYXQ2QktU+/xTpNNC5dCLExNs4bmY63byZ5O9ysr+jO3LR7CAmBsSholy6C554T\nzSYkRACZz0dtSStrXl9NunML6SEVcgYCAYkk2rsk7NFQZaWADYdDQNT48QdvbWEwyH0qKsRY+8sv\n4lXy+USxHTFCFMH2Ij9xcXJGly+HoCA23vo+vz4n56A9ZdDhkLfDN65myLYfaXAHETozivi0M7j/\nfuGJixcLIDhkmmFtrZy3Ll0EmLYXTvvxR4mxdzrF6z9lSkckSCAgBky3W4D1pk0CqCZNEmPBzp34\nSyv4bnUcxcUCiHbsEF1yzBhZ3vnz5bEYDAfvalRd3VGQ9Msv5REfVF1paJAPV1fLM6yqElBbWiqK\ndXvxneZmQUw5ORAcjMXvJz4qnC1vLMFyyRR695bpV1fLFiork04fvXsffVvOuXPlDK1dK8u/bp08\notRjqVEYFCT7RacT7+PChdLO8Lzz5JmbzcKLg4JkbyYkyNznzoXcXJSvvyZ28GDQuKGlkdZWybSw\nWsUGrSiyrHPmiKNz7FiZ8wcfyLbdskUMjO1Fg776Sp7PypUyp0OFbC5YIPu1pkZY7qhDBIRkZYlh\nfdgwGbrLJcc1IUHkcHyEG232Nhnstm1yCE4/Xf7u2lV+CgvFOPbFF/K7peXQjp7jpF9+Ef0hK0sM\nSf36iRGuHTvl5sKXr1fB9u3Uh9fz1OqzqKoA06zrMKxYIWuXmCh7s7JSfoeHC0g8CbRxY0e3nro6\nEYkhZh/qK6+ybk4ZDdpIgscNY1H2WBJboggdcx2p18SKYSU/H5xOvD5oLHMRYQlB4/GIEyQqSqxY\nJ5nq62HFz83MWnk9lrpitn2RinPalXQtWg4BlQhbFProcLFIhIZCdTVai5mwCANVdKFc1xVHjZaG\nP1oZcpjUCLdb7hcT07n1Pw4JbPv27cvHH3+M2+1m06ZN7N69G0VRSEpKon///pj2Ru2dRH6/f8/f\nVquVxsbGQwLbdoqPbzNslJdzRcvfYd4iKCzE64eA0URLwMgWTW9eaL4PxduLYaXQ5ZevxCXSfnAn\nTxaJYTbzyrNOKsw1TFj9Il3Dfsf816slLGBvOhmuqdJSYS5tFnOnU7C3Ni8Pa10+59h3Y13VgGPw\nA7icPTBuWIXHGsUzm8+hZIGJsV9u4uoRAZgyhe31Y6ha/g9i/WV4WtwQ5hYFKCxMwr2ys6lssFC7\ndhGOOZtYFTP7mGoH/J+sgux0wnvvoQ0O5sLad3mleADl4dPomrOBlMZatOGhlP24ntG75hHqrMRv\n0WOI6U6RIYW37NdQvzuB5aWpPGpbiyVMf1LjtT58pRGlKphm9wBCi+djVUvJsLTgVfToFT/4/biz\nctBHxdDUBMVPfUiqfSu1G6FbdDNn1Pv5zXE6ZqeT4A/fwKv38FzIcxS44hk+XGoJnUqqqpLwenNj\nBbn/zuWqrPvRl+ahDfhorI1C48tnqW0KboOVaH81/XK+AU8RRUoyz63pjvfjam551cagiAjhD/X1\nAjj69WtLNDkOWrhQYgjLykTI9e8vVubcPEbWjmBndThR7lIWe6M5p+Yn6kNSybFEYxg5hZDfF2No\nbWL5rkwStb3p4awirK4e70dfYKyokL7W1dWisHXv3vmVCH//XRTF6moRxPsD299/h88+o2RLPW9W\n34bTMZ2e+jzuqX6ExoAOfaCVuqYm7g76K2/GfcnijJvo3nU+JGhEAzzrrAPf90TQrl2wYgXqsOG4\nuvWm9oo7KC5aQJA3B0PeDh72TiehoIn7XO9QFRHPRnt3vnRfyOD8MlzldYTYtKJxKwqqKjjFuGMT\ntpxXSQ7dib5nmngaZ8068jG194z94osjB5A9ekiEzkMPQXk5waUF3Fx4MbWGeCL7XwqY2dLzUh5a\n3pXc1q4oLQqjRkGfdA/c/5R4O5xOsRDbbNCtGy+9baF8iQ+DsQ8vJCzGFqWTcR2P/P/mG9EI166V\nfbl9+749l/PzBWgNGiRzv/deQQfdu8Nvv6E6nfj0QegswSh+v+y1tWv3VE/2btuF0tKCxuVm7ZcF\nlA8Ywfvvy/EKDZVHungxaCt6cr5nMD+VZ6J7N51rHxBRW1NzhFEO778vYwcB1N26SWTHt98KSLJa\nxatcXy/ja0dBZrMo3qoqGt077whi9XrxBwVTp/7CPOUl0Gr58kvBzzabbJ9+/UQ8eL2HLsJks4m+\nX1IitZAOqa58+qmgJoNBJl1aKmAnOloSHNuNrBddBJ98sqc1TgAoW5zN4lbIKRXn/rp1AmZtNsGS\nPp88ovT0varBHgFFR8tyRkUJ8ElMPA5b7xVXyN6JjBSk9O23AoLy8sQocfnlgkrKyuT/c86RPf7r\nr2LlUBT5fcYZsGQJ3+4YyPz58nJQkKxJTo5s67o6cXyPGSM4saBAjorVKsvtdsu2bm+7fLgUl759\nxetuscjS+HzyXPYvWKyqcvT1eilwnJgoS1hUJCnT8fEqk5u/42+VD6KUl8m+02jEsNK/v8iL9g21\nYYNsHL1e3juBAKt/f9kz7dHvlZVyjNoBvNEINVmVaBshvr6Mdwa9xUZ/JreW5NAn0IhGo8g4q6vF\nIWAwyPrNnHnCxrw3pabK8a6sFN7y++9wTmYNW5Y08M8dY/H5YWhdAZOMmxmb+y6hO4ywvpdM2uXC\nr9WxLWw0gcIAO7+vZmSPHnIhi+WUVKUODYX+wXmENuzG5/MT2VzAD/PKcCgqWp2C8T+7GLb5HTGA\nqKrInJ49YcAA1AY9hm2VrI8dQ/8zD+2tdblkX5aUyFm55prOm8MRBXX89NNPTJ48meHDh3fenQ9C\nmr1ge3Nz8572P4cjmw2mX6Ti/duLGJ3ZqHXV7Aqk8w/NXVhiQgmLMbG0MBmfS0varl/IG/oFceoy\ntH6vcBqNRjhTZCQ4nfjiuhK/O5uurhxUBZzzf+ejoLsJCZGCDicldH/NGqlo0VYjfFFpBp9+Knx3\n1o2pxIe0MMW0AWdqb2p+ms1zn4zjYt33JNrsxFX0wq2ksKY2DU9BV5b/52xsSWHk976fri07iB+y\nHTwrOgRsnz7Qty/anzbSLXcNTr2V5h0bYORelSNraoRjh4UdspXIn6sg/zfHpnYO2d0GcoojMTVW\nkXxaHLNu0fPRjK3El60l3p9PYHk+PXVWvF4FOxYUbRjbEs+jvl83zpq3AKPHxS+h06lSo0m9durJ\nS3Devp1hW98hqek7ND4vRuy4NFoiW8tQeqZSVGngZ+slfHlnPzJrv2Vq31xCFRc+j59QkxfNxx9x\nrsHMMNtmNGP7EbbaRbXDQkG9hvhM4d033ngIa1x7O4n9jFedRaoqDtEdX2zltsA/SAptJFwpRPU2\nAirJDZtx63tT2ZzI2vPvYvi2f2NNTiXepSVPPRNnthWT4mVLloZBt13XYTY3m4+/GnpZmRiWtm8X\nhTclBbZto2XlFr6wn4Pe62ScugijxUdLkItKbTyaujq8AR09JqWye6MFd0sjaY7N+CNiqDUl8GXl\nGawrH8w18Q2McjqpffAlPMWVRMboMPzj+c5NFM7IkCiXA1Q83LHVh2Xm44QY3VirK5mgzOEP0zAw\nWqhoiqUhEIIBD340RKq1XB14j+h+ccSXZIPLJIroXolqPp+AkcJCeeuYvDYHI49HQsJUlbxP1zCj\n+FmKKiO5P7ieS/gOu9dNvFJMaWsSzgV2eqXriFQNfO/uQ1jV1/gtoZBqk5g/pxMUDT6fiVG7v6TJ\nrsFeV4s5PBrzwKMUGomJAjSt1qNLoNTrYdYsHI8+h6lwHukeD+GeShrebsSzO5kudj1VvhexhBsI\nbq0mJjuLXz/JIMjQlwxlpxzW9jMZHIwXPVq9loDHA316g7NcwjUPVMSpuVni2LRaAQsHG3d8vCyq\nViv321ugBgJS/MLjEbfTgAHisR4/Hr78EvVf71BQbuCrjEeIWN2H63d9S+Df7+OpakTrdeGpa+V5\n5QFaXHruDf2I8LAAzc0SmNV+G69XPGmlpfF4Eq/E0hdagyNoapKUpuxsUbjbI7APSgaDeLZ1OvlR\nVYm4yckRDbE9rDsiQiq5zZghzygnB3Q6Al4fZXVG8qJGMFr146p3snFnBC6/h816qKiWRxQeLrbn\n0lL5Of10ceS3Fwk6EBmNkhpbW3uYtpGBgLjLtm8XHmSxiFe2sVH0gldeEf60YoXMqalJvgYE0OIO\n6FGrqtjQLB7IZctkig6HnNPSUjm3jz0muLi92Gd7iGlxsby2v8N+4kR5zWSSbWSzHUPuqqqKC3PH\nDgmhTEuT8auqDLK2VjZDjx6CSCsrZe/37y+Az+mUsaoqf5TFs2jtmVw1KRVXZUfKtMcjl/jsM/Ew\nu91ym/p6We7RowWQ22zSBmn9ejnSY8dKhtnhMtlGjJDcxgULxKZQXCyA+o47/lwMMD5exFNurvw/\nbJg8v40bQe9rZW2ZBV+Ygt7nw69oqVPCsJTWE+Reh7J5s4TEd+0q8dEajYRnl5bKPlBVcQRt2ybl\nio+yZcamTWLHHTlSDC3tdPrpwkqef76tCm+EPJ+mJin9sWQJBOkNWHUOzgws49fmadxif4iYQFmH\nlrlxI4wbR7Utgy3dbqRX1R8kPPywPPypUzvFCaWqEmixZYsEYLRPv1s38Xn9+9/yrENC4Kl3otlY\nOIMmRx1anwvycjgn+Hus7jKU5hDIbUs98vvxBnRYWmux0cju5QtgWhJccQX2xF6s2xROXJx4+zub\n3G7pjGS3i/O4PeJZr4eZs2IIFAzCtWIdNdiIaMznde/FeDDw5LwXwZnTYWHJzgaHA8eECwg0lBGa\n2Y2Rj15ExvC2jR0IiKUrL082fGqqVFIudFJSHEJsnMKaNacA2M6dO5c77riD0aNHc8kllzBx4kR0\nndTiZv92P/369WPNmjX07duX5uZmgo9CoH/6KVwcUCl0x2NO1LBMdxGK0oea1L6U+PTQWIVzZx0P\nqw8Qby8lYPCj1SvCcfLzRTDddhtcdRW3Nwez5geFdLeBoICJRV2ns2aNrGVKihzGE065uXIg3W7Y\nvZtFSzOw2drSjJpt9HruOYKfeILg6mq+zUkmMriOpnIHSTE6TgvaRKMvknNDV+IqUmjMq+XzhPtw\nqzbUlNPZ0DOTYUF+kX7DhsmpTU8netuVuErd2Kii+9KXYeorHeFzc+YId/J6j870+r+QHA7ZC+1F\nGlau1fGN7SGitPkMDdQxaMGPhJh1aHUa8MsyavxeCrU9MatOvjTehj3lckb98QLnGn6lxaXDHBRG\nYpBXJNPJyLF1OOCVV8gMKUPRNuG0RuFr9uL3QZMmFn+1mfs1z7G5sjshgWpGuH+gal0QA0aFol4+\ng+RULcr3n6FXVRJi/XDlODA3Emk0M9oewao/RGE5KKhtbBQTf02NCNTRozttal6vXN7b0EL9h4uY\nGNiONuDDqw+i1WdCqzFiCLjQK1666CpZpVo57edHMHuamWufhPHJ8xjQL4rF91fhMIVz5sWREKRI\nyO3KlcIzjlfazJkjTD8xsSMJqrKSpeEXsrR2IMnWBia3/IxR68fYK54tTWGEGFXCXMXsWtaNippQ\nuphbCbhhS8oF9LywJ6t/6UqIYmd9tYWB192O/deNVAZ3o74pmD778drjppIS0ax8PlF+2qprqip8\n99R2rrQ7cFfXEaVrYlz0Jk6PqKbuwmup+HsP7PUe8unGmSxljfVsQnIriazYgeLMFjSx31h37RLF\nzmwWBfKRzqxXptGA2Yy90s663XEUFCs0qSYUZxX2IA2hISrxrmrCggJE2pvRdOtP/CVT+HvWfNR5\nSwlJNHWUQr39dhSTiXuunsWGyn4Yl/3KLutQyqOnMW3mwXPzDki33y4TT0w8+spA4eHYK5zoFTPB\nOAinDldLCJXliXTppuP661QWLXfg2V7GooJU6rJNbDr9aV67fQDRlVtxrdyArsmBvlcv7pwRxvIf\ne9HLVoEtywtOhEfl5f2phymLFknbFFWV+MfJkw88vvPPF+2/tlbccXvX8Wj3aNbXCwCMixPrVFgY\n/OtfeGvqqbB3J0xpJu/XfHyGOfiqGtG4nGhUPz789E6u5SflXHac153h15xBl0bZqu3ANjNTlGaP\nR0NuYxS9E6BLgrweFSXKqdMp0zikTjxzplw4Lk7Wv7BQvHxpaR05qhs2iNusoUE86VFRcmY0Gnwa\nPXWxffkjeDxdh4eT50kkf04Wm8PGULZeS0iIfDQiQnSOykq5jNstEbWHS/MwmQ4e4b2HcnJEu42N\nlYkXFYmb8I8/5AGsXClzai+8ER8PJhPNTWBwNaM3G2nxmuk1SIBqS4tgH6tViu8WFsrypaSIfjt5\nckdXme+/F9uA0ymsdW/Sao8/IIbiYnGjBgVJfvALL8iDvOACGWxIiCCoW28Vj3l7Lnd2tix8ly5Q\nUoJf0VNr7UZBtwm8tz6Ufv3kowaDzLctpZszz+ywD6SliYhoB65FRXLZ8nL57fMJyOvW7ZAzAOSY\nLFrUgb2HDBGPbzuw9flkX9x5p9gatVoZW2qqqBIPPggev5H00Ar8Hg9YQqnWJ6BxtmBv9qF1VWG6\n5x7x2lx4oXypsFDkXHKyPKfSUkFCQUFirHn55SNeBo9HatoZjTL33r33tWVHRclxHz1anmVsrMxv\nyRKZsz4xldMyy8nwx9Jrx9uE14lurKgqxMWD2YwaUHk2dxolFXrublxHrG4D2l9/lbM5YsQRj/Vg\nVFkpssdkEuPXa691vHf22WIPUBRZix07taQOi2ZJqY54Cujmz8HlDBCuqODzSoX0f/wDHA4MOgWL\nyUsZqcTEK+LybWzke1sXfi2XdXzyyUOHqx8LrV8vdor2wnl7A0tjagJ8+Ba6Z16g9o8qyDGy2dOf\ns9RfCG6pxK/TodGo4rIym1E1Gl5ovJ4QdSfNYWnc09u2J4vBUpYnBkqzWWLzH3gAnnuOuOISLrZM\n4/u6c/eku3cWHRE6/fDDD/F4PMyfP5///Oc/3HzzzUyYMOGYe9n6fD5SU1OpqKggJSWFb775Zk+7\nH61Wy4QJE9BoNFzeXor9CCm1m8L3VXcTvG01v0SnEWuoY2j9ZnYbI6gNTyLU4WdU3g/Eu0vQ40VV\ntSJ8zzlHmFr//hIudP31xMfD1Jti4fJPoamJ1i2J+L/s6K9+Umj8eAG3JhMMGcI4rYD3rl3bQqQs\nCRK+tX49Gff+zJziboTGj2JoaiGZ5lIGeJdS6w7mm6wexNlzcZdU0xjchdBQcGuCOmJEGxtFiGm1\n6Hr3IDinjesGmfb1SsXEdFin/w+XTC5tC7lyuUQeDuzhJLVqM1ZvNNuKLJyZ9QrNMSq9YobybY+H\nGVP4PjqTjkiDHRrMtARHsyPhbEJbDUT6qgmyGQl2tHBOzAZQe5y8XgEaDRgMGGMjYFA/FFs0RZvr\n0VWVE6xx8rlnOpvd3fHqg2jya3ApZmx+B0uKM6lpOpsHJgKJEaLgjhol1vxrrkEDzASuueEwSmFR\nkUgLm02YeScBW68X/v5sAO+qdZxb+Q4XNjdSq2io1ccSnBnFC1UXc37zM/TQZmMONeLsOpCaiiS6\ntizFFRROhqUCT/fLiewJz/wgRp098wgK6ryCRikpHZVc2z2eGRnYbr4M5bMQGnUO/FUphIT7YVA/\nzCaoXbmd+CAtMQ072aVJJMq1Hrc2iHpTAj/Vn0aDGVZlw71N/8abrFBtSaEqrAdZQy6iz9Hkdx4J\nJSXJHjKZ9okRVBSwJNrYHdqHMH0lkcZc4sPd0MfC7qBoNhlHMET5gW4UUq+Pw6WzUJB4NrEt33Z4\nPZOT97lVRITcprX1T28dP2k0OLv24KNffXyrnEujasUfUPhefwnDgwsYcrqBJIsFpXg3tAaJdrZk\nCdbdu6EmT0DA2LGi0SoKNDYS37QT/3OX8vp9p1NPOCPODOGoGz0HBR1Xn+SQ9FgcCy243Q6y6Euz\nIY7eAwehyYzglsBcbn51OLNnFvLxjsHozVo0ViveGdey4oOl6Opr0OkV0hN6krDjNy4d2xUyeoI9\nWUKqzeYDV7FpjwjQaA4dHaDVynM7ELX1oGfzZrmHwyEa0uuvg1aL3t6AJiyUOoeJMb3z0DXr8aWl\n01DditbjxqAPoISHMTiulepeY/hstonw8H2NIUajKM9VVTKVZ58VVaC9Zs5TT8leu+KKwxz30NB9\n859DQ+WCDofoE263/Pb5xONpMOzxeBIURJMhlsXmcyjpNRH7mXF8Mhs2Ng8k0SpyvrxcFM/evaX7\nyhdfSKBHUFAnVEFup/aIAJ1OEFNOjqCk888Xw5vfL2vhcokOkJQEKSn4tpdT0pyO3qJHM3ECBqcA\nFINBQF1urqgns2ZJkaTffhPe/Mgj0iggNFTm5nKdwHISISHysFpaOowwitJRPKmlRbzVK1YIcPd6\nhS9ffLHMffJk+OEHApu2E+muJHTlfH6vvoSmJlkfVRXQFhXV0es8MRHuu+/Ptv+4OAGaO3cKPzMY\njjxQyWqVZ2U2y3f9/o60V79fMOb27TKtCy6QJfR4BDinpYk/Ij9fS8B+GjvXDyDcW4zXGkmtOY2Q\nut2EaMoFYe/eLXvh6qsFVW7ZImc1JUUGGwjIXjjKXpA6nYy7vLxj7nuTRiPs4J13ZF+Ul8vziokR\nYBvb1chlr40jrjEerr0WtVlBcbVCel9JyM3MxIORlfcPpLGpCXurDkwe8cqvXn14YGu3w08/ydwn\nHrjQXFCQPH+7/c+eckURI4bfL+G12dlQbAzmgrTl9Nn2OTFqDVatE1K7y5cnTZJJz56NprUVpVcm\nP/EX+tQsJjwmgEWnIypnFXpbPwyuZjSrt4La9cCVqZuaZOzh4cKsjrCoSfue8vsPUvqhSxf0zz+N\n4ds/+OWDLljXt3K2eyFGjZemQAgNyf1JMZWjsVpRu6VRp0+gPDUVVZWib6tWQWSImyeHbcPS2ioP\nzmqVzVlcjCY6mskVX3LO2BqUbmOAzgvDOmK3q8FgYNKkSWg0GpxOJ3PmzDlmYLt161YmTpzIO++8\nw80334xGo+G1NvOH1Wplzpw5R1wNeW+69cpGNkc5eU17AdOaP8S2aC7JllqibQvwJQzij6YWNoaF\nsLphNCnmSpoGjiHprYeI3thW4r6yUmJ7/vY32UDtJdqsVibFqyQ4cwjSuUnv0Qs4CRVx4uLEVNNG\n48YJMzMaZe9WVEBhnoVe3yxkrO83Rpi/R99rCNrQeHCH42jVsL4qnX7eZazWDKSLtoyUyACDe0dx\nle57+NgnsUFvvy0mVoMBz90P0NRnDOE0oB00YF8AO3myaJUWy5GZGf+XUm6unNGgILEHDJw3m/S5\nc3lAH8fL0fcQHvBQXqknKNNKvMNOQeZ0zkgpJdHmwL2khO09pvFa5GdUB6JIuW8S2sfnyT7LyBCL\n/gn0hvt8IpfMZujVy4z95ln4N2/FtnUZ+o8+olt9PQRUNJipCu7GWOs28oIzueupKPylj7H822pq\nonpRskSi0TMyMw+qfB82+qdbN9ECKlekP/oAACAASURBVCr+3CfxGCkQkNS8knmbuDTn7wQ78uhv\nraVpyFDs542kcLeOfO1IvtY/y7DSrzn/Ah1dhgzhss/XYMipQHXmo8ZrSKxfBIw7sWn0EydKDJbF\n0tGWRVEYcboGq7UFdcFvRHv8IpxNJvpkBsgbcx3lS7PpV72Is3zZGKv8NNtbGLL9fT6oigRbMlNN\nawlxVaHFT5fhiRSPvJnzLz729mwHpXHjRMk1mf5kTr7ueg35pol0WfQh+rJWqKkhxx7H7ofeZbhv\nO1a9HYcmnJLw/sw/43ku75dF8u9OaGoVL9h+EUGxscIK6+qOOgLu8LRuHb433iKzOoZwTRaVya+T\nZCojobGROdbr0CU0MmjWBKisEE02IkJSMurqRPMqKKAluxjX6LOJbGkRTSE5mcQkDTc/n0Rt7aFD\nRk8UWXomoQ5II7C6gV5KLptCu1IW0Y/Ao0+RHGFH+fFHbh47kL6DTewsMhKcnMTKld3Z0DiSmIEG\nnC0BdKu3E125jahQN4a/PwlXXSVKbVTUgRM8zzhDno+i/NmbeyBS1Y6WOOef37GPoqMlx7o9Zzg4\nWJRsvx8lPJzThhkY4vkPunot9eOms6s5lqia2URXZREcqmVq3FoU0ya+m1dFaJdL8GVlU/S9iwFX\n9Qetln794J57xGM4apRMpf2sl5YK3gkOFsf0Ye1YHo9cqLlZ5Ol990nYcXCwyPBt28T41x7m6/OJ\nQcvvJ8JfwcShu4k0vsDm3c/S2GgmOlpYqs0mXrrERBlPWZkUSR0+XMbbaWCwulp4cGioIHm/X1Do\nd9/JHKKiBHV07y6fbWiA7duJdLkIs4SinHEm9zwSxDfzRcdOSxM9u39/MQ5UVsojqa7uuF1pqej3\njzwi3siD2TiOm8LDJaz2rbfE2PDDDxJpctZZoki1t/oJBGT9Bg2SNjFJSR3oJS0N4yuvkFoLsW38\nx24Xe0ZWVkdR+CFDBBe2tIi3cX8x3h4a/te/dnRxPNI1TEqS79bXy/01mg4HenOzgNrEREn9ue46\nCetdvVrWoUsXSQeqroaqFWbsW8JpDQnGl5KOfcwU1MXfYnKv3BO1h90uceO5uXKWzzhDwnnbUXxo\nqAykouIwMe4dpNGIgWPXLhH7B0rl69NH9r3ZLCxh/HgJoFy1SmzecU07JQTA4UDp2UP25dNPC3PN\nysL+w0q6hvcnxhZE49YEFKcHAn5RCEaOlAfWs+eBQ8h++EGqWAUCBzXIWa2yX0tK9grWamzsiAiY\nNo0Gu5GNG2VIzc16rr57AC3nPE0UFVisOrlAnz6CL/7yF/m7oYEFWYPYvcNKmTeGQaZ/YlHdDL1n\nFA27HJz14QwiZldC715iwdjfqfT11+IYCARkQ+1fHv0g1Lt3R/ukg8qn0FCsF47juuDdjH36P4SX\n+tmpDkJN70GBPo0Z15kISY5Ek5HBXU4jy5bBwH5ePni4gAiPi9o6qCpZRmrAJSENRUWCptPSBP3X\n1qKsWQ2bNooLvJMqSB0RsP3555/56quvWLJkCWPGjOH666/n66+/Puabrl27lrPaCoOMHz+e1atX\nM3gvC9D999+PzWZj9uzZ9D9ALMqBqiJTU4P58osZ3mynNO5WHGUNBKkGyltt7MqycY5xLdnZfWlo\n0VDk70JF+GAWRz2A9q4mbnDv4LQYRU5Pba1wqexsOYVtSrt28wYyf3xFDrdlxkGtOiea2nNMWlrg\ns1tWEZO7nHVFWm7352Py+6C5O0y5AXX1GrI+2M4mu4VN7psYp1tCV18hA007uD7Mg37NcplLZOSe\ndiN+t48XPwgnpyaNvn3h7un7ZcdqtadGQ/svo759hZ+3tLR197h2IdjtRLhruSL6A7aVGvndN4K4\nL0tZ58nEqA9QVezijuH5pA8MJX3l4+B2kxwbC7HnyL5rC4ckLe2EFiX76SepyKjVSv7Pt98m4t7h\n4foNrzDCXYum3SOvqlzleJP8phjMYQbG/ByBZuAAyiZfzQ9vGoiIEHlxXCAjJERcI15vpyWtL18u\n0S7bCmJIt6cxTK0jsaWcIFc9b71pJ8fQh2B9Fg5UuierIhQWLaJ7a6uEqG3cCIkqfP4pZPY/sc1r\nNZo/az87dqC88AJ9mppEGW5slHP67rs0DRjN7JxRtNT2JsMLd0d8gMOpUK1GkNsQRbqymtVNWrY0\nWomNCCboymmEnnMW0zspbeRPpCgH7nHa0EDIq08zoKoK7EVgNJKvTee5VaOotntIDyQxiqXoFJXq\nBj3mmkImfzMTTUIcGKwiAH/8UQxpewm62NhDF8s5ZlJVgluqsLlVWjVaeig7SU41s35pLItq41hp\nd/Fm9Dr6kiWHpri4gxdWVNCyvYhNrp68X9Kfa4boGBWfJ4rSXXeRnHwCPMwHo40bxfM0apTkpV50\nEeb3P8QXcOLwm1jeMpCcl1oJcl7D03VPEdOyDYvNxsRN39Gr59k8+s0k1MJEQqOM7I4fQXIy/Paz\ng+1FvekWXMWDLh86g0EY4MEqjra7Lo6U8vPFDWkwiKHgscf2ff/334XRFBSIMlhSAn37ohQVoY+L\nw9/o4O9vWKiMTCJc+RsvnPEuWo8drV4Dei2D0lr55bcdDNz6IUUbakloOZuo2y5FoxH8piiSE9qv\nX4cHrFcvUfqqqg7e93YfWr9e1rs9z7Y9DLmmRpBefX1HW5+pUzu8Xi0taPQKvXbPhy5dSIhXcefs\nZkr1J8xZfw7Vcf3J6KFFr5cxZWSIiDhI98Vjp8cfFy+K1yvnbto0KYpVUCBgYMoUAeNlZR1VZ9uq\nF+k0KvTvi+vJ5ynZcjqfVp+Fy+ElQq0jLELLhMsi6dtXg1YrUa7//rfMoy1r4eScj6++knOxYIGA\noYEDBVm3u+1VtaP5q6KI0er990UezJwpaxgZSXi8kUG/b2Lb3HDs1i4U1buoDOrHRx9pSUgQg8ML\nL3RU3L7ssj/nBGu1Ygs7bO72ASg19cC1BcLCRIVYtkyCD41GmfL998sWTEsTYPvXa73Y121gU0wM\npfl2xmd9hq36uzbXs1bmP2uWAIzCQtEL6+rkoGi1Eku8c6cgoaiooy5wGRZ26AyrAQMEhJeXy5HK\nyhLsXFUlkYof9pnLiPK8jrx2s1mq9JlMsGoVEckpTC0uY6XxTDJD8tEEjDJGp1NCB8xm6WZyoKKE\nZrPsgf3z/fejuLj9sPy8ecKj/H7o0oXqyFFUVAjLSkiAOx+1kOK9igzfNi6v+YbQr77qkPmBgOR+\nV1Yytn8ittefxKw6CDk/Fl5+gQiTicsdv0DtLrl+YaHwkAONvX2NjqLYlKIcXn8rKoLXHqsj5vuP\naW7V87L/EYZG5VNflcgbgVsI/sQmm7JXL1LPPJPUYXp4+WVuKq3ndfeNnGbOp6u1GUodYhAzmWRx\n24twPvywHBibrVP13iPSeD755BMuueQS3n777U6phNzY2Ehq2wm1Wq1sb68qCPztb3/jscceIy8v\nj5kzZ7Js2bI/ff9AVZH5/XfpW6fXM935MZuf/4j1D5modweTOjQSNfd5qnyjmOibg98URLJ7B8uU\n+9AqPjZnaTmtqK1i4ZAhImjDwvbxQhTm+vhw84UkBDdydU0zp6btcwd5KuoYlvUugaZmurqaqPt/\n7J13eFRl9sc/M5mWMpn0HkggtECAhGIAQZqCLvYK9u7qz+5aVl3FFcVVZLFgL2tDZa0ooki1EJBO\n6IT03jOZZCaZmfv742RIgADpidn5Pk+elMncOefe9z3v6UfxYal2NlQncV3CWOrf/S9WrS+n164k\n13glV/is5rbQDZCYBNHnQAqykPz8ROp9+CHVa7dxYOshIs7UsWuXEZutfY0veyuCgsQjqihy3n/i\nexveh9Yz0Xc7Q0t/obY+EBPFFNeFEmPfy1dchsYDET7l5eJFLikRgRsbK7lDW7eKV7Eje543g/Jy\nkX8lJTKWrqoKEkqz2F47iNOUVXhoNHLQhYUxeNs2BuvVYFPD7uFgMTPl7NNIGScdWjukYd8pDpLW\norJSeCxxBrJNM4oIpYAk1W7MmeWMqllBQVQMMeF2/joyBeNXP4t3QqWShT5woHioKytlX3TWfOqT\noaREvOKpqdSVVVNfU49hxCDU5kpqaxTMVQrpVcFk143hVp+PyfYbiZ85i0JnNDM1q9lrGIsSpKJP\nHwVNZGj7G1y1BVarHMDBwaDXUzMokT11E9jyViwOZzlBFFCNH33UOYzXb0F/yB8iDRJ2CAqS+757\nt7j2O6NrxrEIDETdP5a+e7MYEA5TkxexNepcUtYPQIUTrQaqf9sBfXLh7bdRcnJQdAbUFjPk5VFQ\nYyLVPohc72i2VFiZNCBfFMKuRE2NFH7p9aIRvvIKeHjgYa5E7aPHYtGyzjoWbZ2DEEVLtSGA0Egf\nCamFhOBRYwaNB06VmshI0W/r6+HmlIlEeKaR5hhIlW8IAVVVEuEqKpI6sfaOAXF1/rRam3ciVVeL\nMVVXJ04etVq0rVGjYMYMnJ99SaVFizF7PdVeAdTPHIz+ukshLQ17WRX9/jKT8TtW01+9B1WditoV\n6+DOK6ipkaDkzp2yzJpuEx+f1jWvxmiUCzidItvLykSem82i9On1IlPi4uRvY8fKe2w2sXwUBTw9\nCVEKudn3c7TlWfjXFmOxlWO3BzFsmPhSDh7sJL9yVJQY2hqNGHoWi9Cs08l99/YWA8HVLMZVT56d\njWKzoTw7H83kCxmYuwqVcyJ1VXZ8TdXE2gq47yILVTWxvP++nDVPPikf16Wzzn18hA+9Xui3WsXq\nuPhiiZyfcYZE3WprGx026elyUH73neytESPwSE3FL+gsbq17mXfr7sW8rwalXyxOkx8ffyy3yFXH\nXVcnX61udtUGqFRif197bWMWakaGPMb6erHhNSo7/O1vGL/9lkmhoZhrM/FU2yCrwfni5dXY4X74\ncIn8KYo8rP/7P3ktO1v2XVaWRME72OkbGir2Z0qKVB2o1fJRZWUQbqrB57efwLpXzuoJE8DpxLJh\nJ1qHFZ3NjKq0lCt9D3BlzBaoqIGAWNl/U6dK2FelElnSHM49V/jx8WndCDN/f1lTHh7g63ukVL2k\nBML8rezaVk+aYzLRqnS0Sr3khP/jH9JfIzVV0r0NBvrufY4Q3TZUGg8MB5rMSAwKkkWVmytOseY8\nuxdfLOvZZOrQyQd2u/i2hu1dSmj9NlQOG6mqeLLtUUyxrCHQv4aluyewfdtQLi0vJXH3yyhGX6or\nHPSv3snLCa+KZ1A/Vfh5/31Rzi64oLFU5ZFHRLCNGNH1hu2SJUtO+vq4cePYsGFDiz/UZDJRVVUF\nQGVlJX5NanVcXZDjmuu4eDL06yeuqcJC+MtfGH74GwwXh5F72sWcPtrKVw96cCDdRHmtgb8ZXiNc\nb6M2v5wd6Sai/eJwDhmOWq+X/Ie0NPlyFUyccQZL00dREBrE4RoYExNG2yufOgYB4XriEjwp2lhA\nhi6I/6t9ibPU6wnI3sSSS+ysy76CPp4lXDbsB+49y4nfef8Rwyo8vHHYupeXuEvDwyEoCN9II2eb\nN7PqUCQX3Gx0G7UngUolXxs2wNNpl6PR/YU79R9wc+lTDNRV42Mz4/AyssR6EfVoGW7fIml10dFi\nPO3eLU6UqVPlROy0XKyjcf7ITOzvrWPTIX82eE8nt8CDAA8tXj6J3GJ9n5vH7iR5pp8I3cpKkW5a\nrQhUvZ74sDLmBb5IcXA88ZfNoEd1vLZYmDbWyYsvGvHydhJcVcgAzyy8VfXofOpQ21T4ayrJrwji\nzk1XcXm0nrN1Dfti8GDpvOHhIZkaffo05np1JpxOOdwqKsSTHB8PikJJuQfP1D1FEX44C8OJSu7D\nQ9cXM+prI/s/dBKlL6PIsy+eng72GqdxVmQlowL13D5JS51Dz+kllaK1DxnS+dqVqxNsQYHIz7Aw\n0bI+/ZSt9cNYvPka9leF4++fS3qZL5uVsfTXZDNrwCHMIZHE9clHbY+GAf1FFv30kxgIXaEVAgQG\n8nvYRbydNZyA+hoevSKSpNoC/h31PCtLkog5exSjrPlQXEz9H5spSLOS5zOQ8AE+9ElK4rPKcaxy\nTiHPsz+jr9GCvloUpa6ERiMpgsXFcgbOnSsho9NOQ6UovJF9JdnmGFT1dUxUraPcJ5qCG/5K2BB/\nCAsj8rPPuH9EPlnBeYw3pkL2cLTR0Vx0lRfffZfAmZMaMuC2p0lIxc9P8mTba9iGh4vXvqCg+U5B\nZ50lFmheXqOBlZ8vwnf6dLRbtnBn3mJWO+OZcLoRn9IsKC0lZbeRt3ZOJWy3jjz1JL5y+nKxzw8k\nX5IEZjP5z3zK6F0aikMuo18/b0aNOv6jW4xhw8QSrqkRpfjddyUqWFoqVrPN1mjYXnyxPKOAADGk\nTCYIDiZbE8t7z5uZmvMHUdpcZocHsjR2LOOmiJKv1Yqy/O677aDzRJg/X8KNoaFSXgBSjvXjj3I+\nWSyikLtGvthsMHgwdmsde1MdKDWBBO8/zJQoE+mjq9i7oQJncRl/idvH8x+NJmW7XCIuTgI1t9zS\nCTycDA88IHK9uloUbZVKjDcvL1lz33wjz8tmkwy9d96R/zebGw2M3FxKCKJqfz65tgj66gu4MXEr\nO89JJrdWRkfp9WIXbd8ux0dzwbXOhItURZGfa2rEBuzbF6YOK4YVmeDlxfI9MXxefxfRzkweCX0P\nr8ljZS0GBUmjsz17pO5j//7GudBWq+Q4f/GF3MMObPTYFCqVGOK5uSJvBg0S40pth2ifcgiMFFqG\nDWNLSh2LCy7D11nB36M+INinVs7ykhLJ9x40qLFMSqeTRXiiZnY6Xdt4mjlTzjuDge118bz1ltz7\nxETQZudyifIGRs8qbAZfPA3Gxo7oS5fKmjMYIC+PQ+qBPG99Fo86K3+7WU2sKxo+apTMFnc4Tuzk\ndQ247kD8/jusn7eecWXf008NhlAtntZqLvTdQWBcIJMyl5GrimF57VR8/VS8lxJCYvI2vs0YwVdb\nJxMTNJ2Hrw/AcProRgdIcrLIQddMbJDF2Qk9ZTrEnW+1Wlv1/+PGjeONN97g0ksvZdWqVVzfpB2X\n2WzGaDRSUlKC3W5v+UWTkmDxYpx2JylPLEfZtoX+UfUMTvSCOa+wKvU2+o/2J6/2HDaUVlCvaCA9\ngwsnR5O2aQAl9SZC9u8Xz92mTSIEf/hBrltbS/9B55O6Lw5PA4R05KiJ5mC1irC12xvnqbmGu7vg\n40P4K49x8N+b8fnsKx4rXUCNyouYiiwey5yFuqaKr2onUTt5Jnedlg6rlkutREaGePO3bxdnQE2N\nbJzkZFQpKVwxch9XPHwBRHYyj63EsbNxjUZ/qqrKupEiQXExOOsVri5/idjCFHapYuinz2NwRD1V\n/oGoNUn0zdlDimEKY96fz8fKbPx9sxn//s2Ejz5Vu8oOQk2NeAg9PPDfvp2bCr7EUD2VDeVDiNRq\nQYFPai4g0t/C79GDSE57XQ6BM8+UdXfttUc896qXX6avtZK+B3dAaTx4N9PMoDuQng7PPYe33c55\ncffx68EqrtF9jre3GqV/Apv2+JNWF81Fh19knuZx9NoDvJ1wEzP/Mw1VfZ1Ezl1d4dql5Z4E9fUS\nATCbpZ7QZJK6wffek9crKyVqrFZzaODZlOwJocC7H5bAwXhotOzxCGOm9SV2efSnjGCeLbuVv9oW\nccbEUow3z4GY65kQF9cgww5A2n7xuHdUsysXsrJENg4ZIlkG+/dLx1FFEQPlzjtFwX//fX4ri0eb\nvxdtcBC6yECuyniJcfb17LHH8178fO57MUaU/PR0cbLNnSvOn64M6QQGsnbIX/HxtlGEP4cDVYyy\nrGegfwnO2hSc+4thcgxsWIfzUBYORzC5Kj9WBN/LE56vYowNJiq0D8OjdCTeMgZ8JFd0yxZJSTzj\njCZl6AcOSIfI4cPluXQUnzqdFEwtXy5rbNu2I/Nvq2+4k88Wz8FcWU0im7Fo/cjzjuOQxzSuSEK0\nmD/+IMG5kYTS18T7v3EFLFzIeedpjk7HjY0VRa64WBrsdAROlo/av79YdmazWEbPPAOLFon2e/nl\nlIQN5VPbhdR5WAm3/AGjB8HixXy39UJ8w/azsywBlSqAuNljyPFKwHBtIHz9NSF71zGiRMHsE0bC\nmWcflyhTVyclpmazlM2etFfisenX48dL84WgILlX334rylx6uozO2bULs8OT/2juJmfAudx1cy2b\ncvsw6rknsVtsaLVm5jwWzZzb/fn888bpS801Na+qku2u04nN3KYkE29vqa1tCo2mcXZPcLA4w2Nj\nobQUZcgQMraVs9R8A32saygPH4zF4s0DCb/yqDIP1v8L0uxk1F3Md4s8iY6WfRAT05iC7BqdsmeP\nZDp36PiuY+HlJb0rmsPTT4s+ZLXKc9u4UWSmXi9yaOdO8PFBufU2nvk4kb51P7JDNxijXseV6Rdx\nYYmes84SB7dretXIkaI+HjzYtpTj9qKiQsgePVq+FxXBO8uCeWT4eHwqK1mdfyZBjgqynP3I6X8G\nA2eeITJgwoTGetGtW8WbUlgoM4ZOP10cUH//e6fS7nSKCDv9dDFoQ0IaGpJpDVzzw+tMKF7BPWFL\nMezZwy8b49Gb9JTWRXMw4DSC/ffKgkpMFPm3fr1s3Mcfl+ySzoCHxxF94cfnxMb08pLYRVTZfkYo\n2/F3FFNkTGBD3ysZu+lVPKozpeTCVXA9bx5bSuOo9w/GNngoO+KMxLqu39JeBR2M5d/UMyvjfcoV\nf2I0WWQbo9CdO4PrrhgkLc41QagPFWLyV1Feo2e06SBUVbF8VxRaDzt7bP3J+/IH+n37uWSEusYZ\ndhE6N+/xBEhMTGTTpk2YTCZ+//13Ro8ezV133QXAHXfcgZ+fH/369eOyVhycTidkqPtxwBnH9twQ\nPNX1HM7WiEQ9cICZyg8UHqzCZ2AU36rOY016LIaCDHJ+zWDg5Yn4h2gb5+a5vDuulnWKwoUXyjr8\n5z8b+7x0Gn75RQzbr78Wo+LuuyXV+lhERNB3XBSeOgcO/2D6m8owRRmZ7P0Hh22RFNYHsmG7J289\nmiHK6NtvC1+ucKPd3pgGGh8vuakJCeKxTE/vZCZbh8bZuPLV1MjtTCiKNHqoqGj+9eRkOHNMBYna\nVEqcgdTbVez2SACHgwHe+YT5mLH6BjPNawP5xR4MyltLUGEqJfPe6BL6ARket3y5rG2bDRwOpgdu\nY4zvAZLqNrK/MgxFq+OQNYohmjTRpGpqYOtWlLTDFK/cTllIQ7TZlapmMHRNRLOl2L37yHyOm0dv\nY0r0QcLUhUTaDlNRqeJNbmFHfTyZtlD8a/MxK0bq1Aaq48fKKdrpmxqpLVm6VCJQ33wjf/PwkL2o\nKCJ3wsNBpWJgaQqhJis+/UMJMVRi2ptC/98/JD79e57yfYFAVSme5gIKzV7s269uLKZSqRqb96jV\nre5eXl0tW/+kPsXFi0Vxf/ddca27eHA6G3M6vb0hPJzJxs04dJ6MrFrHXJ/nme31LQcYSAyZfPGd\nF8WOAAlzJCSIvI2MlN9DQtrU9tXhEN9dQ0JQizHtfB8s+kAiotTE7V0GL79M5iE7KhVod+/AnLIb\niovRqJ14Y2GLfThjHJvgwQe5bfl5PPJPb554opHk2lq5TQcOSIbwEd/va69JNtAnn0gUsiMRHCwd\nbVzpyBYLZGdz+PPNlGWYUTvqUYCR6h0UO4MbA6QaTeMadK0bp/PoayuKrNkFC8SCeuUV2TddgchI\nUe48PERhtdnE4jx0iOJf95Nt9qPU4cfa4qFHUihPDzlAmUVHQIBEz6oxcuacYOEtMBCjUcWIRDWX\n3+Z/VFNjFzZvlnJT11HcKgwbJnWK110nloXZLN9rasShnJaGJS2fwjIthfX+rK8ZzfDpIVQbgtFj\nRe+pxuIrhXzjx8ttHjNGaiaPxQ8/SMLH8uVim3QYFi+WHNDMTDFyamtlTdXWUqfScbjQhzPq16DS\naxmi7GFIPyt2vSeVlQpWhxaGDSNiWACDB4ta9dBDkoE5vWHiVW6u1E3u3i1botuwfLk4HG02yVIK\nDZW1n53dWDsZHg5DhhA93J/N9pE4tTq+z06gqELPF1+IqHvqKbGfbrlF3hIS0glN7loIX19Zgna7\nHClaLWzcrGHPzPvgzTeZbtpEcZ0vsaQTnbNBCM/Lk8Wk08kaPXxYDgNX2/DSUhGsnQy1WtZ7To5k\n1c6b15CtekjNYVsUbzpvYYU5GVvqQSaxnrqickJqMxmUs0poNRiE3qIiuRGlpbKGuwDjxonIBUkq\nsUX2JyhIIdq7goCafEp25FJtN6DU1ckh+9pr8pD8/RkbeBiDjw6fcF+SRnV/Ftz4SRpydP0IUEpQ\n8gvxc5RR+e06rF4BYqBmZWG0FPBk2V08onme2wavo95gpL99P/nWQAy18lwwGCS3vIvRDQVYsHXr\nVkaPHs3WrVu5/fbb2bx585GuyH5+fvzwww8MHz6cWbNmcc8997TomkuWSAabooAu9mIKfQcwZKyR\n8UN3wfffc65mDdP/dgYHx47nhaIoHPtSOT9kI5OcC/G75gs07waLMAsKkhZ+u3ZJSkNAAEyb1myf\nl06Dt7coGNXVsvCNxkbX/zHoO30AIRf0JfXrer73vJrq5Omcc5EnP70XTd5WNUajkyBPp0SDAgLk\npFSrRXCFhkrExYWMDPkcLy9RvE7k5fwfQWlp49B1X19xsh3pYuh0wqFDRBmNPPdWKDX3xnLgo038\npjsTj0GDGRv6Ff6enjx7SQ720cno348mXTMcZVc5OrWdgNiumhmFCBenU9bU+efD5MmEpafz5m8f\n4dz4B1cWvchmlTeh0Z6Yzh6P5ecNeAcFgd1Obh7858sgcrbL+Rdx222iAERGigHVA5CdDfaAUcT4\n/4yqpJh9dbFUeVvJ8RvKUMcuiIlBl1dHrWcAefRnYlA6fwybTOQEY9fa5l5eopw7nbKgFEWinnfc\nIZbYxIlyKF99NQGW15kf/iv2Q1KWLQAAIABJREFU4DSsB7PRqerw/D0PQkKIpohJvg7e2J7MeMdv\neAXUHz3OYPJk7KZAMrNV+EYPo6VDfiwWCZgWFZ1iOoLJJJqHp6esrchIcb4VFYlW4mpA9uijJOTk\n8HLqQTy+XIqmrgbb5HAyvzvIFmcSeo0Dw/YUiG3Qdh0O0Qx375bxR8fUcFksIqL69j2xzfvJJ+LH\n8fcXXlo6mu200yTSotGAx70/Q79+FGVpeT9/BqPtv+BbuAf/gQOxVDlR67z4m+YHTIZg+M6C7u67\njxv/4BoLV1wsMuNIDWdYmOwfH59OcQw5gsPIvOLvRJRZMGQeALUaD6MnWsWGQ1ExxCuTv5xWjnLv\naIwumiMjJWwWGCg/79oldaBNC08LCiSE6ecnGQavv97htB+HkpJGh02D8W2PH07Ftiz8Sg6i0Wjw\njzCiy7bi9PYhPrISCmrhlluYUVxCeloEv+2Qtz73XJPlNHEi+PvjBfQZNqzZagqjsXGrBgS0gfaa\nmsZmKcOGyf0MDZW0WJUKT60DxccXlVrFkEFOBsSpCFlxD6v+GsnvZSayN8ziib9I8HDx4ka/17Hw\n95fX1Orjk7raDEWRdbp1qxh9SUli+PTrB1otminT2BV/IQOXL2Ro3wL6j/ZHd8dZfDM/it/syRhf\n0PD440LvQw+JYatWSy88V4sJr4apWRZLNw1YKCqSr2nTRKg4nbLOpkwRJ9vzz4uxu3cvxMWxfrMX\n27KCiBnqTVyUlZ2/G6moltsUFHR01UTDVKpuaW9gt0uk+OqrJUL++utiQ5lMEB3jQa1fHJrQYO6s\n/YQITTGeMaHyUNLTJe387LPFEIyIkAeYnCyR+8jILlOAzz1XjkVXpm5wsBi5K1INeGmq8QjwY6M1\nkWDfXF7ymove14CH3QbGhkkmQ4fKun37bbkJzTU47ARMmiSJONXVkt2/JWcQk86/jdDtH2DO9GaT\nbSzR6v0MVCwYPPWoy8pErt5/P7GZmSwaFQsBre7J1Sk4+xwV5SPvx1CYyS/3fIF2ywaqdf6883I1\nt1TuQVtbC1Yr/pGB+Md5w7SJOOMGYg8dxPCMMtTRAzAErIWq8kZvVheiWwzbk3VFTk1NZVxD3Y7R\naDySmtwUzXVFTk0V2bRhAwwZomXW2WGct/95WF0v6Uvh4XiOHk2CCh55ygtLye+MzF6BJjwYnn5S\nhNiMGbKxU1PFUvbwEMnc2mJTu13a/xcUSCvA1rbyTE4WqV9YKHQUFko3t+ZgNPJD5E3UFzyFn2YX\nBcaB+D9/PgtHWKl46wMUSw1hl0+C1wzC1+zZIszvvPP4HeRq3FJb28m5QT0f5eXiYf7tN9Hl+vSR\nx3nEsF22TLTonBy8LrsMrynD0fz3U+IcmRjPuBaumw9lZXg4HHjUV8PVVxNb8Dx+MSZUM2fid0kX\nbfY1a4ROb2/JTYqNFS3j6afRHDwI9fW8E/M0awfeQvqU63h9RQyeun/zj+ch0ryPle84ybYMw1It\nuk1EhJcoaT0E+/fLIeJR48Wjuw8QW7SZsLUHOUcTTpXORG7oeAYGqHjsvF3kl2oZbixD+7d7mBYc\nS2hop/fqaoTDIXLhvPNEWx00SBZYQYGkIzXt1DhuHKxbh0dRER5jR6D/cokoYeHhkgpmNHLtsAT6\nb/DAUb+AQRMU0DcZP6ZW89FXXqz+tAjvgK3884uhBEWfOkexrEw+JjBQbJsT4o47JIU6KkqiUa7m\nD0lJ8saXX250EA4ejL6iArZshOpq9Gecwdh/zcLxcQY39v0QY/+GgrsdOyS0GRoqM0yP0dIdDjFO\nMjNFx3rqqeYVx127ZL+WlwsvrZk5fqSH2TnnwGefkThpEB8eHI7isLOROA7qa/iioB+T7Bu4wvYB\nqtw9kJMtB88x8lSrhccv2UvlkuX4nZ6IRjNVXvi//5N0uaio5ufAthOffQYrVsQTbVrAffNyCBwb\nx+DH/sEP6r+wOXQqpTGjsP9jLn6TGsK1mZmShlRXJzm3vr4S+ktJkefgymTw9RUrqqzs+A5GrrzS\nHTtEK+0IBbioSNZZXZ1c86abQFFIyQhBqY+jaNBFTBuUQ5iqin+NScFZbyfowAawnydlNVotB+4V\npbisTJbpEcPW1YF+4UKxYB988Dgnnatstra2+dLfZqEo0jU2L0/a0v7xh/z9lluEh//8RzKj6uow\n2e3cOzoL5aJCgt6ZB3o93/V/nPk5t6AoEF8st8Df/+SK7vTpwqNGc3TpWrvw1FPSPt/LS4yd0lIJ\nQRUVgUaDR8rv3H7jCIqvfIjQsr1oBsdhDYjgW0MCISFiI1kssmRcY64XL5YlZTJJ9m9AgGTA5eZ2\nIN0tRUGBND/at0/OxIULRV+z2SS14vnnpY4gNlb+74IL+GN5HF7esKU0ia3ZENkXrp4qj/bYVgAd\n2Aux1fj4Y9mK3t7SqKt/f8k2GzVK7n1eHiyN+RtJkSnkZGzgAv0mSfEPDZWsgl9/lSCIh4dkZuze\nLW/092/50N12oLRU6K6uFh+Dq0px4UK4JKGQgb+8w7ry4ewMGEXM/hXEWD7EI++wHBBWq2RDnXaa\nyKBRoxqziboIfn7yFT9EIWz7jxQXZqC6/QaCsuvJesmLGnUIhc4o+thyxJntstqHDqUH2LNHoFJB\nQKQnhA0gsX8l2XvtOC3lOL5axmZfB+Owivehb19ZO4WFqHft4rbL/8p+n9HSkC/42cbGWl2MDjFs\nP/jgg1b9/8m6IjscjiM/m0wmKioqTmrYunD55ZK2EBAgX977tqCuamgBW1srynhhIao332SIXg9L\nHoDt00WZWrdOPDsZGWK5ZGbK++rqRAi2Nsd9927JX3J1Erz33ta9X62WTTl/fmN05yTNtCoOFNPX\nt45Si4GxXrvwfX4zqqpK/AsLRcr+WC68lJQ0zgPMzT2+rikiQg4117C0boUGVZe2TjwaLmUoPl70\n9tGjYZB3Djzxlkiuujo57PPzJYXHzw+/wIbtlLFPBOvixWIZGwyiPC5ahL9K1bUb/bvvRKNbtUoU\nk23bhLa0tCPNQHwvOYvzHryM+a96NPg1PCgug8iRQ5l4O+x5AwYO6poGtSdEaSm80ZC+feutRxTR\nggLRR0Zn/4RX5n5Q2wg376Em1I+Yyl34DBkGUy6g7+zZ9NVo5N6r1USf5KM6BatWiWKrVktjlowM\nkTN+fjI/r2ldr6+vaH8Oh5zoLkU8NFT+V6VC5efHxIkxnKiaJG1NNj7eOqpLrZRszyEo+tRe68hI\n0WO3bpWSu1dfPcE/+vpK1KugQLRTq1Xk6113iWKh1UoYfd8+cdJ9801jdNJqJeTsMZx//gTRxl0y\naMUKiRBkZsoM0IwM0dobxqq5unsGBsqWs1qbj9pecYWUhE2Y0I6SnpkzYepU/FVabp+zEE3qVmL6\nwpuZf0FvMuCfeYDaCWPx2rpShMTnn4vD4hgZ7f/Jq/g7nfDNLpgwTM4Wb+9OmNfSiLQ0UbSzLP3I\nj+tHYOVePBz1+Jw2lMnbf6ROU4ipygSqhs6fhw/LA1erRbG1WoUnRZFeExdeKP/n7S0pK7m5x59F\nBQWSV+rpKYtm0aL2M7J0qeQD63Si/N10E5SW4rVuBYWOIEKKdlH42uv4eeUQ0KePPHRHkXg2tm+H\nMWOYPVt8epMmiWPyKKxaJfsrN1ccvsdkQ7V2ahEg633+fLEk8vMlaqvVSsr+2rVyFgcFibIyaxaB\nOp1YIlYrVFWRVlTM4MF+pKaKytES37JafcIx4m2D0yl72MdH1oHBIGeGa130lwZvuhXfEvn8RGjI\nBzEgbP3wgyyZY22gtDSxj6qqxOlkMkllS3SXC2JED0pLEzm2f7+katTXi5746aeNIU69/khN6QU6\nOX4iIsRo12rFN9WTqnFA2PLxEcOwvPz4kaZhYTDxL75UL7UzPuCAnD+TJsm6LS2VBTVlihgsM2ZI\nnWpgoITbXaUKnYjS0sYZ0ocONf5dr4epWf8BYxVnFy8j84/vMHnXoVfVyzmi1crZrijSyWvgwO4J\nmTfAvCeb6cVLqMGAY20+g8rSmGs5gHdtKZ5GNWpjsJwD3WD0tQpWK4HOYgp8dAwu2YLGbiOu/gBc\nPl32zDPPSFbNwoXg50fAb8sY96RLl+liXbcJWhSvMBqNx31FRUVx4YUXcvjwYRJa2dH1ZF2R1U1C\nKFVVVUe6JJ8KDb1KuPpqORRGXjlUhLKrmh8kRy0tTQ7wXbtE8/HxkQO5shLGj8digS9qzmZn7QDq\nk04Ti6a18PWVjVZf374p6mVlIjnr6+WQPAGm3JVATeLp9J8czfgxdlRFhcKna97cwIGiHPj5yfWi\no0/Y1WBXcRivrYsndW93bzg7TWtquxoxMaLfxsWJPXLXXaD/aRnk5JD/yyGWZCST5xGFEhQsysoZ\nZ4hGqdM1Rt9c8wvr60VauwyrrsTEiY2zmQMDsZidrMwcQJFnHxz1djm00tLA25srrpCg4KRJjUpd\nXJw4sO+7r+ua1DaL9etFcdy3T35uwOjREuAMGBIKJhPFdhM10QMZ1NeGf7QRrZ+PeLo8PWVPdlmI\n9hiUlzfWLprNssACA+Xn5vJ+1WqhNyRElAw/P/GQpqeLg+Krr9i0SVLNDh48/u1XXaMmiBKmD8wm\nbkLLOpio1VLSv2hRC5vduuZJGAyN423GjRMF0d+/UTMPDRUt0MeHkpFTeWPNQH4rjDvasZacLNfz\n8RFnEIiS2VC0ZDAIbQYDzJlz4lTkpCQ5Y2+5pZ16jU6HRqti3MBSxpzuSXAQzB51kHBnHo6pZ1Id\n0IdUzQjMlY7GtNNjERIiz9fbu8tGR82ZI8rr1KkNvsmoKAgLI0JfRk1MPD/UTWffnib1szU1cqMc\nDrmpw4fL7zrd8aE0f3/527EZTF5ewl91dcd1y9HrxdOi1TamspWWEmWqJsyehc7kRVySCYYN49ed\nvvy4PYRqc0N0oCFMP3as9Gq68cZmxO6YMbJ2fX07LhfWVTpkMsleDQiQzwgIkFCZy7GcmCj3y9U+\nFcDLizk3ejJ0qASQH3/8xJFam016/Hz0kXxkh0KtlkidRiP7t7i4scWuRiN6RGkpjB9PSorIn8OH\n5a1nny2lxRdccLz9c911clvOOacZJ0NXY9Ag6SLrdMpBl5oqz6mkRCxyrVZu8pgxZGQIj4WFcg6+\n8IKcOcOGNcyw72G48kpRR6ZPb/Q/FRVJVu6KFfL7VVfBbY8EEBLSUE/vilSDOLs9PcU7EREh3z09\nxbHUBYGG/v1FfQoKEl2+Ke3OkFCwWAgIVJOYCP2SAlDX22QPazQinzw8ekRGWdJEb8pqDQQZLBLw\nqKwkRpVNsKEaH18tqsGDxYHQ4nSQrkN2Nrz5psT7FC9vPK65imGGNOx6b0xUYAgxyToZPFjkfUyM\nPLCqqlPUMHUdVIrSXK+9o/HYY48RHR3N7NmzAfj0009JS0sjMTGR119/nbVr17bqQ7dt28Ybb7zB\n66+/zh133MH1119/JBX57rvvZvbs2SQkJDBr1izWrFlzNMEqFS0gWWCxiAfHpQVt2CBuN5VK0qwG\nD5aUm8OHpUNlfDxffikdzRVFDkRX9/tW4/BhUXaGD2/2hGoRH+npEnGLjxcp2hLB8v33EkHQaiXt\nODBQaKivl/vhigA3U7BTWysZda6RfC+/fPK0mhPxIJHWpn8/9vfm/tb631u8Dk6BFq+plSvho4+Y\nt/t80mKn49B788/LdtJnkJc4DwoLRUGMiJBnlZsrDcBiY+XU7+SDoVk+FEXWYWEhrFzJV1VT+WJP\nPFFlOziv7r+MD0sXx8+DD3YqbS3FCZ/F1q2yIEEW6TGu6BqLwvyrdqB11JETksTLf89H98tqefHi\ni9vUiKg9OI6PqioRLK72pQaDKBNW68lTUuvqxBEXGCgb86mnoK6O8rPncP9PM444ql955RibXVHE\nseLj0+bcuFPuC0WRxgYHD0rttiv8UlkpfLqMuZoaUR4jInjg31FUVoo4evbZY4bdl5eL3HrhBYnY\n9ukjUcJ2OoNadWYci8xMKTsYNEicV1VVFNoDefgRFdqsQwRnb2He5FXyXI4tOTGbpUavYS50e9Fm\nPurqMGeVcc9N1TJLsV8/XnlLL4b/3r2isbvqmydMELqhdamH+fmiEcXHn3SvtZiHsjLZLyaTKNda\nrayPxx4Tw+rMM+HGG8nPl+Yyeg87Q+w7uecxY8tr6iorZU+1IezWLB/19ZKdUFYme9xolEjyunWy\n3y+9VM6CYyPeVVWyeVsoo9auFcVTrZZEgbY2pz7hs3DJDg8PKVTPyBALes4cSYmoqaHYEcCDD6nQ\n6US8NLRI6Ra0aV+4zkWrVbJjystFLzr9dNnrFgtMnMgDD2uOyKv58ztkG58Q7ZJTJ8GCBSJ+HQ5J\nr4+PR/jfvVsUvZgYsSJzckRPeeCBNpdJdDQPL7wgZNrt8Oi9NQx27JaHsGePnDsuGevpKbLBZOqQ\nYvP28GG3S8WJnyUXn8pc7v5XBMZX5otTPjBQoiTJyZ0e5GgrD48+Kuqi3S6JhtHRiJN5wQJZN4sX\niwfCZGr0Hlutcs77+3e4ntsWPlrk0/7222/57LPP+O2331Cr1UyaNInFixfz3HPP8eyzz7aa0Li4\nOH766SdMJhPJyclHuiK/9NJLPPjggwwbNgyn00lsbCxr1qxhypQprf4M4PgDKzlZjA6NprF26Jh5\ng663qFQNEarcXEnJGjasdUXoHVGjGhsrSvypsG2bdD2eNElcooMHy6HaNFqs159SwfXwkLO1pEQc\ns90V3OqxiI2F8ePxDR2NLdcXvQ48RiU2jkY69tSLjJQ6se5ETo6k9I0YAXfdhfFnUPZCdmAi3DAI\nonM6ZY5YhyMpSYwHkHX89deyHxsGkntoVFREj6SsDIKNoO4TLSG+ngJf38aCIRcMhhPX7x86JFkl\nY8YcnTUybx6YzWhD+mFYL+d6ZGQzZ4mrO3JnQqWSdLVj28oeW9jq1VCXXVKCX/4eCirC8Yr0P14c\nubJzHnpI5Fl0dPenavXtK1qKC0FB6CtAp3ViUXujHTIAnji9eY3XaOwR0QN0OjSRYXgliP4eFuBE\n/et6qLVI1ODpp0Vzd4XS2lJLFx5+jJeinQgIOH5Eh7+/KODbth1JUdfrxYdSbdFQPSQJWtMnpjUF\n2C2BVit1yk1x/fVyLh8+LJGx5iLarVTEvbwam1h3WNmjoojjv7xcopku2fHkk6LlxsY2Oug9PdFX\nyb2vrm5fUlq3wOGQJpk2m/D6z3+KId+v33HyxmSSTHtXs6s/I3x9xT+q1TbJulKpjs7I+OCDo5+z\n0ym19lVVco+6KV2rKe2GAC+IaSjjiI6W6ODq1eIomj691RMAOgtqtezLnOpI/PpEoumLWIsrVgjd\nXWDUtge+vuLL8vJqop5cfrnoW6mpInCP1S1Opst0A04asU1PT2fhwoW8+eab9OvXj+HDh6MoCrt2\n7eLw4cPceuutrFy5kj179rTqQ1988UXCw8O5/PLLmTJlCj///DPaJlFN1988mnn4neXVcsHhkL4B\nGg2MHO5E/cB9UjOj04nHooNOkg7jIytLmtA4HCKompsJ0AoUFMiIikGDTp1V9j8VsbVYJB/XZsPi\nGcS2K54jNMKjqxrutQjH8eGq73bVSi1ciEPnyZYtjVlwPc150aJn8eijYrAf0+7UtXYHD+5+Zatd\n+7vJWsNkghdfbPYgzMkRfXno0M6xYTtc1j71FJV7ctlRGUOfuTcSM7ZrHlJnnBmZX24hc/H3DPfL\nwu/KvzTWonYi2stHXp74S+Jt2wh6/wX543nnidLSRWgXD2Vlkllit4sR3eBUz8iQYPHw4R1vq54I\nreJj716h1emU0pBbb23XZyuKlBHX1UlpfltT7o/iITVVZKnTKWlqN9xwyvdnZcm9T0joXpui1Wvq\n119l1IqiSLj7ggtO+K+VldKSpE+fE49a7ih0lm5bWys6bVBQK9rFbN8umRwgUdwTNS89Bh3Nw0lp\nf+01KVtRq6UWugPnvbaXj5ISCSrHxUksjW++kUxKRYG//vXoaSSdhLbyYDbL44+MPCY+99xzIic8\nPJqEcjsfHR6xfeihh7j55pu5/fbbeeCBB/j5558BSE5O5osvvuDQoUPsOmn7zOaxceNGXn31VdRq\nNSNGjGDfvn1H1emq1WqmT59OWFgYixcvbnGdbUfgqBR9J41jUnoqXA/c5cJtJ8LCOjfd5k8PtRpv\njU1GOPZcp1sjXLMgFAUUpaeUoLQPTmejRd5kzfeatdvwrJqdJ9oEUVHy9aeBomDSW5kUfhCiTjYo\nt+ejb6iVvqH75ZdOdLR2JCIiGpSsTfWNf/yT0A407gs4al/ExHS+0dEuuOh2zXpuJ1SqDm4YBUfr\nES2ksU+fHlAv2xY0fR6nWP8mkwTc/8zw9GzDyOmmjaI6YM22FSelvSmNPUyOBQUds26a0tfDaD0W\nRuMJ7O6mtlAP56FFNbYdjRkzZrBs2TJ0Oh2PP/44Z511FhOb3Mny8nL8/f1ZsmQJmzdvZsGCBY0E\nq1Q88cQTR353jfvpNGRnS4rOiBEd2im4Qz1bf/wh7tOmKURdABcPBQUFzJ37LHa7CMC3336FXhex\nBanp2LZN2sn3wPTdZvnIzISNG0UT6knh5ROgRc+ioEBSyQYNOn70SA9Bu/f3gQPiNk1O7jbtscMj\nCEVF8tz69esEzfzE6JRIiN0uxY42m0S4uiANq8P4cDikAZvFIr0bujDNsN08pKZKBPT00zs29bmV\naBUfiiKRpeJiWSsdNnC2fTiKB0WRSGZZmayJLhjt0lFo9Zrqhr3bEnR2NmKr4HSKrK6slHvUwjr0\nLuWhslJSkUNCJC25AwNQHc6H1Sq0arVS/tEFHZs7nIfSUtk3ffu2raluG9EWPlpk2I4ZM4aqqioK\nCgrQaDRMnjyZRYsWEXWKcEFhYSFXXHHFUX8LCwvD4XDw6quvEhwczN13383NN9/MsGaGmVmtVs4/\n/3x+/PHHRoJ70uZvB3oDHy4efvrpJ84//y6sVlc96V30SsO2h6M38NEbeIDewUdv4AHcfPQk9AYe\noHfw0Rt4ADcfPQm9gQfoHXz0Bh6gE5tH6XQ6Jk6ciKIopKSksHXrVsaPH09WVtZJ3xcaGnpcV2OA\nhQsXsmrVKi699FK2b9/O4GNy46uqqvD19eXXX38l7iTzW93oOdDr+2C1uhpd3dWttLjhhhtuuOGG\nG2644YYb/1toUeuY6upqnnrqKc4880zOOOMMDAYD5c3N7WshbDYbV155JXq9Hk9PTzQaDTt27ODd\nd98lLy+P8PBwPDw8uOiii7jxxhvb/DluuOGGG2644YYbbrjhhhtu9H60yLA9cOAAEydOJD8/n2uv\nvZZHHnmEse3oQHPRRRdRWVnJuHHjCAoKIjU1lREjRnDDDTcwf/58Bg8eTH5+PgMHDuTdd99t8+e4\n0ZuhQaVSNfnSnfR3X9+A7ibYDTfccMMNN9xwww033OgktCgV+cEHH+TNN9/kwQcfxMPDgyFDhrBo\n0aI2f+jAgQOP/KzVatE0KaTeuXMnYWFhhISEEBERwY4dO9r8OW70ZthpTU2u2dyDO1u74YYbbrjh\nhhtuuOGGG+1CiwzbuXPnMnfuXKqrq3nvvfd4/vnnmTJlCg6Ho10fbrFYKC4uPqrG1mazEd7Q7dBk\nMlFYWHjc+1Q9efxOK9Ab+DiahxP93NzvLfmfjv39ZPe7NzwL6B189AYeoHfw0Rt4ADcfPQm9gQfo\nHXz0Bh7AzUdPQm/gAXoHH72Bh7agRYZtfHw8np6e1NbWMn78eB5++GFWr159yvedqCvykiVLKCsr\nIy0tjRUrVhz1ularpaqqCpAmUnq9/rjr/q92+upp6A08gJuPnoTewAP0Dj56Aw/g5qMnoTfwAL2D\nj97AA7j56EnoDTxA7+CjN/AAbTPOW2TY1tTUsGbNGkJDQ4/87c033zzl+07UFdlut3PVVVcRGxtL\nSEjIUa8lJiby66+/UlRURG5uLsnJyS0h0Q03ehR8fQMwmxsbrBmN/lRVlXUjRW644YYbbrjhhhtu\nuNF70SLD1mQysXLlSrZt24ZKpSIpKaldacj/+te/+Pnnn1EUhYCAAL7++mtef/11pk+fzoMPPsgv\nv/xC//79iYuL4+GHH27z57jhRndBjFp3ja8bbrjhhhtuuOGGG250BVRKC2LVs2bNYvXq1UybNg1F\nUVizZg1Tp05l2bJlXUHjUehN4fU/Ox+9gQfoHD4kfeLoZladfa96w/PoDTxA7+CjN/AAbj56EnoD\nD9A7+OgNPICbj56E3sAD9A4+egMP0DY+WjTuJzMzk5SUFGbMmMHMmTNJSUkhIyOjLTQCkJ+fT1JS\nEp6enjidzqNee/LJJxk5ciRTpkxh4cKFJ7+QosDatfD++9BMk6n/adTVwddfw2efgcXS3dR0Hex2\n+O47+OQTaKjVdqOHwvWsliwBs7m7qWkZMjPh3Xdh06bupqTlsNngq6/g88+hpqZ7aKiuhk8/hW++\ngfr67qGhNfiz0dsWKAr8+iu89x7k5XU3NR2Ligr46CNYsQLa2eSyw1FVJefTd9+JDPyzwrV+3n+/\n96wfRYF164SngoLupqbrsH07vPMOHDrU3ZS0Hk4nrFwJH3wApaXdTU3bsXevPIM9e7qbktZj/36h\nPTW1uykBWpiKrFKpyMrKwtvbm+uvv579+/dT347DPiAggNWrV3PhhRc2+1kLFixg2rRpp75Qeroc\nymo15ObCo4+2maZeh99+g6VL5WcPD7jkku6lp6uwbZsYSmq1GPfXXdfdFLlxImzeLAqeWi3K51VX\ndTdFp8aiRaKY/vILxMZCcHB3U3Rq/PKLyAKVCnQ6uOCCrqdh2TL4/ntRQoKCYMKErqehNfjuO/n6\ns9DbFuTkwNtvy/7LyIC5c7uboo7D55+L0eV0QmgoJCZ2N0WN+PprUcSdTggJgbFju5uitiE7W9aP\nSiXr58knu5ui9iMjQxwrLpqmAAAgAElEQVSXHh7C3+OPdzdFnY+qKnj5ZeF5y5bGn/8s2LtXjFq1\nGsrL4e67u5ui1sNmA1cgb+NG0TM8PbuXppaivl5odzohJUVo9/LqVpJaZNgOGDCAyy67DI1Gw9q1\na1m9ejVe7SBcr9c32+3YhYceegh/f39eeOEFRowYcdzrT7oEaFUVk4uKmBwQAN7ebaanV8JgkO+K\n8r91b/R6OWgdjm7fXG6cAq5n5XT+eYS4tzcUFcna0mq7m5qWwXWfFaX77rOnpzxnlapRNvVk/Nno\nbQt0OlFgbbbeJyu9vCQaqtHI+u9J8PSU80mt7nm0tQau9WO19h4dQ69v3BO9hadTwbVHzGZxAv3Z\nRsTo9bKX6uv/vHJMrRa5UFYG/v5/LseCSiW0l5SAySS8dDdJLamxHTFiBN9//z2TJk3i3//+N2PH\njuWss85i586d7frwKVOmsGrVKtRNbkR5eTn+/v4cOnSIG264gfXr1x9N8LH51vv2QX4+jB4NRmO7\n6OlKdHr+u9Mp3re6OjjtNBFeHYwemcOvKJJWU10tnvAWKA7uGttugqJIhN1ikTWq0/V8HsrKZH3F\nxsrXCdCj+HA64Y8/RJkeO7bFsqBDeaivF0+0pyckJXWp8tQmPlz0GgwwalSPUPY6ZU0dOCDZTklJ\nopR0MrpsX1itUi5gMsHw4R3+/NrFR12drC1vb4kkd9Pa6pBn4Vo/o0aBr2/HENZKdPia2r9fUqu7\nWKfs1jMjO1ueZUKCZBG0Ed3GQ2qqGFZjx3aIcdstfOTnSxrykCEQEdHuy3UpDwUFsHs3DB4MkZEd\neum28HFSw3bLli2oVCquvvpqPvzwQ2bPns0nn3yC1Wrluuuu4+DBg+0iuDnDtikmTZp0asP2T4re\nwEdv4AHchm1PQm/gAXoHH72BB3Dz0ZPQG3iA3sFHb+AB3Hz0JPQGHqB38NEbeIC28XFS1/3999+P\nSqWipqaGWbNmUV5ezpw5c8jPzz9qpm17cCzBZrMZo9FISUkJ9j9zYwU3/qdw7Nza46E5atC0e66t\nG2644YYbbrjhhhtudBxOmYqsKAoJCQksXLiQH3/8EYAZM2Zw5plntvlD7XY7M2fOZOvWrYwaNYp5\n8+bx0Ucf8dJLL3HbbbeRmpqK0+nkueeeY+LEiUcT/D/shehp6A08QMfw0VyE9lS/d0aU+M/+PHoD\nD9A7+OgNPICbj56E3sAD9A4+egMP4OajJ6E38AC9g4/ewAN0QsTWddFRo0ZhMpl44YUXjvy9oKCA\nsLCw1lMJFBcXU1ZWRm1tLT/++CNqtZqxDZ0B//GPf3DVVVdhs9moq6tr0/XdcMMNN9xwww033HDD\nDTfc+N9Bi9pXpaSkMG7cOPr160dCQgIJCQkMHDiwzR/qGveTnJx83Gvz589n3rx5/PTTTzz99NNt\n/oxjUVcHO3dCUbpFRk/8+qs0r/mTwm6Xevn8/GZeVBT4/XeZwdgbZ7kqijTf+OYbqKg4ci9yc7ub\nsF4Ksxm+/VZGSB2zZxRFem0cPtxNtHU0XLMZly2TBmTHoLISduxo9qXOQzP33+mUKQeZmV1IR0vg\ncMCaNbB8OaW5VnbuhNra7iaq9cjMlPvrLCiCL7+EXbu6m6R2QVGkN8yhQ0228I4dwltxcbfS1mLk\n5cEXX8iD6QJkZMhHdaiaUFws93zHjnZfqqhIdBqbrQPoOhn27BGam1U22o/ycrkdFkunXL5lyMiQ\ntZWe3qGXNZuFt45Sww4flvO2U1VXp1Nm+X7/fffNPW+AoojMOnCgFTzbbPDDD7B6dY+bE11YKEfJ\nUdNSLRYZLffLL3LveyiKi08ib+rrZYTZTz+JsdXNaFF7TFcKckfhZON+UlNTGTduHABGo/FIzW1T\nPNlkXtrkyZOZPHly8x+kKHKzf/uNt2uvI6UgFp/sLJ4OXEaApoqa/ErWG87EL1jHaaf1iMaXLcYn\nn8DPP0vTzrlzIVxfJh1bY2Ph4EF4/XXZJHl58Ne/Ao32YEUFTJrUpHmcosjG2rJFZlyOHNl9jIFs\n9NxciIoSA+PAAbjiChgwgJoaWP9pHn7/XcFpAYdQZWSwNORufvhBGiA/8YS8zY12oK5ODvqCAjkc\nysul46BaDX5+MHQoIGMwP/xQGu4ajXDvvd2/dFoNRRFtwdcXJSiYjR8fouKNtUwyL8dr2Geyj3x8\nALkt8+bJ4dSnj+y7dnW2VxS5z15eMmbhRFi8GJYsoUobyC/XvEn4hP4UFcHHH0uD44cfhkGD2kFH\nW6EoYgEaDODK3tm0Cd5+m+p6PXOrB1ARNIBhw2D6dMhftZuJpd/gO3M8nEhm9wDsT61j/hO12LVe\nzLF+xdlZb4CnJ4ee+Zy9VZGMHg3h4d1NZevw++/wxhtyxt11F4yKyId//1u8DuvWwYIFFJdrSEmB\nuDhpzNkscnLgo4+kc+pVV8nIl66AosCCBVBaCv/9L/z979LB9RRISxO7bNSoEzQaLSmB//xHunVf\nc82Rvb5vH8yfL0folVfCjBltpDk9Xa7p6jT72muiqatUkJwMJSVkTrqanVUxjBwJ0dEtu3R5ucgf\ns1kayt9xRxvoawnKyuDFF0VxXbEC/vlP4eXrr0XLveSSI+fBsSgokLNh8GAYMKD5y1ut8PTT8hj6\n9YN//KMb9LC6OuErNVUe+GuvnbITutUK69dLY+tx45o/BxwOWUM5OSIvnn66fcMpdu2SLeB0wvXX\nw5Qpp35Pba3Q6esry61ZlkpKxGMbGyuMvP++zCUNDRVl8cor2050O+Eaq2uxwJgxstz69294MSdH\nvrsUvkOHYMkS2Rz5+cKLTgenn94ttANy/4qLqYuMZdkPGj74QHSlM86Am29u+J///lcMQpVKXlSr\nxZGUmAjnndd9hsnateKkPussyuMn8OQTChW5Fvz8Yc7NPkev+7Vr4b33Gsc3zpzZPTQ3oEXbLCYm\n5ri/VXdSyMLhcBz52WQyUVFRcVLD9qQoL5eFbjKRv3Irg+PLya5RqPA2EHD4Vz7bd5CfVbGohsbj\n4wPDhnUgI52MrCw5i2troexQGeFLHpPdP2OGjG5oBqmp8Oqrsu4KCuC66xpeKCgQb6Wvryjyt98u\nh1cbU83bhfp6eOYZEVoBAaLIeHuLsJ03j6VL4aevfVHvn453XBUJubnkVtag13ths8m//zkM28Zm\nUj2ukdQrr8hIm+3bxQOydatohU1moNrt8NxzsGOHgjmrjHEJFoqK+nQj0W3Ed9/JwaLXk3rZU7yy\nJBBl3xiKKOMazw3iCZo2DRBlprhYxszl5oLdakeXtlf+0JZFt3KlWKc6HTz6KDQjZwHYvBmqq3m/\n7AI2vWfDY30Ng5O80GhEJysp6SbDdt06Ocw0GnjkEbGIGmC2e1JV48EA5z5yfjOwaGcUjg2VHI4e\nxJ1FH8gojQYjokfBbqfmmX/j9ccganzDyVFqwVaFudzO8/PtWEPkrF+w4M/lCC0okO8OR8PPEcji\n2bFDPILvvcfL2TeTkSHjmZ97DoKCGt5cXi4OjAEDZK8cPCiHyfDh8hy7EuXlEkZ95hm4+27R1k+A\n6mr4179k365ZAy+80EQRs1ol9PX772Kg2e2yiRr2ekmJ3B69vlF/bjW+/x6WLpWLPP740Var2Qyr\nV2PzD+O5+wuxDI3hxx/FntDmZQrxQ4ac0HNWUSH/YjSKb6zTkZcnX489JorD11/LQnn2WXjrrePm\nY7v8EEVFIt5eeKH5aVI1NWI7+/nJxBmns5tGeLr4q6yE++4TK3TsWFkjEREQHHzUv3/zjSTRQONE\nsGNRXy/2lb+/3AebrX2GbVGRXFOjEVJbgi+/hOXLRVZ5ecGIEcf8Q34+PPmkPIjTThOL6+uv5YMO\nH5Z90o0oLJStuXu36HaHD8u68jmwVSxeRYF77hGP+gcfyE3av1/OFl9f4W/37pPupU5DZaVEWioq\n+Ml3Nu9nzCQ1VZ7BCTOtbDZxOHp7y8YePbrDx+e0CNXV4vAzmeCdd6h8aDTVh8sp2VnE1ppAKkqd\nGJ70bXbdnxT5+aJEDRki8qOT0OZtFh8fT1ZWVkfSAnDU6J+qqir8/f1b/ubcXPHaxMeLIEpLk1Op\ntJQ7Pfezeucosu2n833/2dwUkY7DEYQquxIUBacDsNRIul9lpRiI3TSXrSW4co7CJ/MOE2MqYpBK\n1XjK7d+P8/LZLI28j21rK7lsRiBJtbVgMOB0qlAUEXJHZWjU1oq2U1QEBgOWuS9Q5xOA/wuPHifQ\nOw1Op2gfublw8CAZugG8s2woUeRyXf9f0CcmAkK3TeeDLrIvzoJi0JVzY/xLvBb7MFFR8uj/HLDj\naiZlNnezhmy3i5FVUyMHwvffw8CBWFWeVGfXEjgyEdWUybIWIiJAUVAUFY5KMzFVh6k1l3BT4VIG\nhf0NygNQ1B58u9aX33+H88+H8eNP8tkOh3x+C+YNdxjKymQTHDokhqWiQGUlji++QeEyVBHh2Mt9\nMQf3460VQ6j6BS69VNbW1VeLB/zyy0H3zVLRGlypAi0Nt7jgyq/au1eu89e/Hm0t5eeL8ThsGJSU\nYLd4oc7PQTFXMO3aODRFdnRKLb+s7cuaNRouuQT69m2iY9bVyWHeCTOsATFusrPl5+xsMWzHjoWb\nbiKsppZbNu3H+OFrWD28ecX0KGq9lnqLFSU4hO9+NvDrbw5mTahg4rl+OFUelBQr+Bms6HwN3Wc1\nfvopCRvf5v8c0aytncl5Y3NJSZ3M51UzSU9XEaUqwF7rRPloDarpU4+Ebs1mEWEmz06+521BRQVT\nE2xkZwbjoVWT3L+YpW+U8Uf5I5ypfY8zx5ph3z7qVTbU2fk4tRqc9eGAh2hgrnU5ZoysxZQU0eaP\nWL5dAJUK7r9fshcURfZcRsbRhq2iyJrMyICDB3HuzMBZ/hh2n5Dj0+deffXIvPMiJZg3M8/F84ch\n3DxGjv2kJEkqqKyEc89tI80HDgidNTVyvkZFiVG4fr3szY8/RimowFFchiYrDUdsFMqBLFjwLDW1\nKqznXor/7Jl8/71kKZ5zjtgdIPv8vPNEZ7/00jbSdyI4HMK4v784l++8ExYtEvmfkyOGz+bNYmmE\nhoo1/ve/H3n7vn1iY2zfLjq5ooiILyqSSzbVZ/39Yc4cUbuuuqqLjdrqatmr2dmiwKvVokOZTKI7\nbtkic9YNBnjoIVlXJSVw9tk4HI26YdPs0dJSudzSpRIAvfZaUWsuvFBslfbgtNPEZrNaTxwQOyKH\nGpwILj0vJ0cC7zfc0LCGSkslG85sloBIVZUYVCtXipehb195cDabOL+Os4g7D06n3GZ/f5g4UY7p\n7MN1RNXn4sj1ZOuWUJb/25vEokQujfgNdXq6GLZ9+8pz8/GRKG19vaxbX18J1sya1WU8AFT/9Dv2\nTQfwi/LBnroJn7BkIiL8CAiA665VoLAITCaUqdP4Yms//tjjxcWv/s7Y/ftlbU6e3H02iF4PgYEo\nm7dQYupHaLCT8/rvYcleI3HeBVCrwVHigA37ZJ1MmCDvU5Sjs7FKSmDVKgmShYWJh8tmg0mTUK68\niqXLDGzZIpH4MWM6jvyTnr4LFiw44Wtms7lDCDi229Xw4cNJSUkhISGBqqoqfFrq1a+tFe9hZaXc\nwDlzqLvmJj4tO5Mi0wDU3l58WjGR+joFa6mW8gq4vHoRAac/TsA1CsPWvgqP/SQbvn9/2fA33NAh\nPHYGYmv38GjdfOqtHli/icU7fijLNoeTqpvJ+JVWln9QjJ85my13f0/SN4dhzBgS7rmPm27SUlYG\nRzW1/vBDkSI1NeTlq5i3dwa1Hj7cco6F5Mu7yLDdsUOiP3l5kJqKZ/UmBjin8ZNmFvE+WZw+bToq\nZE+UlKjoW17AwKpNYLHjbzTy9+dOfvm6Ovj0U3EWzZnz50sl7FRs2iRrwGyW/ePtTeXuHJ6KeJdS\nJYxLJumYdbZK8nDffx8uuQTtGWdwQ8UCFmUkMlKfTly0Ff2W32DROkrq/fiq5kkC+hh55x3RPZt1\nllZVSa5WYSHcdJPkdHU2tmyBl14SBbi8XDITrFasGm+UjV8zpXoP2ugwLhq6h032sWzMCmPvXkn7\nv/NOMWinTm241i/ZovRYrWIst9awPe88US5sNqnrnTLlqBxQ5eVXqMvIRasF9UMPcd2tj7CqOJUI\np5mR5qs4uKmQdQWDKAnUU63z48dlGpKSDfzjHxBYvE8UTk9PyVXujOyL+nrZUFpto0bq4QFTpqAq\nK2P8gkugaBOKw8ktlnryRp7D9MuDKB9zD188p8a2fS93v+vFv69Yyd74S/B891WG27cw9P6ZaK+Z\n0/H0tgTZ2WiGDWHI7t0M1L+P3TaMj23Xc37VWyTmLMNaEcWMvgdQr/KmNvUgnwx8kvR0yaCJrtnH\n/aqFBER24j0/CSwW8dNYrWIkBAQAe/diu/tvGNMPcc/MM6mb+yxzp27kswNJ9AusoLjPrUzw+QCv\nqy/hrl+/Y31KHgMN+YRkXwDhY8WQPHBAwm6+vhKaslrl4oGBXcof4eFi3L75pgj0IxsR0YYffVSy\nTVQqqK3F12BgoE9fvu13F/6JWmy2Jk6frCxWm0fze2YkSmIShzXB1BcY2bhR9DK7HW65pZ30XnSR\nRDNDQyVd9623xGlYWipfkZH/z957h1dVZu3/n336ST8nvUISCCEh9A5SBATEAlgYu2LXsc1Yx94d\nZRyn2MXexU4REJDeIYEkEBJCekLaSTu9/f5YHAIISIn4vt/fu64rFyHZOXvvp6y17nuVB0PBVu7T\nPM3mDZlk+UOY+89raN06iVJ7HO7yeC41SZA8MlICKCNHynZzu4V7v+ii03zGI8XjkTB3UZEgoLPO\nktRcv1++6uoE7DmdsuA0Gvj+e1z3PMBnX6ppbBQTbrfLcunTR0DYd98Jnk9Lk+SOQAa7oogvcqxD\nNgK36BLeM8DqgzAC//yn6KtABoLVKlkzGRny0C++KIZr5UoBtYoi9qKtjZzhN7JokbxPoPxm5Uox\nj4WFosYrK8X2/eUvvwpon5KEhAg+O5bs3SuP7PXK0svLE+5p0iRJXDy4hjKb0d5wrYxBUpLs6XXr\nZG6bmwXET5ki4d7XXhN7+frrJ5b73AXy/vvwxReyFJ96ShIzplW9x8q1Kkao9/L63IdQRcSxcG0P\nRrYuIjlQnH311RIYWblSPqC4WPREXJxMyhkAtmVl4meGqjvY8Y4ed+vt3LH7H0w5Kx9sH6L8+XrO\nvTgY7ZefSvpxWxt2JRjNxlB8xkl8tUHD0PgO2V9TpwrRcoZl+XJYt07LuZGTKG6JZGHZCBJur+PR\nZ3ozJfxdltZkEdLLy6BXn4eiQtFtV1whi05RsNlA8R5Y86+/DuvXy8AkJ4viSk2FTz7BtmQN5ZbL\ncWafw3vvnUFg+/DDD3PvvfeiPSJk7Pf78Z1GkXPguJ+8vDymTJly2HE/999/P1dffTV2u52nnnrq\nxD/U7RZtGhQkbMfOnexwZbKwYwx+bxAlvsHEWnew056OccNyQsP3EpqVwsykTdBvFLy/WaJRBQXC\n/Jyp2qFTFY2GNreRz9cnkW3bhiarB1+bbybYGcG3n7dgcjfQrIpkhG05NATDO++giolh3HXX/eqj\n9lu00KwhMsZE6f4o2vRRhKjtbCmN5NiJXl0sAce4qgq0WgwhWnq37OK/rj+zo0hP/DVPor/nNhYs\nGMbAgdC0BCy6WIyNO8QgtbQI03gMycsTPaLTSdb1n/98ht7rf4NotZ0GX6WCyEiqeoymcZkVc3Ah\nGzYO5Ny+lTTvrMEVGkXsytWo+/Qhd4sXtcdNnqM7z+1JJ+TraO6LWU+ox0K0qon6ptDjZwCVlsp8\nm0zCFJ8JYJubK7qiuRmPWk99tZf2nHFYt+2mtd5JEnsI37eD0DA7id164/HI8srKEv08a9Yhn3XZ\nZYIkTjVVICVFqPzVq8V7O0LP5hVq6djhI9SsJTvcjFnVwiVBC6HdRu7Xg1hUPRa7T09luQ+vu4HU\n0EYsFb0oLw8jcutq8Ptx72+i8NMCdFPjjl03eaoSGyvpqIry6zzDsjLxxIxGFKuVUXGlUP8aLMvC\nVZyLKfg+5hXHEhHs5uUfelC3YD/P1y9mny6GjA8/R3vFrD8mJ/FyAdR2jHSs2ISnKpceMXvQO9tI\n1nYwyr0YbZsJ1rjZGJ/EF9v9tLb6UatVjFetpUnnx2xoEjtyhoHtxo3i06nV4sRecQXsXV5O6eYg\n/Epfhm/ejePHVVTuthLrLmdfQyJDL4tj50XP4HfA4MhiZqWsl/kMRJzDwsTZb2oSx3H1avHmm5oE\nzR+jvrLLZf58QUcjR8J99/1aqTQ2CgJ0OgXkHvBPKhwxjBjiZ79F+LNAtr/l0pv56A4XoYlh7GtI\nJSJCwekQcLBggfB7l10G55xzGs8cFiZjWVwsX2vXynMH8sILC8Fup4d6Bz10Bcxvu4u1e6Jp9MZg\n9/jo0yuKnTsFz9fUSEKERiORz+eeEx7yppvkFn6/ZC2e1pZpaZFa0wULhDRYtUo+PJBVM3CgfF9Z\nKUrR66VVE8ke1RBsy6wsWRKGXi+X+P2iHq65RsDVyy9L9La0VLDTiWyN3FzhKYxGCQifFhmdlydO\ndnKypK5u2SLvZrPJZAc63DU1dfaTuPFGAb/x8fjDI9hWoMfpT2OISs/nn0sEdt8+SWro0UP2X3Cw\n+Bj19eJG5udL6mxcnPAuv2f1xa5dwjlpNFJRZrdLtHPAAHmWpqYDa6imopMxaGmRcNnatfIHbrek\n5u/YIWNmsche+uCDMwJs/X4p16ytlUd59VUhCeZuH0DdfjtqxY/KrFBf7yM2Uo1pbF/ZRyCL/6ef\nZNDtdhnsQJemc8/93Z8dZJiqq6G0WE+Qw0RcKGwzjKenbi+RJQV88L0fixPGryiiW0wMbNyIdtBw\nEiyFeBuzGK7aLOtv8OBOPXEGxWKRbIuwMHi9OAuDzUdMUDu1FiN1Shxpzz3MdJBFrVUJcdDRgeez\nL6n/YAkl427go11D0Gjg/vv8pK5ZI7bQapVsruZm+XCTCW1CNENKfmJn8znHqp48ZTkusB0wYADT\np09n8FHqaObOnXvqN9VoyMnJweVykZ2dzdChQw8e9/P222/T1NSEyWRi586dTJw48cQ+NCxM0Mqm\nTbIB9XpCw+fjqvDTrDIxrf5dYl3ldDOP4kbnm4TGBImlO/dcAUT9+4smveIKoWyPyJ/cv18WbWio\nKOuDjZf+KMnIoGLm3ah2LEITFIazvpVgk5X29ggGDwjhmoQq9i/eTprTg3dbLnnhY1j8vJ/r2j4n\nbu86SdW45BL2lir8Y/+tdHeuJzU9hYnj9pD8ipMWUw8mTT/N3JmTkbg4mDgRf1o6lk8X4nLasfbs\ny50VbzBJWUZJ5WBanvoOm3kYq1fDtRclE/txrTjULldnoc4xxGwW3OByHaOJyP+fZdAg6T4SMAbN\nzaQVV/Knr99AXWkh/qzzWVhwGWVbe5LiLiVtak/63H8/8doovCFhWG0GGoeNodbSTq0vlu4pDh67\nOYRq57HLRgFh7uLiRJF3eejhGDJ+vERtU1PZZ4nkW8M0zFVtlCp9yWAV8dRhRQ+1pWS+cwlzglW8\n844Y2suzc+GeD6QW7/rrxUl68MHTe54rrxSgEB19sCtGS4uw1l9X3Mvl/dZS7u/GPcnpxE6YIDlu\nmZmYmkrQuweBXsW1g3bTvaOA7/f1IzG8iYxPX4btq0GrZbezJ2+vzsS6U7KljzsfJyszZ4r3Ghoq\nAPcQybX2pNXSl9SeRpKHJqDExUonmagodGV7uFn9Mvu9GTRbIvCaQ+jRvZWy6iQG6nahN5j+oEI7\nxAN86CGaL7+XMpNCpKce09n96ZW7hIjKnWjPmSLrNSQEd5GT9l17iG0tYVhwPs6RmcSF+0UPZWbi\n8UiTv4oKMSupqb/vo0dFia/q80Fs1Ra480PqnQPYGTKcIe3LqI7sR4a6lRHqrfg9Hq7Sf0O47hpu\nuj6TMJOGv917IVNviBTvPBCGuvXWTs84O1vs7Ny5smZ/7xeCzvTid9+VfbdypTzbV1/Js9x+u3RA\nXbBAwJfRKMgqKwsUhenTe/FJsY7+/Q8vVTMOykLpD6u2yZ74y1/EV1uwQDiZiRMP9k05NSkpkSyM\nQHO49eslJLF8uUT9Kitlo6enyzsmJhIdaULliSIiIYg4A3j1MG2aDH1VlfxbVCTZfHv2yHR89JE4\noyBJL6eEPZxOcT4rK8WZjooSHXn//Z2Mnl4vqLS1VRzUmhoa27SsbcjA41Gxa7kbnU5wxIUXijow\nmzuz1WfOFEJ5+PDO6iaPR6JbZWVH3x8bNnRirz17TgPYulwS5Xc6ZQD37BH/Z+NGsXevvCJkyc6d\n4iRIWpggqoEDIS+PXfVmXo78G36PlssjzCQlyb4OCurk9KZOFSA+bpzwlSkpMlcmkxATlZXykUVF\nElDMyIBLLz2x0k+3WzjU6moxGd26/fqawYMFFLpc8vuPPxaTvnWrpDH/9a8HeEh/hjzkxo2y+D/5\npHPfDBzYqXtjYmQsgoO75BiAdesEd44de7CU/VeiKDJ227Z1cmo1NVAT0x+jvpZXSoaQmRxEQg83\nj/fZQsiyZdJErqpKdEJhoWRR+f3CMMTFCavSBQ10/H6pq96+XZ7xaNnZSUmy9eOTtIQlpqK0mhl/\nWwK7N5XwrSeLLbtDKKyA9ZE384/q2wkBtIvnk6PTEsbHpCU6wRcrYz9qVGc7e4/noE7rKrHZBNO0\ntwumiY2VZWAyCQmSOiiBsZMa+XhZPCMGeen29iMQpBedO3WqLOShQ6F3byp+KqLIYqQ+9weahwwh\nNBR2bveQGh0ta2rLFtF9Z58tXe/mzEFXUcGQBy4mrp+Yk66U4wLb9957j8hjpBtt3rz5lG+6bds2\nrFYrq1at4rbbbmPLli0HwbOiKPzjH/9gwrFW/iHicsmkmM0H5nvAAPkCaGggvbeR8xx7SC97jXR1\nGWZVPaWafEKH9jCblKgAACAASURBVIGB0ULJRkYKm3D33Z11qkdZPPPn+9m1zoLL6ScnK4LRY/8g\nxysgikLqtCwWbjBTudLFgDEhPHaHidpW6N1bg6LcT8yMEjRP/YV8ezdeqbocY6ia+mdeI25WltT0\nTZiAwxFJu8ZEQbdz0UWA6YoePDu+Fn9SMirdGSq2b2+XfJO2NmqzJvLU0GUEh2sIt+zjMuVhbDVh\nZLl28JHpUlJTxVheO60RdW5vMcR6/W967Onp4ti3t/9vqsM9Q+LxiDFLTJQWloCx9FUmt8/Dr6hQ\nFdh4xzubHw0Po9a5eKng7/Q5K56pSdvoltaN/NTz+KkCsoaGknD346CDUEUh87fuGx4u6c1O55lr\nJJSWJjSw38/P//VSsMGPNncTzV4/m4N7M8i+hicNL4ESBCoVqanyiD4fqP72uYzVsmXipJ5054Sj\nSEjIr7znlSvFGVFCQlhYN4irhu0hKiQR3nlHDMnatSQVFfHA6LXYbX6y75qKZnE9UydtQ4mtQnny\nQ/G40tL4edwcOnbr8Xl/hz4gBsNRPRS/H15/Q8EYewvtGhPP/y1YmsIuXSpoYehQwj9ZzuPqr9gW\nNoq0ZB8WVxh9g1YTbfagvuI4+Xa/swQqbIJvvw77vs9YZbiA4beOJqbfWeJdarWSmrdtG9Hdgnm5\n6BbUOOjrK0GffS3K9X8VnRQRwe7dksIerrHyw5tt3PV83O9aO5yTI7193DY3vV/+L8TGkFO5nC39\nr2R10HiueC4HtamNW8z3c4P1Q9QqP7e9dxZmj0K5LZuKOh1cMF7CTR0d4lmazYdHO0aNkjWo0XTN\nuzgc4kXFxx/dw//lFwG11dVi8IcMEYe8oUGQxaZNAmxTUkSxp6ZKw7uLLwZFYYKiMN7rR1WYj2er\nk8bUAUTGqDEYxJFLTxf/1+GQf6OjhcRuaTmkueLxJJCeGxbWWURZUCA5oe3t8sFarZBgYWFSsLtr\nV2eDRotFEMi4cQz1Q0Sx9MEInKbo8cjH9Oolw/3BB6KLAtnM48dLED0QfDwlmTtXUIfdLp5tjx7S\ndjdQ0DtnjiDoxYtlfA+gKs+2GsxbLCjqVny1K7ny+ZkH7auiCNfs9YppOe88WUaHTnFRkWRRGY2C\nrR555PDHGjNGQERMzHG6dJ+IfPKJFP5WVEhqdXKyOBGPPNLpyU+cKLZh506xS36/IKoNG+Css4jY\na8MflIJKBVaPVKllZ8tHBYB6To4EhRWlc2tMnSpzdsiw8cEHsr5KSsSEHKtj9KFSWChmx2AQUHz/\n/b++Ji4OXnpJvne55DVefVVez2gUvk1RAGOQzO+QITKvwcGyvy65RDZBerq8SFiYLDC//7SjtS6X\nmK+wMFnuQ4Ycu3x0xgyZ+0C/OrUaUjN07NrVjfg0eVyD10pYlA5HVCJapwf1t99KYKpvX/nXbJbB\nvfZamYQukNpa+PZbee633xYS40i56iq5rbQjicDvj0DV0Uaou5ngMh3evaKq3Po4NK4ICM+GzZvR\noSI93Il26CDZKFOmyItu2SL2xu8X5iqwJ7tAtm0T7k2nk4SY66+X9fXoo0I2ZWSoCQkZwLi7QfXZ\nJ/BztSikTZvk+R599EANTjJtq/5JSH0TeyL7ofc70GgMZPfXQtytwgY0NopNWbVKGK7HHgO7neDQ\n0N/2E09BjgtsMzOPfcu400iz2rhxI+cccOYmTpzI+vXrD4sKP/DAA5hMJubMmUO/o9AiTzzxBG53\noN36OG66aRwzZ3b+3l5QSuO/PiaxqYHp3bfha60hxG3DHRJJ0N030+3+S2SHr1ghBigoSJTccUJ5\nyfZivDv2o8NHdLECY8ec8vv/pvh8suq83uPmFwUHw71z4nC7HzpYgxKHGMJHHgHVxv08WbAVsyYC\nfbAaW0QCVlsEtdtqMI/sjT40lN4mYQBra+G8iQ54+mmUqiqUUaO6oMjo2OLZXUJzfg3h4wag375B\nnBWtlmCPkcbQu6nd0cijlQ/Tw7YGX3oaqstuoP+gGVjXCYH/4H+TeCKyJ5EmkzgxJ0B7dmm06n+T\neL2ClFQqYc+OGCvvF/Oo+Xo9USEOjOeOh40b6VBCsKlj8Dq9VNcnM+wayM1VUBQ9A2LbYf58VDEx\n9JlzLX1iY5nhFAWpnKyzq9X+Pt3xvF7ZQ3A4Cw24PQp1dQozLlURtG4hnrAq1jh70ZLah7j8H2nw\nRhIXrEVTUSHWOCMD1fXXi+fywQfCDr/2mnTOPJkwgt8v6V12u+zrY7x3wMdPTXBys+1tRjQUoLye\nLcVpN9yAbcL5zL/jJ2I3/kJMrwg0TivU1qJqaIB1a0QBuN2QmUm/oXr21QhB32WdkwOH+SYlHZVq\nVVospJasYFdDFKZ4AyEhko0TKKare+if+AsKiXS3Msy1Cr9xANHBfsz9z0Jrb/3DjgLas6fTMZw1\nK5vWe5+hTzx0L/wRnjmQinfbbZIZVF9PmlWFc8oiwmv3oNEoKBkZEvaz22HbNiIv+wsmpYWp65+k\nZ5QFvr2AwwxVF4uiHHCS/RqIi4W8PEJ8Pm43v0+ryoTD8jf8aUnkznwa1bwviHZW0TOug6p6D2Fh\n0KN+HVw0R2rfMzLE+Tiane+q/epwSBFddbUAjhtu+PU1+/fLi6WlSShw5kyxFUuWiJMVF0dH5iDU\n27dgHDtWwlJqtbzDa69Bayuqs87C+/GnFOzwszT2SuJnT+Xyy+Uyi0VAR2qqBKdzcyXtNTn5BOs6\nv/tOWuRGRAhzajLJh7rdQpJPnChh15dekn0THy/hs9BQvK0duMadjXHUKFAUFPz0KvgGVq7EP/Vc\nVgdN5j//keGeMUNwR/funcMVuF0g9nBoyfFJSU2NoOTiYtFLjzxykOAEhJBaulSQqFoN112HywXK\nqtfIpIg2cxq9buhBdHe5vLRU2p00N3dGCtXqX5tos1kcabv96LY5K0vAg0p1mgkcNTUywWaz7N+o\nKHEe331XEN8jj0gZTFWVTHxzs4D522+Xv129mphRY7lkug+7U8W0aRJ8ev55+ci33uo8zenIdxw7\nVqLUWm3n77p3F0ARHCzzdyISGSlj5XQePVobkID51eslVjBliuCKwNFDZjM8dk054TdcgqO+lUqS\nCesZS3RiIqqODiFePB652f79olCee+6009w0GuHNKyo6I4O/9b6HxtQefliAbnk5lOW3M3ntk3R8\n9QNKYwMWfSQR50zD2L07Vquf2tH9iKGesFCDMAhdJKGhAmpbWo7dS0unk4SS9nZZOglxPrjvPqIr\nKngiKZmr3p/Dym1h9MsBwysOyMvD63BhcQaxR52F48J/cfYFQvJbLFA0v5GejV4iI1VCOHahREXJ\n83q9h7cHMZsP9Gc4IG5LBx0VHURYWlBHmmUBt7YK45+fDx4PKfc9R/6H2zhr3y8MayvhbeOjvPuu\ngUceGYVx5EjxXb78Uj64tVUWxO9YP3xcYDt79mxuvfVWhhyjqnfjxo288cYbvPfeeyd105aWFtIO\nOETh4eEUFBQc/N2dd97J448/TklJCbNnz2bVqlW/+vsnnniC4mLRQ9HRUh4Q8BccDnjqjgZqqicx\nOiyWG2c249U6qFhezHLtZH5ePIbX3f8honirXGwyySqsqJDN63JJfYHZLP9/7z2or2dSr0xSsjZh\n1HrpFvI7V56uXy9GGSSqPGLEMRt1qFS/NsAbNgiJHV4fxff+C7gqZD5P9ltCUVB/5m25nMLGAYyz\na3jgwQdRJSQw+aabZMdWN8mger1iUUJC5PzYgEb2eoXRDArqpJRPQfy1dey+8ina6p20J/Xm7MfH\noE1MhP37qU0aysTNr5FavgKzvZB2tQrsasLuuosxaoVmi9hXqyqc5eOf4ZKpHWe+icn/NglEPQBu\nuUW8IhAC5dVXKXh5KYscY2nRxPLY2mcw9kyiXJ3Dquhb8NY38VXHHVzUKHU7wcHQ8dcg1gdNIDXE\nRlx9PcTGntGmxickq1cLrQpSKzVuHOzejc/p5h8/9KJm+W4uanqLmart7PGkkxa2mxfoy8ag8Zjb\n9tNz0ABGrFwpRn7dOvn7yy4T6jwlRTyMioqTA7Z5eeIw+Xzipc6YIT+vqxM2Mz0dFIUhyhYe1S2D\nBDPpK+ejlLXjQcXr/4GaGhUTx0bxbvOFeJVRWKvjWLD5I0wdHeKIaDSyN81mKq97jA8OnMUZODqz\nS+S11yQqZTCItxQVJRG0QGqlw8FdGT9RkpJIUrSLoGe+g8WL6ThvFv9ouIrUT/eC/2ySlFKqE8ey\nrGY0Mcl6ZrSsYMStA/+YY8YQ1ebxgMfj58VnXPhUGqprFJ5r/J6p5j0Y8vLkndPT8Z01lgUfu0kO\nGshgYyWqzDQBA2vWiNfW1ER8PDwyuwaNpYnw7mZh339HYHtQ6uvlS68Hp5NaXxzPbJ6C/SkjV9/m\n5Ie6yeyNGkdvy3quG1RLg2McQQ3tfPyOncEJVsIbyoSyX79eUMkVV5z44vH7ZW0oym+nzjU2CkqL\nPZCmfjRgO2yYkHKJieJ0Oxzyd14v6HTUfbyEpYv9xFuNJCRHkvXII0JAGI0yoUYjZXOXUpfro82q\nJiGthdVrJLCzb59clpPT2bTzpBuYbN0qobHmZvFkTSbRCT16iE299FJ53p075ZpNm6CsjFZDDB+2\nXkHBrrHcusFOvzE6cfh++AFiYih6Yzl37ZvIvnI1vXuLCrrkEgm0jRolQCoApi699CSf+UiZPVv0\nZWysIEi7XZTGjh3i+e7aJcXHANOm4R08jBdHfM+gIgepTie94itRRkrY0eGQo6JWrBCsb7dLCu7g\nwb/uehwfL1mJzc3HJt26hEOZNEnChGPHdmb05ebKXm5vlznR6STkrSiyKNxuSW090KFWs3M7M54s\nO0jkPf20LHOQxkx33SV/8v77wg9cfXVn9uuRtvG666TSLSbmxBuLJyXJWFksh3MOR8rq1cK1DB8u\nfH9FhTxnfr68uqZkN+orr4WiPKrVGWzyJhHn8RJ3zU1k3zZOfN66OqktTkuTGwYHd/qANTWyZ7Oz\nT6oeT6WSnlSlpQLMjzav1dVCEoSEwM03Hx7R/eAtB6s/KCXOXckTN1ZjXPcVrsYG3H4N+/2xOLbV\n0O36i3muKpIGn4YR+z7lslEeDNOmnfAz/paEhgqZVFPz6yh7Y6MEuVUq2af/+Y8srRt6rWH0kiXg\n9aJubCTjz5PJSEyEzLvE2GRnY9lazvaQoYTpHOxcVn8Q2M6dC7t3j2aUpYILRriJPFaHtVOUzEw5\n6cluP/b+27wZ1lz6LlkdG0g2een9wnkoYWGyiFdLHw8iIoiYNxfN3mBqicO9pYqki5soq0qkthbS\n0hS5UXKy3OxPf+rS9ziaHBfY3nPPPbz00kts2LCBXr16ER8fj9/vp66ujqKiIkaOHMm999570jcN\nDw+nra0NgNbWViIOqY0MHO/T45AzEY8mgcyjoiLJDw9IUxPUqhOJ1eZR1BoLdYV0tPkoUPdjm2YY\nyrat6He+CB6raKLsbMmTCTTB+OwzYSd1OmGI166VBighIWReOUQm5txzZVJXrhRG9jhn6Z2S2Gyy\nYNxu0aButwCSE4yg+nyic9oNMZRp+oP7WxKadrLBPZBv/DPRebwM//ptCP5eAHy/fqL84+Kk9uTl\nl2U8Fi8Whz7A1s2fL8perT6t2kLfjwto2b0fvceGvU1Pa0lvoqKjwevFV1pG9r59OJwKWrcVLQ42\ne/owpqYGPvuMMcZE1gTPJKV2A2P0KogY9b/rQMk/QqzWzg4jh+ar/fe/8Mgj1DnHcLbqO15X3U6T\nUUdScTFpQ+JY4E1ntysBs9KEoiTQu7fsr7n2C7i87UH2W7RE6wz8wUn5R5dAp8TA9998Aw8+iIMg\ndvv+w+T9H2CwF2LXVKCPNLAp8wpSE3VUF2goNAxg8N7tMGGMUPPh4eL0qVSSa/Tqq8JanmxOe8Bh\nVKs7a5bKyiTy63aLwp86FeW1V+mRmyuDfeDIDYvdwKZN0MORT9yPTzK87iw+d11EcpKWUlcig/Lz\nZX4DIZxbbsEXFHIwLe6I5vOnJ21t4hR6PALwA2ch2u0CPi6+GOP1l5OTny85hLNng82G8sIL9NQW\nUeswk0wVa1UjGdVRjM84kdq4/mwfO5wRkxFPOC9P0EfKmTsbedgwCeS4d5Xgq2hgl60b2qg4FLWC\n1aHG4LGKd6lWYx06nqDCeBLrt2FvdWHYsUNq9W65RUK/BzpwRg9Ph3H95WczrjgzL+J0yoRHRUFY\nGJUV8XRYVQSXF7HjTRcp5ZX8uO8c2pPOZqb1S0ZXf4J6bzRRlmJcER5Z542Nsk7feUfCPifqgR9K\nKN1++/FtY3y8oLStW4/oynZAAgTrjh0SqrnpJiGG8vJkPAcOxPr1T3SvUXD5NOj+uwp6quX6F16A\noCC8DjdfdpxLXK8mynfZKDdM4+ILZXhUKtkup3WixsyZMkb9+gmYbWyULDCrVbzfX36RzufV1bLH\nw8OhsJC2PTbq/eNxelrZ9V0R/c4aIkRCeTk0NdFknkZLmwqtVrbDs8/K7XS6LikXPFyMRtEZ+fmC\ntnr1khz6Dz8UsF1VJYhEp4P33qNj+GTKlO7Msuah4Mdb3Y6mquqgt68oAsTq6uR1FUXU6Jgxv66j\njY//nU8oaGoSUrejo3NNg6Sn7t0rDzdvnsyTWi1zNHp0Z0ZfR4foudbWzg7XV16JWh11ULcGAk97\n98ryDwsTNzIwZ0eKVntqc5iQcPzAqd8vCUUREeKqjR0rW8VolGmtr4crWz7BiBNUKmIc5YzARun+\nnpjmzoFUu5BL8fGCLOfMkXWxcKGQWxaL+KMdHaKb77vvpJ4/JORXrRgOk59+krXudEqy1aGJO9t+\nthBdnYunpRX3Ey9hNKhQtFo8TjXh7gaS5r8BTdvpKLoFdzus9/blIk0Rhi4OehwZSQ7IqlVCaIAM\nV2sr9PAX4/5+gbyQwyG2PzhY9vimTTKOBgPBdjBZSykyjWDkrM7Qqc8HLl0IK3vdxPirIPLYLWRO\nWY4X/Qchanp2tOG3OvC01eB6/W30mzaKjrXZOpuvhZvYFzmbEQXvsiN8JHs7YhkwRPQAIP7C7bd3\n/QscQ44LbHNycvjwww9xOp1s376d8vJyFEWhW7du9OvXD4PBcEo3HTFiBG+++SaXXHIJy5Yt47pD\nOvW2t7cTGhpKY2MjnsMOWz1c9HqpMzjsQG+3m/i6fO4I/pEqxcmw6F1Yig2o29upzZ6BvSWFqzXf\nYKxxymILDRXLdvvtEm349FNh8gL99A2GTiYvI6PzQLuODonkhoSIshswoGvP4TzrLFEiubmyAUJD\nxXjeeOOvQZzXC243jlYnte8uJKY2j9EeD5fHTKZuwCCundoX/iYNgca3fkSf7JugsYUrnMvAoRMD\nHNCWarXcw+GQ6EJU1OENmRoaOpV/a+spv556XwmanqnUFewnPsJO5N5NArDj4sisqaMqtAmVtwmD\n18nu6NFUj7kM7rkHrFbMkZG8OKIVLGtQfa9AjP8PS138XyMTJ8oaVqkOr9HYtAm0WnI8hWz2DWR8\n0Ebi9Rbo2x/jBedw79bHaTCHUW3oi73vO9RUqoiikaHWFdg9WkhIQPX8s2Klp08Xx+5/ipx99kHw\n6B9/NsW3v4LKkUg6pdzqfJFdrliyfTvQuL3UuXw4olO4/2Edzbu+ILlqPdHtfuhzm4yXydTZISQz\nU+jYU5HBgyW80tEhR/2AeH8Oh+iakhL5mcl0wFiEi15JTkYzcARBu2Hk5jeIU2r5S/BbeMMjMfXq\nT0+KxZuy2bBhwGnVEbq3jG7qn/jrlGT8CxfSLa0f+Cd1DQl0223ihfTuLbojYOSCg8W6K4rsyXHj\n5P0MBmhqQu31E++tIELdyI+Gi5k2qp3xQQUET4+gRu1jQt9KePwdCTkkJooX/M9/npkO9T4fSVEu\nnn7aQMlN3+IbqWXfxh+Ibq9BlxVP6PDzoTBPIm82G0EFW+nmzCCsrYogbwfYveI5Tpx4+NklPp/0\nbziRDjFdIa2t4pCnp0s606hRJL78BeZoFVEtBVxb8CZOtZESs5ms4HrSmjfTz1XFoI5atBFaosIj\n4K2PZI5bWoRYOJn696amzqNhmpqOf61afXyy1uPpPJd2714hkuvrxS5ZrdCnDyZLPo1NFkLa60lW\nV8I+P36rld2uNPQDLyK1NQ93/BCW7Y8gsT/89zEwKE58S5Zyf46afekTOXvyaYQFBw7szK4CIXkc\nDkETP/4oGR55eZ0doIYMgW3bCA0Fc3M9/Rvf5ezGaNgXJV7kgQ6HPZ+5jj63KdTUSPTvlNOMT0Ta\n2mSOx46V+Q4KkjCq2y37ua5O/IwDhEnY+//ihoFZ2HZFkubeg8ajO+j/GAyCd7ZucDFwiIblv6hY\nu1Z+XlMjuPCMNt7s6Ohsilhb2/nznj3ljNMff5QUSbtdrg20nQ4cb6XTydyZzVKnWysNK598+Arm\n/EtDzwxVoJE6MTHyJ+3tx+ZzGhpkHHr1kjE5Fdm3T5ZYZubh6lxRRCXv2CExikBJ9+uvC6lw660Q\n9k06yucxUFVOkM5HUnsV8b46dJ4gmef16wUdJyTI2g4L60RsVmvnWff795/awx9HEhNlfMLDD2/0\nBvCnS7zMW6dwi/ctQtwtoA9G27snodXVhNnrUaqc4Mjhb6rn2atEE5UTQ5jlzAU8uncXFa8okmBp\nr7Ew9OsX6RtfK7/IyZFf7t4t+y0iQnRkWBhGvZNBw2MY4ChEve5f0NYH9u3jhiEj+aVHP5KT/7gy\nuv794afNVzM8bwlhejsdRdVoRw1HFcBIB7rnq/RaLnB+jSU8iInh2zj/kT2osrP+sJjTCZ0iv2DB\nAqZNm8bwLopMDhgwAIPBwJgxYxgwYACDBw/mzjvv5N///jf33Xcf+fn5+Hw+/v734x9OqiiHgNrK\nSvj731EtX86gsDAG2hpo3a+mUMnCFZZG71emk9jiZ+AqHbjOEyfSYhGF9vDDHDzB3WqVaGV2Nt4h\nw1EtWIgSWIgB0evFuAYOXdec0DCeuBgM4gDHxAhwbmkR4HDkKgmcA1pWxra1bkLq9hGq1KA3BTMl\nroHQiJ9pCP0LUalZGFvrMGVn8M4LKuzWSLptuBhW/iIO9hFHNvhuugUml6OKP8IKTZ/emb4dSOk5\nFbngAoaX/wdX006KNDnUry7CHh5Hk01NztRh7Gnow7ANr6DGS2qcneyEDbBrv7DeAweiCg7qDEMd\nh/z4PzkgQUFHTf8oP+92bLlOeun2cV7zVpT2FShKkKyrefNQJSYSa7VSHhrDGzdswWiEf4z+hhG6\nclz+WiJMCsreA9G7N94Qhvd/iDgUI/kJFxC7dx1Vn+5lXukEptWvIk7poHuWh6D2HehcLjR+N1nO\nXLpPyCMsI5O0GwbA/OrORjBdaVG0WtlDh0rfvhIqbGzs/N1dd0FLC5WNRtq8QfSylWMa0ZtnrwLl\nxWTMuytR9lp4uu98sC2AL7dBayst7Qp5odmYnPuJaF5ISp9wclwu0SMLCmBUn65pCZ6cLARYQHr3\nlihHZeXhkbevv8b3/Y/sTj+f4Pa1JOtLGOwpZIdmIGGZ3VndoSInZC/9/3MDwzhw3mB5uUSHLBah\nxrs01HwMsdnw3n4nhXlu3k/8G43Oq8gq/YE/t3+Bob0BxRGMataTcP3VcO+9YLWiDg8nS2vEkToM\nzfa14DnQrSUAagDv0mWoPv0YpVs3ycPrisMsf0u+/16ibV4vaDR4r5mNKr+eGWzAExRObXA4mR1b\neaHPf7DN/jMxK4EgE8b2BqwY2W/uRVjOUIxffSWAcvBgMBjwejsdt+PKxImylhXl9BqdeL0CrkaO\nlA5COp2sjREjJIrbvTvceCPmPusZlvQjrCmDEgdo9LQ7dfz3kTqse4K5t28Hl3V7n12X3s1ZZx0A\nEwt+RvXZp2T7wBiuo6pqwsHmTKct3bqJ7S4oEBBgMAjhl5MjBMfo0bB9OxEzZ3IP/wK3ChaZYVAP\nKCvDVteG1WAm2NFEdnYCGo28/o4dkiDS1a4GICBv5kzZdxdfLD+bOlUy1/R6mfhAmnJjI8qHHzI8\ncLSiUQUpKfiW/EzpuNm0tUFO7RLSl34K+3oQfOV9mM16liyBN98UVfHQQ7/DOxxLUlJEJxUWdpZ+\nHCqjR3eeJR4Y3Kgo2ce7dgmgrakRtNq7t6xLi4Wz19zKiL7JFJx7H7W1wQdLeJ98UmICR2sI1doq\nv29tFcx4zz0n/zqFhZIQ4PNJaveRXbvvuEO2SXy8LD2NRq7LyQG9xguWZlx2L0XODGKclcSqrWBQ\nQXSUZB3ce28naD3/fJnjyy6T/ycmSrbi4sWdQZ4uEr9f0l51OlGTgUhfoCN29uQkRn2bhurqDpR2\nAVW+pBR2lxoIsdWRoq6G/HxirVZifT5w9IObXj3xB3A4hDgLCpIskpOUgQMl8UpR5B2+rPehUbzU\neaJxdh+ONqMn0btWyzrS6wUURkbK9weyM0vbolG2tJD+4QMoI0dg3rKFma+88tu1qDabhIzDw4VR\n6UI0ed21fiZmKoT8PZXCTTF4rX5MS2rp61NQazQybgcI+NDaKnR19RS19CP+40VEv3ACGW0lJbKo\nhwzp0tSNE1KTP/zwA3fffTdjx45l1qxZTJkyBc1pathAk5nAv//+978BeOyxx7jyyitxOp24XK4T\n/8Dt22XR6HTQ3IzTq2GvPY4gVw3Vmu6snh9Ey45Kfizuzz3q1QTfdi2J4VbpNz9vnizoyEgBbLfe\nyqIt0ay7bgeX1bSQOSIJ1dKlnbWJWq10mNi3T5jx3+toiuXLRVvq9TB9OlarvGZs7AHFWVoqUd3d\nuzFWmwEPXp+Pt9pmkdfaj11FmaTVuhiQ+BR3X16I4ZyxxMYCqCDpIqg7pM3bgXcrK4M5c7TodD24\n7z6IP3RPRUWd+gGwzc2SwmmzyWf861+8P30Ba6q6o82vxqENRXG7mOBrIrGiAL3fid/vx11YQqsm\niOjmOongqcI5OAAAIABJREFU3HuvzFFkpIz7mN+xidf/S7JmjbRTHDgQrrmGPSUqnl88Au+ALxga\nWsBFb01B49NgbqnD2uIlKEKHZtbFMGQIK+eaCNK6sXco1O21s7/EgFfbB2v/6zi39Qthuk+kteMZ\nlLl/b2TDP9ZgcLYyNC0XlyWZBlUMZcF9eXXv1VhdfkYrK7lJNRdVlImwD/4Lm5dLqnF0tOyJwJEn\nXSE1NeKQ6/XifQS6MwQFyf8DUl8Pc+ZQ2hrJk3XX0VTczNCQAm74YhXBTwxn96BLyVr8A6Eul3hQ\nY8bI+LtctPujKGmJxGLsy4jWfFIURfZse7uw7AGw3lXidgvxtnu3dJ+8+ebDf79oEYv2D+TTNSns\n9l1LhqaUR/UvorhdTKr9kMdtDzC1rJ5SRzzj4opQ9u8XB1NRpNfBjBldmwlzLFm2jHlf+ZjvnEpN\nfh1xF/VEKXLhq2/EgwvcfvTLlkma3nffiSNSXIzO50NnMEgoRFEOswU//giqhxaTEGumn7cMVXn5\n8YvjukpCQwmgUH/eDjx7SjB5nHjVmfyn7RrC2lq5RqtnorOesPqdgjI0GpprHXz9xE4KVKNJn6tw\nR//qgxlMC1L/zFff6xg0SAK5xzV3oaGHkx6nKs8+K5E0vV6ypSIiBBG0tMDw4djqWtn9bTndw/SY\n29tlvx7oRGTRB+FW6XGhobAhiqW143E0yZ9ffjmgVmNpkWZ4H2xU4/xFzHlOzmk+c0eH7PHGRhmo\niy6SRlcVFQKSNmyQaH6fPp3rOtDi+K23sI+bTN78Sto7gln+nIoGlbzSypXyp717C6jpclWrUv2a\ncAtkiwSiuXFxMHmyZI4dIC48ah3tWjPN7mS+eDeab98UDD+9tYZZ2dG0Flbz7KN26p16ysrE5y4v\nl+1zxiI5iiJg7FjnmAYFSXBDper8d8sWeWe/X9ab0SjzlJMjKblffkmBswe3v38hjV+r6D9c+iuB\nbJnt2+Vj//a3w+eqrU1UcViYjMOpSEODqEadTnj+IyXQ1Dg3V+7x6adCiqSmwrt/byYhL4/32i5i\nrTOcYIOHZ4KeJzI9QjIiHnig8wYqlfiXd93VWYCpKAJCPB7xmQcP7iz0Pk3x+2WbJCbKOFmt8i6B\n/kReL8THD+OeiDHkpJShzt3O/NxE5tlmoVHcPKyZQ7rHJs/ucsngHDjL+oTk+++lvh1OmYAMgPE9\ne6DBF8nS7LtpW5vPJsMYrqn9lNmtpegDa+y88zq7o9lsrC+J4g3bVSj7PPw5ooEhHR0SQDoRnDVv\nnpANKpXY+OPle5+kaL6bR+qCBZS1+ZjfOpoabyyzChYQ4/eRGBYmxiA+Xvz7kBDeUs1gs20goR9q\nePbqGiKyjkOkt7WJQnM6RcnNmdNliuGE0On777+Py+Vi0aJFfPbZZ9x2221MmjTplM+yPd5xPy+8\n8ALPPvssffv25bzzzjuhY38AmcxFiwT0TJxIabEay3tLqLeHkWJoxt/ahtPqZltjJn2Uvgx+9XuM\nL96IuaFBdk3gEECtFj74gJ8KbiQirTule+NJqdtPyIwLD79fRMTpRS1PRMrLZZO5XJCUxLvvioHT\n66WZZMGXLbSujiMlWEts8D7WuYfhiG6mShlIaFM7rZjRW+rY3b0f1t7BGA6NOldUSIpUdLTUHx4A\ntoFzutvbpc6hy2rvt26VgmidTiIKM2ZQnjyaYJWdmgYnadZd7CaLog49nvC+tNctRI0bm96M1RFG\ndM+e4kgvXy7Ws4sZwz9WNId1Ew4NNdHW1ty1t/jkEwgKomL+Dl7b0kGLNwyrFUJCVGzeomKaJoQI\ndwM2nx63zU2TV0eswwFpaVwf/QHbCjtozhxO+/V3sf61IlpMqcSnZMPMTAFt/0POUKqvF/7kl49s\npDgdOH1aTPV7+MVzETmsZa07FqsSTHBwO+WuDDDFdJ6VYTTK2nzyya5/sGXLJI3N4xFqevLko19X\nXg4tLTTZ07Dvq0Nx+7G4glnu6Ufpv6D4w2rclX/lZvNXjI/KlxeOj4c9e/BFxhDf0cr7ic+SPHIb\nXK4RHVVUJFY3kE7dVVJaKo57REQnaXKoDBtG5fxq8CTQqo6gwJfFQ+5nuFf9Mm0NdpxqPyt1Y5nI\nfHzhEahnXCjRgnnzxGHq8vOJjiFhYVR4EzGonJg1HZTssDK7aQmLOYc1jEKrVvOodzthZWWie9at\nE89xyhSJHL72mnRD1uuhqQl/XDzffQejs88mdOvnWHOSCQ20nXS7hRCNje36+cjNFb1+7rmQk0Pl\n6jJM3y4BNLR5gmjSRLPH1xO1y8s47Vw0bvfBc1Ra1LA6KedgM1S+/VbmNS+PdRvKiU/vyZYtkqR0\nZJpgl4vXK4VqGo2AqL595d/CQoiMxLtpExtcI/lU6cn1hW9gyZjAoj0GxrsXMcP0M9GRPjJHmAga\nrqVbtAHnyt4YjTI0AEyYwE/f6Ni8X8U6y2jSLJ1nwZ6W7NwpkdqgIClyvPNOca5ffFEAv8MhwMFk\n6oyE+nxCcrlctIyfwU8bW9lc352dP8eRni6mP4Dp29vF/P3uHGLgwM6ff5YIdEWFRPNyc0VX6vXg\nclGupJDn6cfS2hk0DD2XxlxRb6+7p9FLsxdzahztTSHExMh7REVJgtgf2hLD6ZSa25oaaYATFycP\n3a2b6LPgYLEFHo/sdYNBiDu3W0jE7GwYN46li2pxqoNw+HQHe6B98IGU6jY2CodVX3/4XCUlSWB8\nx45T7yE3ZIio8/b2g2X8v5LNm6Vj844dAhCDg2V9b9gdzkyVirJaPSHBfqyEYrnoBiJ3zxfbV1cn\nAYMAmI+OFr/t0Dz4wPlNcHLA8TdEpRJ+8McfpfdbgD/ZsKGzF95NQ7bR2KRg9XsJMxqpspnRKD6c\n2hAag7uRPtIkE6DVygT8/POJl0d5vZ3fn8Z7dXQI99nSAt7QvqwL7Ss94ZqHcLWjFX3gookTxR9w\nucDvp84Wjj81Hb9aw/6Ln4Yeu+XZTwRke72dGYxdOCeALKagIFpz82hyjWURkxjBDnoYq0ikpZN0\nHDQItm2jPCiLUKeTDn00LSu2Hx/YBkpW1OrDx78L5ITDrjqdjqlTp6JSqbDZbHz33XenDGyPd9xP\nfn4+I0aMACA0NPRgze2h8sQTTxz8fty4cYwbNw5fSncWj3mepp01jBueTtpFemrbQhiwbh7dB0Ri\nulrHrXd242LVS3T3lWG0N/PqlmEQ8RLXR7xLgqVQDOnatdDQwKXmKN5pvBLVjGeYdLcDIs/QOZuH\nypgxslCjo6F3b9qWCC70eGB/YRPGLz8kNNKOrVmh+wX9SB0lx5qEfLyYebYc7vS/jW3cdQy1f0rk\nG8txRSfyWa8n8Kq0XHJuPKFxcaLMDkGvHR2yllNSTvPsuCOle3cxEl6vGJEnnuBaK3zuHEcv/Rai\nnPvIUJdi63kJ3qAhLNb+BUNZEbndZzDRsxhLQwOmSI1o9RUrpPXc/zPiATpTLtvbfwfLP2AArF3L\norbzaVQ8dPgcxCcbKCsDXUx3Vpmmk926nmh1I1qvA6vWjP6zhRh/Xok5JZ6Jo0xwQzrucT3Z4+uJ\nvv7AFMT+RkeLMyyrVgk2jEwyEtTg5VL/52QOMpFQ5uPvNQ+R7tnLNNVC6nyxzIhZh2/8ZFRulzht\ndXXHBpynK716iVeq1/+6g8qhkpkJ4eH0XT+PCfEx7KiNxD1wON1n9aDgtTKa6zwk+5v5xD4TW840\nKkrd2FvsXB77GYmJehriBnL56HAmXTYBAi37T7rV6wlKbGzn8SZHGze9nunZxTTtTcDirGe3L4N2\nr5VHWu7jBvW7XBf9Bf/mr5geuIaR19sgLFQiiGq1AICujjAfS8aM4U83bebj7x3EDvSyPtyAVduP\n7fkhlKoz0UeGkadRcdYBR6/+0f+w3xpCysI1hL/9D+zFVbyzYTCNnghuiF5J8n1/YvRo+OWXKdTN\nGs3whw0QdMDUvvWWkAFms+SuddX5zTab1H7rdKLEBw6kcfBU1ve6ix5Nm4jI7IdxrZtITyN2bSj7\nWs0kTzyPLz8U3+qSS+SruPhAxubm4bBwIZXuOHa3xmPZKOYocGbn7ypqtTRunDtX7MY110hmVXGx\nkNdaHVEUYhyopTB8BKtyM4jt4eGH5luYENdC+J+m8pc7goFgPJ5Y+tvEYU5ODpSza0m88mx+7ICE\nGgEIQ4d23r65WYLFYWGSmXvCJd5JSQJqnU4BQNXVEr0OhNZ69BASavFisYEB1Go2Q2YmcZP6YSgO\no+ITaKuUQG7v3jIEa9eeWtfmVasEm0yZchL2vK1NkFFHh+jFyZM7ayszM4WYSUrCXaYjxd3IZN8i\n3vVeSFqaAHB9TDS31D7Oc3fA9A4NO3cKaDmi4umEZd8+wdm9e0vA+5SAscUi79XYKMRUUJAQaAkJ\nnf1WBg8W46HVyk3MZtkMixcLsP34Yyp7n8PcleNpG+YkIVGDplHNRRdJA2G7XS7T68VtO7Ixj6LI\nsr7wQlnK//yn8AXjxx//nZqbpWdnaKgkAfxWD1GrVXD7gUQegoNl6Q0y7gK3m2sz1vGlbRq9bh5H\n2rXnw/RlncfiqFSd2XA1NYfnS3u9wkwUFsqDd1H3+sB+i4gQ9b95sxx1ajTKHiwrg3CdnfGbnidY\nbcXgr4YhQ5jRspf2LXqiQuz0C6sAY4I08Fu8WJzkQwNPgUj0sVi56dNlTYSGnvT59A6HLCW7XUx7\nXp6MfWsrDEmuo8rSxPkRq1HX+8HrlxdbtkxC+itWQE0NZw/3UtnNiMrtYswFERB1EpmIl1wig2cy\ndVm0dt062LzawTlhQ6j9YgE2RzTns4BaEtmefAEXDFDAES0BMatVyJ+QEGb338a8zSlMiKqk27gL\nj3+T8HBZXzt3SslJFzJeJwRsFy5cyJdffsmKFSsYN24cN954I1999dUp3/R4x/14D0Hu4eHhtLS0\nHBfYBqR4lwfH8/8kzV7Gsl9Gor71JkbcNo30h4ZBSAjZRiM3X99O+DPVhDdaida1odqZy96MKSzQ\nx3Bj+aOyMLZuhfx8Rvby0PdsL4bbr0er/QNALUh638SJomhCQpg9GxYsEIWZPUDP9jADvhYXIQlh\nKL4DjTa0WrKKf+Ax1xfCptx5OTy/gv3G7ny1KIYl25yExWsxmYKZESj4iIkBu522b5ex4ev+jDkr\ngZZWVdcy8z17irH0eETrNzTQs34Pj9Z/Q4k7nF10p86fQFzuYkYnlbF30BRcLzxE+RcK3+onsrZy\nG38xvYte4bdbuf2f/Fpmz4ZzzqH3e3tZ/3EBoVoYPyWDrxpjMXj8NJ59CdlXTGHf93lE/Pghkc3V\n2Jx6lrb3oVd9NX3HOCElBa32jHRrP2Xp0UP0Y0RCMH/2rSFn1zr82xRe15XwlOY+/NEx5FZlkRFc\nQ1Fwf1KDXES27ZPavYceOuq5rF0iQ4eKZ63RHB8dbNkCS5eib6rnZv/LeAZlYv332YT3hISyGp5b\n0Y5F6UVMhJMtlTA8798YFBcvhNzE7Y9nMHjWIAZrzlCjoogI6ZLZ3Hz4QXggHt6KFcSVbeBhUyH7\nnv6IZ74NYc2i7vTV/kKMu45+tdtQxcOqLY8w9YJwekYgE9i/vziXXZkKfjxRFJJfvodz7O9QtKuK\nK02fUnjDE/SyVFFdEIsWD0n3ZcG6dTje/gjP1lxMai3txRA2ezYFmVey0ZKBQeXiu4oE7kBU9/nn\nQ3h4yOFHW+zeLQ6z5UCYsKuAbeBcwOpqyYV7/nn6xcYRba7F4VWTbtjDNd3ULK3LxuRvJSZezYam\nngcz2EJDO8ujm5vhC98lJF04jve/DaN7HwO6Gsmu1Wn9sHqNkECTJh3ee6Ir5cEHpSzAaBQw8uST\nki7pdqNWqcgM28EF3m+Ie+066r/ooCjPSbfEGoIfewEGdOYUazRibrLSHFTmOykoCGfQIAHpOTnC\ntR4ZFPnmG/my2cQ0Tpx4gs+cnNx5gGt+vkTxi4rExgYFiVOt0cj3TU2CgPr0EWc8MhLFaOSee6Cm\nsIWfHUG0t+vw++U5J0yQUvyTGe7GRulxaTQKkHr11RP0HdVqidIGwn1PPinIo6hIMnNeeAESEkg/\nZxruylp6he9l9JMVeGMSePxpDUuXQo8eGp5+ThpJPfzw6VVrvfmmbJVt2wRXn3Sj9P375R2sVmlo\nZzQKCsnIEH0bHy/78MYbBfx+/LFEkm66SQBRebnsq7AwVt7xFataL8YUpefmW8WvD6yfW24RQOP3\nCwg/Xpbuq68KINqxQ649XnnhDz8IseH1CskxcuTxX3fUqM607/h4uf6VVyB0RTm+gl2k7d7Dvbrv\nUW+ciWr60/KgF10kg3z55ZKWq9UK6DiUjfjwQ4mIms1yfRfJt99Kzyq3W94vMVG2iMsl6761FUJ0\naiLzOxikbEfdbANXT+L1dh5I+kQ+5Ior4OGHKdilIt9yDiMGu0npf4DZLSmRNevxyJwebQCDgn6d\njn+Csn69JJio1Z3NjysqYFRKBbeU/JUc/VZsqlC0Bg2oQkXZJifLYl60CBob0XiNdL9tHiGWKoL1\nOnjo/hMHeiEhR68fP0VpaYG33/IzfdfLVNcUEe5rwWfU4PH6yNEUcbdvPgnb64SRKSuT870aG2Hz\nZrLmzeOxSTXsv/4hPsvLoqftN8i4rKzfJdvvhIDtRx99xKxZs3jjjTdOuRPyoXK8435Uh3SPbGtr\nO3j8z29JmNpKpK2CHf4slpZkYl7qouq1Rdw7IRfNX+6EkhIu2/xvKrtb0ZtUOIy9iLBW4a1vJtWz\nAjQqYe6uvx5yc1ESEgjdsxUapv5xESm1+jAQFx9/6FF/IfT/8mEs2/YRve478DrFWNrt4pzv2oWr\nup6ax+aiveAavnqumHp3OKUlfgbqG4jzucGQIPf4/ntYtoygmnoSKhxUOQbR8+xuaLVd7CBrNMLO\nREVRGjMcwy9FmAwhRHtq2e8PwaBykdReQmmNicSMGtIjNuOo384a/URqeozBd0cq6I9Chf6fHFva\n2sQjSEyEnj05y/gFaUMaMLTVY4/6Mz9qzNjW7cBrKqPqvXyyMtVYR/ejbLWJ4sYIYn3VlDoSCB9w\nDpqQXiScyfqoU5D+/fw8f28zLFxIXHmu/NBiIVaVz2jdMr7x3Ept6BiKPa0kOu2cfXMKtBfLmjoS\nnHW1HOm95OfLnh06tNM7ys8XPaTVgs2GRq8hvL4YPE2kTUrnX3dtpb64lU3mSUS/P4cezjyaVNGo\nTCZe/GUY/5rRGRw8I8VsoaGHN7dwOqXbtqKIhZ8wAVpaSD0ngzkDbLyydTn19Q2Eei1EYGHs/i/5\nqfg6QkIS5XmvukqcqaioX+3z9nZZzgkJXf9adWUO/rs8CwwG4jbVcduDHswJ3TnbAgZHC1GvPQOb\nNqExBGMJS0Hr6MCocUNeHoltQRhS/4ErLIr0KQJUA2XCK1fK6xyc+quvlvDL5Mm/ndO7bx8sWSLR\nkd9q3KjTCTHz00/CfoaEoC7aTXJqFDTupaSyB6HhPh7s9guJlRsJi+uBSdWCooQezIYFwOHg/Tkd\n5JZHgDqGyEhobPDTXVVJxMc/QGSoPJNKJeD20PrwkxGLRTz2yEhpVHQk8gmcGQOdIMThENBos6Hr\nmcqkrBrQFdHrWiNVD79GlNqCfW4kIU/dj2LtkP2sKGTHNJDzzjOE+NpIrrwRBolja4oIZMkcvpis\nVuEG3G6p4Bgz5iSitmazRIzee6/zoFO9XiIpTqc4gGbzwTRDnzGIWpuJiAgDwYBh/jwerPyGyZp4\nvurzKPHpESxZIsPRrduvga3HIwkAWq0EHA9tvh0A7e3t4hKc8J75/9i7zvAmy7Z9JmmatE3TvRej\nFCjQsqEsKSgCIiKoiCh+4sCJr68DxQWKg9eBAu49EAVUFAdThiCz7JYCXXTvkaRN2qzvx9l00d0s\nas7jyEFpkzz39Tz3fe2RklLfNDIsjBfJzKQBVFrKSJ2/P8ReMoiVEqCyEK6P3YnKXrF4cekKiEQy\nnDzJ665bx8SO5oJgKSk0voYNa91g9/NjQ2lX104mcZiaP7m7M/1z6VLO40lIIO89eJChtsBA0imV\n8vAeOlQ/k9nTE+oaAWJ2v4N4p0x84/MYKiqcGjmt4uKYWJCVxfPe2p7x92fZtUzWdpdob+/6DOC2\n+ggB3G7LltFAyc4mv5Qoi6Fatxl5mkD4aDNRLZRD/uOvcNZX0xK+cIHpCWFhZLLh4WRchw4xBDll\nCq1wU4ZOUVH7FtMO+Phwi4nF/MoePVizrNHQJ3HiBGDUAke8psG/ogQRkgwIxGI6CSMj+cwOHID6\n8aXYkjIDaT4jsf+UO959t/Y8ZGXxyyQSfqYtz0AH4enJZ2MwkE1ddx1LBSPPHoNvRRpcNLmo8e6J\n8l5DIA+TQ+zuxnur01En9vfHrpdPwX3nZhhFIiQKQxHzhNY60wCagUQCeLrWoGfmXuicJFCLZTjk\nPRGxoSl4Jnc1vEqryBwLCihzxGLK7hEjUJaUi6qte5H03Ebs7RuF7dtd8eqr1jeh2mXYrl+/vtW/\nx8XF4eDBg+2+aGvjfmJiYnDo0CEMGjQICoUCsnZ6tIP6yvHNqEdxeH8N0tz7YnDyNlx97l0I8zKA\ni+cAX18IdTVwlwGHiwcir1QGt+AqvOj8Gnrm7wXUVcyX+c9/6LHbt49CaOlS/n7UqHbTZy24RIbA\npXcwoDxPt9fEifR+bNwIbW4hTusHQrk/Bx8kBuD2vC8RY1QiUn8AV6WnoucvPkDYQzyNGzYAublw\nUiqxtGY5soyjERE5FUKh+bxyANiIYP9+qNVGfCJchtEl4eiDFPRzrkY/WSG8RCewK+xOaHJKsSFt\nOh7+zxuYFi1GnOoMBM+ugUughQ2P7oiPPqofRv/KKxBMn4bQn++lsrjqcazQ+uKtihk4VeaP85XT\nsHKRDL7ZqxE8ayRKNpxDRaUf/HQF+HGvL06n01Frl+XNKhX3V2YmAv39ua/1euiMQlQa3JBiiESA\nPhNhvSTw1hqguViOONkFBBVVdCAkY0akpABvvEHhdvFivcdq9mwaJxcvUhuVyciP1GogJARuc+ag\n5/k1KD1WitIyJaqMUnjqS6AOjKjLoANA4/KTTyj4H32087MlOopNm2hYiUTkmenpDPE7O8PLU4ul\n+hX4Rj8U1RCjFF6okvjj1hEpCCopA5avpQT8738vi2SWlFBZUyrpWO+kc71FiORuEPYIR012AZI8\nRuC5FVIEBgIvvgi4nk+nLFCp4HT8OKI8vKEViyGtLINAAAQVnMIrL6VAOaonevfm99XUMEhQVkZd\n8K23KP8xYkT780nfeYfP/dAh1H1xawgIYAfTqipaDAMHAnv2oFQjRdIlIU47i6EbPwD9x2sAtRox\nkvN4+ukw6HS1GWw6HfDMMxCv94VBPxyiieNw771uEBbkI/TD5XD+/DAJk8sZbehKA8mNG9nQzmCo\nHy3SEoKD64szk5J4TwoLqYyvXAlnT08EiSpw+oQe5SIN+t3xLCL81exOPH06ru2TBlW/Moi83eGW\nehDAGEZ/V61iOtzjjzew7ClGTU2hz51jGnOHAlQKBRXoigqegx49mBY5Zgyfj0jEn8Vi7CgcjPU3\nnIW3WzVeekEL2auvIlijgXtIFUY9mIZNqUORlcVb3VzUc8cO4JtveGseeaSx/0MmA55/nluh3UER\no5FR54oK7iM/P25kvZ5Wsl7P6OfChTyE33wDg06P4uQSIGEL0lJc8Ppvr+KjjwU4erTJ5IoGKCri\n16rVtCufe67lJd1/P/19wcHNzxBtE/370+rPyqovcv3+ez6ngwfZvXvnTv7+hhsYnS0vp0PJaASC\ng6GUBaL4579xoToCQzUHsFl6K37+OQwyGf0yJojF7Uv6eeQR2szh4W2X2l93HX08Li7t7z/n7c3P\nffMNRc2zy8W47rgQOfrBCJSJ0bv6HJSQwy0hgYbt/Pl8IKZu3gEB9YN5CwrozFqyhN2oxo0za3Bh\nxgza025u9X2qfH151N9/v7YEOtiIfxJG4YhLDF7WLkVEYiKfTXp6nQXvvGcf4oPS4BIxD4XRE4FN\nO4HAAGb+REdTR2jaRtoMGDyYCSY1NeSjIhFZS/FPvgj9bxaytQE4XBSLRO043FfwKUKUFxjiPXWK\n0U4APiUXoHOVQKBRQxbZhlfEwnBxAZ67LQ3CYwa4K9OQ03MczhpvQeqlcxjhdxDIOlbv2OzTh3nL\njzwCvbIKp7SjUOkaCmN+FmKEm2B0lcFJfQ0A8zhB2guzNI/XdLDJR2vjfp566iksWLAAarUaL730\nUvu/VCBAittg9LoFQBpwtfYMYpNOQlhmIMPq2xeoqEB10FD86voEVKczMNErA3plFUcwip3I+EQi\n1vQEBlKhFAiAixehHToKZ89SSbHVTKlmkZwMzWffQFiQhwrnIChnP4Fen09DxVtfQvPhHhxzvRpq\njQBengaIS1WYHnAcgVWZwHF34O23OcNXKCS9ffvCLSMD/XoIgUvJ5l/rqVOAqyuMhQUYKdwFX30R\nSqWByAjwRYi0BPLqQgjdD+OV/s+hR4wHCv+UoL9WicCocCDA/MvpKuRybyiV5ug6YkGoVHTBmeYQ\nengA/fpBnZqLpFwvBOsyIfWTQ1AqhkyRC9dHVgIugFefKgwZ54qKw+dhkLnjN7eekMloI9ulYbtp\nE2tYnZ2hS0lHcWQc3IvV0PmE4VhNCDsPisch+OIeXH+zC4pEWRjrdwFwvaft77YETDlLTk4MEZkQ\nEkLDUK0G/v4bRokUme/8BJfSYvgf3wKjhyculPnjZEUoPATZGIk8GAUiPOD1AzyWDKpPq/zlF2oK\niYlUUDpb4NZRVFbWu6/HjKnroq7TAYkJWkTmFGCqYCvKjHLkIwjhwVIMfjoa+OEL3ouUFBoFtT0X\nTMjNrR/te+KEmQ1boxF+u37AGwH7cTH+BnycFggvL8rt4mIgvE8fhhLS0zn6RqVBnkdv9PRzApzF\n0MmJanR1AAAgAElEQVS9kbf5MALLKiB4cDYgEMJgqJ/8Y3rUHYZczgXIZO1XdJyd6Yg9d45hD7Ua\nTsUF6CvQIE/QEzv1t2Bq9SnoXfwhj4nBQH9QeX16CzW048fxf94a9ClLQeAIAaKjpwB+ToCThgpv\nUBBlxfz59VMCOgOZrL7pyZ9/0pK8447mLTChkDLZVGCYkEAtcvNmyvXwcKTNeBL7C3MhlkkQnPkV\nDGHuSN+XA+84wKt/X8ijQ3kvTTOGd+5EaokHVBlGDDx1FqL4+pq2mBjabd9+S/1erW6DFpWKTiSF\ngg6qGTNoOOl0vF8zZtAYfPJJNijSahk5fOAB/LU3CF6iQhSXueD8plMI8+4L/0vHIPeVAHF9cMcY\n7nmjsfkAv1pd78xqbp1BQe2YolFQwNpvqZTpuKbwmUDAv/XoQcVn1ixq8Ho9Xx99hPI+I1Cx9R9I\nvv0MSu8IGHJyIdBp8fDDzti/n485NpbHunb0MEQi3gKdjpdsyP6ag5tbF+MKUimdezodLb3t2/nM\nqqrITPLy+LOzM3llYCD5ZUkJ95vRiGTnsUhJeBuxFzbiiHQ8esrLIBCE1d3zixd5/wcObN/Ianf3\ntpMwTBCJWvf7NIeqKqqzWi3F/ukMDwRMfBLGlIvwXvE4sr9ai7jCXwG1imduyxYu3NRFLTOTe9bk\nUXF354N4552OLaQdcHJqHNGvqaEz5swZOjLVaqBEKYFwYDT0BUUodJ2ACJ808oGhQyn3DQaIdDWI\ndr0E52EqRFb/D8IXN3MDfvopA1SWQF4eBB9/jAEyGYz33oeMTHe4u9Mw97pzDPaumYt96eH4Sz0G\nAwSX4F6WCRjYMAonT9Z9zfCHR6MwYx+cnIUIfPb2xtc4cID8pHaihTVmonsFuyA9bDAg7AFN2BCI\nCjwhConDVs/38H/rp/GsaDQoyNYia/1FRJdq4OwsxPGaaIxySoRKpMf1OR9C3i8InvsqgIg72LTt\n7FnyeUv1/aiFJaaitQmlUonU1FQYDIa6plGmcT8hISHQ6/VwdnbGK6+8ApFIhPj4+HZ977x5lI8z\nZgCjUjUQFvcncwoP56GcNQt+ty3AdduFUBxTIm1XBVYoHkJg2TG85P0OJA1noo4cySp2jQaYPBkb\nNlD+OjvTi9+mw0qvJ1excKQk6VQNfM5kocoggab0LN59QYUnl8vQ6/G7IIidC/ckEfpnO+Ns+gLc\nJP4Ffuos4HwxP6zTkZE98QS5R0wMc4eazqM0F267DfjpJ7iOisHgEgWy01xRqJFjeeXzuKn6Z9zr\nsg59C/bhwXE78HX1XRAsfQaiiLT64dZ2Bhq1zaez2Q0WLWIEMDKS58BgACZOxEcJepxUh0HqbMDt\n0Yl44eA0XFv5C0qrtXB1YbqZ+3//C/fHnKBx9YbvvoGozDRrKYd5ERhIA766Glt8FqLySB6CteEI\nDhVC0LsX9pcPhK+qEPNGnUZQmQp47T7A6eqOawzmQnQ0Bwzm5TXvKXBxAaZMwe6/gO/yvCBITsIz\nQ7ZDmSzGW+nzoNULMLq3ENXp/8DdU4QY90tAQ540ahQLBX19rdDGtgFuuYVr9/amRluLX75X4+j6\nLNxb6Q6xQA2JsQbScH/0vcYLiPCjZpOURC2+mSK6Pn1od2VkdL6jaIsoKQG2boV3iD9GpXyHmjsn\nYf0GEcaOrb11IhlriQ8ehKagHAdrovGV6DHM6nUes66pxPpvgR1nroLstBKvjc+ER2wPSKVM/jmy\npwqjrpJCIumEMvLf/9IZ2LNnxzsoi0TkmdXVkPq6obLIB+VGLyTrInGnYg3kHgI8mCnEcB898OWX\nzKfbtg2YNg3u33yDqbF5wA21G8rPj0ruunX1dXgNuy0BqLPk28qrNGHOHApRU+cYDw9+/yuvtPwZ\nUx3kpUvU3J2cGK2ZPh09bxwCQWY0si7VwK//GWxM8scfhTMhew5YvtwTvq+8UjfbFwDOe43Ga8cG\nQAcxbkrthVkNVAyBgBnjfn60f1rqPluHEydYqymR0Cl1331Upk2ZCyYvjK8vX6mpVOwOHsRt1/TC\nJ5+KECxTYnXxHRAWT8Sjkw5h8IqbAXd31JTS76BSMUjddPbptdfWNyzqxPhNYufOeoP76FFG7pYt\n4zrlcio9U6bw3lVV8T6q1SivcsbzO6+ConICeo6Nx4Ts7+A8ewZk3nTCmBJhzp1jYEqvJ3u4/npG\nXxctog/L5GuwOFJTWSPq5UULNCOjvhuwtzf34+zZ5MnFxfx54kQAQH8V8HLwE/gk7zr09ynGzf/n\nDkSwKVdiIhtf6/U8Gi1NFrIWtFoG3X/5hb6W/v3pqNmzpy/G3dMXU+cBgp7XAN8WkKnGxdGCTEmh\nPDQYmCXi40NvYmgo742lxlo2wZo1jEVJpVxSTQ1TfOPj3eEtFWGIahBwrBJ46imuNyoKWL0akMvh\n7umEIf+ZCCxaTzpKS5mP3UAWmRVbt3If1dTgtzXp2HQhBlIp8MILgJNQiM/CX0JSaTUkvgZMct8B\nF6kHoDTQUfD003VfI40MQ/iPtU6Dpvd53Tru0z17eKgsXTIF4PtDPbBN/yzcDZV4bKEXon4EVEoj\nJt0RCsjuBY4dg/KOB7DsXS+ocm7AIJ0CT3l+jhmLorG/YCbGH1iJ8PxCoFxLJ9mlSzTQvbxopHdH\nw/aTTz7Bbbfdhrlz5yI+Ph633norxA2KFQQCAXbu3AlRBw9SfDxfAICfhwLZWTRoTWlM48fDyVmI\nGTMAw/Qo3JsVBT9BOQoqK6EYMAZ+M2fWf5mHB7se1BpU+fl1Xe5RXt6GYVteTuFQVEQhZ8E05mTR\nQLgHT4U8JxkXPUah0uCC8nJAkJ+Hsb+9jrEaDRWkvlcDhkmUjqmp9DADJKThoW+r5V5nodXWtwqc\nMwc9p03DLzcfwL6LQcgW98e56hQY9QYIvb0Qd1c/sDF2eO3LgU4jOJhSzQSRCLjqKox8538YLD+K\nX/o9Bc1D0xBakg51qj+KNX4IjQll/ld8PCASQQrg8ZEtXsE+0LcvX2o1/pHchORiHe4sXwUXJ2DS\nN3djUlQU8/IKK4D+A9vvLrcUhMJ2dWCu+PMf3Fn0IUoFRhQIw6EOjYVOMxhiJyB0lD/8d+6kstnU\n43D99eQ77u7tNzbMAU9PemQbYutW9F/7AyQqf5ySjkAf5yycEAzB6KFOwODaeRiTJ9Ox1kIhnVRK\nNmYRyOVU3rKygNhYjL9KiPETm7zH2xv4/nsU/nwUm49OgLt/MI77TMKsJwVI2HoGspwCVAndoZL4\nwGSCRiduRPTh34DKgUDfxzqeuuvlVadYdxh9+jBKlZQE5z174JakB9zjYKwBVGoR3OQMQA8fJqTT\n69w5hvYee4wWR21dYR0iI+nRbQ5aLXOtk5OZytke75fJEqt1KkChuNxYNo2vaKgHxMezW/Lvv9OY\ndHMD5s6F64WT+G/ae1zzU88gabUPZMXU1wsKAF9fQaP7Xx4RC22sBs4SIQr0l0fDnZw6kJkSFMQN\nqtPVp4z36sVsKNPaa5tSIiyMez0nB/DyQuy9o7H2Lh1+/lOCzdvdYPDzQ/rUoRhc219OqeTxdnNj\n1kJT1JLfNfTsyXstFtf1YsAXXzDF0GikgbN2LffE0KFUgm69FUVFfGwengKog0Zj0tbmeWpZGbeI\nWFw7SqoWcXGolfNWgp8f+aFCwYebkcFDMGgQe6uMGkX9SKsl3Q1m9bi5AQEhTujTfxCKi4GrFtQ3\nBW6JPluhqooBV6GwfmpPfHyTfRISwud5/Dj347XX8tm6udFBNW8e9cToaDqT+vSpzxO2IAwGsiI/\nP9pCUVFkvVotMN9nK8fK9ezJMh6plM8pNrZ+dm14OB/MbbfRYefjY9kywl69aHBKJDivCIRUyvtf\nkFmN8A1v4J7EVJyIvhklI6dj9sMPAolXkZgxYy6Xcy3ZO4MH0yj09+9kLn7HkZwMuId6QqHwRI0I\nePFZHXnCW3+Tb2/ZAkWuAOo/+b68iPuB5+ciys8PUZcuAcVCQB7FrJ45c0iztzcdDe0d4doF2MSw\nPXz4MN577z0IhULExsYiOTkZgxpMRxcKhbj66qsRGBiI999//7IGUs2N+7kMs2YxCuDhcZm3Oy+P\n3rU77wQ2b/bEdUsGwnfSUqBX7RiOlBSm6bq50Svk54d583imgoPbkdWXmkop5OHBNAkLHqwJ8SJ8\neeMyjNmxHAMFBfCKSURMTAywN5GbyMUFFX/sR5mkLyIihBAEBvLgh4WR85kadFga+fn0BmdkMEVu\n4kTEvTQNh1YBsQDmL5oMgfQbXNIFwb1veN2kEgcsgAMHMMR4HOqiMgSOCEXP8c8j9bYIpBxbjInT\nbwImt1z4U1NDoRkYaL6GrmbB6dPURrOy8Lz/U3io3+fYWP06lj5jBGJq89hfeIHn0q5qCVrHJMNO\nZEo0GCBIgMzXCN0jI5GxhQkWk24LAm7/kopa7TnW6XjE/P0FkAfYSf7+tm3oEVyDoH0/IbX/FKwP\n/QgBQ0PQa1YOENWgIM0qs2SagbMznZgFBTAGhyAzUwAXl2a6mkZFIei/UYh/7iCC/lyOHlf1ANSP\n4/53++GXLwMxOM4FwX0bHIpt26hAnq2dN2zNDhoCAeXfsGFQTLgOVWfUkFwMxq0uXArA0kIoFHTE\nVlczQiWR8NUR5OdTGw0OppHakbQOHx9Gw0tKGhcnVlezUO3CBbaYntBg/EW/fnzl5dGa8PXleyUS\nWhYXLmDu3Dh8+SVtFpGIorBBGS2GDAGmzZKitNQMGQCRkRzdpNGQt9TUMGUzOZlOnvh46gEeHnwu\nppClt3ddA57x1wJn0+obPZkQHs5pHufOWTBbJi6uvmNzSMjl+s9PP9XP+p47l4ZEaCh66vlYkpNp\nR7SEYcNoN5WV8aOmunOrw9ubXX0yM5nGnpNTV4dd1wXKVBstk7EGfOBAACT///6Pt2L6dKaomzB8\nOOlTKhmIys21frOcqqp6u04upy1hNJK13XprM6z1xAmmAQiF1Mt69apneG5uVHZPnGCvhm3b+Lsm\n5SGWQEEB7+XBg9z3Hh7M2J05E8DH23jW09IYhY2IYHj3zBke4qgoykGxmKUSEybQ0SWXW27BEybw\npkskmK3xxyef0AfgWp4Dz8KLCIoJgFvRNvgsnM776+/PEP/jj5P3Pflk24fh7ruZMeHnZzUn9dy5\nnMscM8iIPoe+BV7+k+cmPh66v/9Bxqj5COojw623MqnohhvE9fvH1P2rspJOCIGAHhYTn7dCxNks\nhu3XX3/dofeXl5dDXrvZTCN9GmLTpk3w8vLC+vXrsWLFCrz11luN/t7cuJ/LIBA0m9KWmEjnssHA\nUqS33wYAr9oXZeWhxX8hrFCHgb3yIT1zBpg0CcHBl6cBtQgTkygt7bzHvZ3w9QWemJ0O5CoAuRyD\nhVsBcQzzTzw9oSiuxpsH4pB5kpmPdWk/LfTM/+UXNqS49lrz1FLqdHSwJ58OwHNlAvioVPRwnzqF\nUVOm4PvvTe90x8aNo/Dbb+Shy5a13i7fgc4hLw/4fWsIZuWUwyNYBm9RKiABFt0vBOBT+2oZ779P\neefvTx2hPfPDrQFj7GAUnX8H+nzA4C7C+MDTOCCdjF1ngVhTvwh3d6t4nc0Jj1nxGLTzR6CXFyDU\nw7kwAwsXDoDRyMaeBw96YNYsD0yulRWff16f8fPyy2ZrXNk1TJ4M16VL4RrpA7G6HKcTtKgqdcPc\nhVEItIlrtRm4uAA9euCvXZxq4ezMsqymI4fFYmCm6DecC3JH+o6LyN6YhmELBqDfm80Y5VdfzfqV\n/v1tZrQrlcALq7xRWsoAh7MzU2unTq19w+FkMgVfXyrynXHCBgRQqbx4sdFM9HbD27ux1QnUd27y\n9WX9X0PD1oSgIOj1wFefA0WHJuD/Ks8iIMoP6NMH0b5MD92wgWmZMhlliukxODtTHpoNDQtZMzOp\naPj7s/NzfDy9CB9+yAVERV0WefH1pSL/v//RRl+0iPamQMDn1TAdurSU42KqqljC3uVKA1PLZRP2\n7KHgzs+n0TB2LKPjXl60UoOCYDCQ/5w8yWa6rWV6SiRM7V63jnaIXE7Z0fSRWwXe3jSK0tNJz/Hj\nzDIwoW9f/r6qChg7Fv/8QzqHDiUNzaV7S6UMkhw/Drz5Jm/nf/5juezXpjClHmdlcWs98wwNQVMC\nYlISs10iIpiIJZWCi9u2jYpwcy2rvbzIt776ihts82YqhBYsCUtO5v43GOr3f2IifWXbtgG9x0+G\n86+bSEhICD0Ip07Ry751a2OFtQX93+wQCOqERC+wYmP5cuCx/wXjxpReuKZXOoY+NRuCHg0+s2MH\nvW1ZWeRxbXVpNjWgsxKOHGF/gYEDgYW3VMLp0Z2kMS0NxtQ07FSNxfer3BAaxiSeOlnSEM051WUy\nq0VD2lX44+7uftkrNDQUN954I9LS0hpFWxuioKAA8fHxjV7z5s2Dh4cHKioqADQ/0sf0/xtvvBFn\nz57tCn2X4VKqFtpqzspNT7/877t3AyedRkBVrkdBpXujdJR2w8uLnGbNGuvk2vTsSc9UZSWvV13N\nw/7WW0i6712kS6Ph7Eznd2tQqeiRdHPjgOyqqq4vLSOjNqNJLMYXAU8zBbR//2YNjHPneG2Vyj5S\neroj9u4FjgjjcDDwRuT7DqDybTS2/UHwbYmJVMIKC+nYtiq0Wr6agconAu+Fr0R2yEicLQ1CYk0f\n+PlRqLeTPPvE+PGUHtHR9EYHBwPV1SguprB3caHCaGpOZGpwV1ZG56hdYMYMRsujonCqIBhlsjBc\nusS1NgujkSFpGzy4CxdovKrVzad+AkBpv7EoTSmDxt0f3+4KYvpPc5g7lymcTz2FxsNsrYeSEu4F\nV1faraZgTE1N7Rt69qSloVJ1Pj3f2Zn1YmvW0MoxB0JCKMNKStiF1QRTLW8tcnLI0wpChmFl6BoW\nc/r61v09KYm6lCkl2SoIDuarqIhr12hoPKxdyxKlFtIJs7L4XAQCJn21hIQEjpQtKGAg2OwYNox7\n2t2dqdW9e7OG8c036wz4ggJg1y4aSd9+276vTUriVlMo6rMGbILwcO6Rigpaqg33VGAg6VyzBhg0\nCOvWcXvv2dMyPzAhPZ0sS6+n3mMtVFZy7/j50bfUVET++CP31fHj3DcAaCitWsXMgshI3oOm3cd8\nfPjsc3Iohyzc58S0/4XC+v3/00+k5/hxIDlyBs/QCy9Q8AUE8Fnm5Jh9hE9noVKRjqwiKd7zeA6v\nBq9F+fiZjffYqFH82dOzfS20rYzvv6ctfeAAkFnsSidIdjYweza0q9biB+8H4OcvQHa2eWwES6Bd\n/vJHH30UTk5OGDRoEIRCIc6cOYPKykoMGTIECxcuxJ49e5r9XEBAAHbv3n3Z71etWoVdu3bh5ptv\nxsmTJ9GvSQ9zhUIBuVyO/fv3IzIysuNUtYSUFMRt/gAn066CdsxViI+/PN0yKgrY4TMEm+LexuL/\nOgG6Qrrwhw6tS0tpF8Ri6ygzRiO1sSFDyKRVKtb2eHsDTz+NQSO9MfQE9YO2IrAuLuRxKSm8D13q\ne2UwAHv2wD+jFN6uM1B65BKGCo8Dt45kTk8znptbbmEa/8CBV1xgzX6RmkoONXw4EB2NqChg2zYX\nbBm+HH29PmOHSCcn5iu1AYEAuOsuCsqm6VgWx6VLdOcCDLWkpNDYq/U2u7oCwlEj8ZlHX/Tu64S4\nfm44epSedDvsO9Y2EhOpwY4bxxzEiRMp9V97DSgthce9DyE0dAiys3n0TY0SFyygYJo82SoZP+3H\nnDlA//7IUlSh4rQTevVuPlAAo5Fh5337yM/uvdeqD3DGDCqwXl4tR1zcbpqGXYdHIOufLIw49BXw\ndC6VrabhcYHA5iFzU0nnyZO8nfn5wIB+eoh37QAqVfUjTYTCrqXItHfIZnshq23YpVTWh/bUaqZN\nJSYy9DR/Pnx8uOzCQmDcOFegicidOxd1KclRUeZbXqtwdWXYRqmkt/aBB3h2r76aJVItpB6OGMEj\nr9G0PoEsIoKyWa83o5w0GGiplpYyBPP22/zdRx8xlDZ7dn0IECQhMJDB/qal0S1h3rza9MaY9k2v\nshjc3MhXFQoyzxdfpHFkSnlv0IE8Nrb95Y1XXUXjXSBo7IuxNDw8+Hj27GFKeNMG6jEx9X3AGqVI\nm0oOamqYxnj+fP08P72eX9inD4WKGcf7tITm9n9MDCdZyuW1PpWGeqNazVdODtOTq6s7XkZhZpia\nh2dkAFKpCEF9ZJAJq4DnX2F+9eTJdHT2788HZc3+F+3EoEF89D4+gF+AkL0adu0CvvgCzvvuwG1j\nX8SfhcMxe7bAolneXYHAaGzZLZ6eno5Vq1bho48+wujRoxEcHAyj0Yi8vDwcOnQI999/P7Zv345z\n58516KJKpRK33XYbSktLsWjRIixYsACnTp1CQkICFi5ciBEjRsDFxQUuLi748ssvEdQgzUcgEKCV\nJbeOr7+mwlTb/KCl9nX5+ZTTfj4GYPHiek/L22+bLV+/S3Q0REYGGbNAQMktkfCQK5U0cDuYWlZd\nTWEVFNQ2j2iVhrNn62Z0KfuNQOnxDIT1l0GYdYn5rJ2atG4ZdPZZCAQCNO6K3PA7OvL/y//W2fU0\n+pxOx4F5Wi33xzvvAG5uyM8HhCVF8P/fE9R8s7NpTFihjXxbaPFZ/Pgj8Ntv/Lm0lFzXaGQEpNbC\nNu3d4GCbjoED0MXzrVTW1z1IJIyWiETA4cPMQZTLgR49oH7oCRQUMLhlCR+a2XiUCS+8AP2lbGRV\necPv1f/CrU8zhWiVlcCDD9ITn5lJD30XDSaz0wGgcvsBFC1+GaHGLDgF+gLvvssmHxZEV+nQaCjb\ngrOPwPmDd/nLsDAqhlIptfE77zTTaptHl2g4fJi1cy4uPBfHjgHglikuZkKDlRq3tp+OF1+kPD5w\ngM05pk6lXO4iiorqpwl1Fo1oOHWKDXlqm2zivvt4/p5/nhepqAA++KDR56uq6FAIDe3aSOOuosN7\nat8+poULBHT4njxJ54mbG2ulG0Cvr4+GWlplsQSfAigms7KabTdDXLpEx1xgIAMj771HC/Ptt3mP\nJk+mR7sdMDcNra597Vq+RCJGZFatMlsEtKt0aLVkq4GBgDQjmY64ggLez/fft3iJItB5GvR6qoQ+\nPg38CCtX0sNQVESjfO1aq6VHd4aOVjXZJUuW4Prrr0dsbCwefPBBrFu3Dt999x0eeughxMbG4rrr\nrkNeXl6HF7p//36kpKRAKBRiwYIFAIDY2FgsrO3eunLlSuh0Omi1Whg6NQCwBYwaReXd3Z1uiRYQ\nGFhbiyMQ1LdCdnKyC8X/MpjWpdNRmx8/nhqMr2+n3KISCfdrlx1fpjl4ej3cA1wREd8LwswMprvZ\noZeqPZDLvSEQCOpedg+BgHuipobPo3b/BgYC/n1rRx5kZQGTJtnn3m6IIUOofEulNHq0Wgq0BhqV\nae/a2qjtMkQiPi+tlsSY9lpkJM+1Wg2MH28qC7VVlmvHIZFAZNCih7wMbvIWLBBXV/LpS5cYCrKr\nDmX1cJOL0CNUByedhkpx02JcO4RUWns+XBrce1MqskDQ/tCbrRAayrVWVfEs1MLNzarTSDqGiRNp\nebu60iA3E3Py8+uaUXsZTPLBYKgX/gEBvM95ec12MnV15X6ypVHbKZh0E9Nw4OBgNlBrZqykqbzR\njvzwHYap3LTFiWGBgXzO+fnUBYD6/WA02jQK2uranZ25RzUavsnaHbtagVjMfSOVgs5Df3963gMC\n7F5gi0Tkp41E71VXkTc4O5MH2/mhbzVia0JqaioeffRRHDp0CAAwevRovPPOOwgJCUFCQgLGdTDv\nory8HK6urpg8eTL+/vvvy/4+adIkbNmyBYmJifj666+xdu3a+gW3YL0fOcI01r596fBvUX6o1Tyw\n7T2sBQXsltOvn1k9FGb1bCUm4p+NOfghYxRGX+uBW6+vhMBZbHENv1UajEbet9JS1j9IpYBKhZQC\nd6xZK4CPDzMcOjqe0RJo77NoHKEF2oq62jxiCzCv8vRppu02baZgMNBD6+7eYrrnuXN0MAYFMXnB\n0nZGq8/ClDlRWclOjr17N1sDn5LCEikfHzbxsEW6TJfP96VLvPmDB9fPlQDopNBqLaJp6fWcAnbi\nBNMG4+PNHEEoKyOjjoggP20JRiOj1q3sy5Zw+DDlQHQ0M0Cpw3aODq2WQaqkJAYyG7VLMBh4sbIy\nCn0raL5d2VO//cY+RuPHA7ffZoDg2FGeI1M3HIPBKp3gunwukpP5QCZMaFRL2xwOHAC++YY+7EWL\nzKuLdYgOpbK+225cXKt7pd16jBnQiAajkYWM5eWU16a9oNdzn7TjLP78M3ulTZrEFHBr+X47vKdM\nc1prarj/BQLKllaEm0kOBgZSb7GEHLRUxLYhDAYmZx09ymZldSnvej0dRjJZvdF/7Bj3rkl/awes\nQcOhQywviOldifsG/gMndxcGTMx4wM1Oh1qNv1/9G/+cckOPW0fjlnkii58Pc9FQXc29n3WyGIsG\nH0bfa3tSwFoJnaGjXYYtABw4cAAZGRnQ6XR1FzNFWzuL8ePHX2bYVlVV4eabb8bvv/8OAIiPj29U\npysQCPBig3l6pnE/S5bwAaSksARvzhz7doyY8+CUl1MRDQ0lr3733cYjCC2FjtKg0wFLlpjqDyi4\nOz1U3ozo1oZtB6BWMwPJ27ueb/3vf7SxFAoathaeq91hGoxGZpJpNMwqE4uZuZuURJv9wQdt01fC\nGgK+NVRWUk81NaxtD0yZh/7+/PwHH9iWhqYoKKB9EBXVcrTqySfJZ0pKgOee43s7+yxSUljm6eND\nXW/FCup6vr7MxrI22kNHVRXPsJ9fve9ApwPuuYf3LDeXGYZWGod4Gbp6LlQq7uvAwLb39aOPUtct\nLmZGsDn7tFjifFdV8TmZ9POlS1v3/3QV5qRBo2G2ZVAQA7yrVzd2KCoU5NOhoebvl2MNXvvmmxNR\n8kYAACAASURBVMwoVyg4WaJ/f/YIMGeWgDnoaIvv5+RwXwUEUG/8+OMuXe4ymIOGixe5h4YObd6B\n8MQTNNBNPL4z/V3bgrn4VFAQ11ddTeeaiQevXm35oI65zsW5c2ztIRTS2fvhh9ZtHdEZOtrl4pg9\nezb27t2LqtoWWMHBwZgwYUKXDdvm0HAUEADom+k42dy4n+HDWUKbmspyPKmURdz/BmzcSKXv4kX2\nd7CLER/NYMcOBg/T0tgUwAr9CBzoAL77jl02xWIaOL17MwPY1M3SGt3zO4qTJ6mo6/VsPjZrFoOc\nx4/zHPxb99hnnzGgKJVytEZ7RoL4+TGbKzeXGZRNSupsCp2O5dRFRXS8vPlm89Gs4cMZNfLzaxzo\n7gwCAmjElpRwjOA337CphkTCkjR7zD7++mvg7795hpcvr0/RHTKEZ6JXL9tkMJgLn37KaJNEQkdD\na9mHI0ZQ5vj7W7nRXSfx1VesDMnL4/kza6qxhSGRsIT47FkaVE2D0u+/z8lBLi5Ukm01srqzGDyY\ntKlUHIm4fTvLTltr8mULfP45I5oSCfl+7XjzOvj48HfZ2fYRVGiK3Fzuj+pqnt///Ofy9wwfzuk+\nvr5d5/GWQlM+FRTEzJHTp2no2mmFTbMIDqYesXs37/dHH9G5YM9ol2G7bds2rFmzBnfccQcAYN26\ndVi3bl2bnysoKMCtTbqtBgYGYv369S1+xsPDAwqFou7/ona6xG66iZvo22/5r0rVro91CyiVPDQq\nFRvY2WWtEbjOgAAaHHfffTnTdcC2UCqpEOv19Z3/r76ae8vNzT4dJmo11ysS1Z/5CROYyieV2keq\nuy2gUNDw0+kun+LQElxcaLCVllIQ17Y8sAuYMiLd3EiPqaVAU9xyC9NtPT27Xsrv7s6IbXk5Bfqq\nVR2/p9aGUnn5GgUC9ivKz6dBYc+ZTG1BoaB8b8ijWsJtt7Fs0tvbfuZttwalks7EgAA+ryuJd5lm\ntxYU0JHQVAdRKPgMdDoaLVcaJk9mS4qDB4FNm0ivPeqYDfl+g6lYdZBK6bQuKbFPo1Cj4dmWSEhL\nc7jlFsp4c/B4S6Ehn9JouF8efZQ8uLnzYc/w8ODZLiurH9dl72hXKrKnpyeSkpIQ3MA9Ghsbi1On\nTnXp4s2lIgOdq7EFGCb//XcynJkz7dszbc70maIi1lAFBzNNxlp9gDpKg8nbKZWyo7y9NPlpiY6L\nFy9iwIAY6PVMvzcYdOjOqcjFxcCWLTRqpkyxTT+pjtKg1XLvV1ba15m3dSpyXh7wxx9sCzBpUufq\n3WxNQ1MkJTEaOWZMq73/LoO56Cgq4vkICbEunzWhPXQUFnKNYWFco731uOvqszDHvjYHLHE2CgrI\ny6z17Kx5vrOyGGXr14/Nt81JmzXp0GhYq24wUN6Y07AyBx35+dSBIyJojFv7fHSVBqORkcG0NOC6\n62yXtdBVOnJzyad692b2hS34lDnPhdHIeeEpKcC0ae3LADMXzF5je33t4NP9+/ejpqYGY8aMgUQi\nQW5uLrKyslBUVNSphSYkJODpp5/GsWPHMGLECGzZsgXJycl143527dqF559/Hi4uLvjqq68Q2iC0\nZ2/KVmfRHejoDjQALdORkJCASZPuhUJxuPY3zujOhq09oDvQAHQPOroDDYCDDntCd6AB6B50dAca\nAAcd9oTuQAPQPejoDjQAFqixffzxxwEA8+fPx+rVq3H06FEAwIABAxpFUTuKwsJCZGdnw8vLC2q1\nGhKJBLGxsYiNjUVubi5uuukmGAwG9OzZExcvXmxk2DrggDXBhlG2zd2Ty72hVJYBANzdvaBQlNp0\nPQ444IADDjjggAMOOGBvaNWwndhgiHDTWtmuIC4uDkeOHEFkZORl80Bff/119OzZE3v27MENN9yA\n+GZmizngwL8JNGqNtT/bWW6hAw444IADDjjggAMO2AHa1TxKLBZD2mSOlcFgwJQpU/DWW2+hVwf7\nt3t6euL999+Hv7//ZSHms2fPwsvLCzfccAMuXLiAzMxMhDdpx9rUGL5S0R3o6A40AG3RIWjh5478\nrWOfvXw9glb+1trnrjx0BxqA7kFHd6ABcNBhT+gONADdg47uQAPgoMOe0B1oALoHHd2Bhs6gXYat\nt7c3XnrpJcybNw8A8P333+O5557D3LlzsXDhQuzZs6dDF9Vqtdi7dy88mxm2qtfrsXnzZnh5eWH8\n+PFYsWIFPm4ybOvfmjdub+gONAAOOuwJ3YEGoHvQ0R1oABx02BO6Aw1A96CjO9AAOOiwJ3QHGoDu\nQUd3oAHonHHerq7ILi4uyMnJgbe3NwCgtLQUISEhUKvVrXZHbmnczzXXXAMfHx+8+eabANCoM3J8\nfDx2794NgM2rqqqqsGvXrvoFd6OHdaXT0R1oABx02BO6Aw1A96CjO9AAOOiwJ3QHGoDuQUd3oAFw\n0GFP6A40AN2Dju5AA2CB5lEmhISEYODAgVi4cCGMRiO++OILhNT2e27Nmg4ICKgzUhvi6aefxsmT\nJ5GYmAgAeO+99/DQQw8BAGJiYrBr1y6MHj0aWVlZGNvWFGnToKimE8E7ipoaznMICACc2nVb7B81\nNRxoVl7OYX5N0sntEkYje9Z7eHS+l75WS7qvhOGFAPedRNK+WTVGY/1Az39pmonFoFRyOKa/f8vv\nMd1/V1fbzEPqCIqLObTUw6N+eKREYrv1aDS8Zy3N+aqp4ZoDAuxj0F9b620ODe+5vcDEUz09L+eJ\n5pKf9oCm+0etpiy3l8G9Wi3nMQUE8Gd7WltrKCnh/Wwmw67b7B+9vn7Qs0jUPWjqCHQ6ID2dc1zs\ndThsa9DpeP4brr20lDqSl5ft1tURmHQLnY78wc/P1itqPzqql6rV9QPiLaDHtitim5qaioULFyIh\nIQEAMHz4cHz66acICQlBQkICxo0b16GLbtiwAffddx9UKhVEIhEUCgXuuusuXH311Th79izeffdd\nCAQCBAUF4ciRIwhqMMyqkfVeWQm8/jqQnc1p7Ndc06F11EGnA159FUhNBYYOBRYvtrjRYHFvSnY2\n783p04CPDxAdzcncZjRuLULDjz9yEKO3N/Diix1XEAsLgddeo5Hy8MPA4MFtfsSmnq1//gE++YQG\nx7PPcohhSzAYgA8+AI4c4TDAe+5ptE+7g4fOZjTk5QEvvwxUVQF33gm01LRuwwYOCuzfH3j88RYV\nU5s/i6NHgfff5/oWLADWr6fy9sQTQGRku77CrDQkJgLvvEPD6plnLh9QqNUCr7xC5Wr4cOCRR8xz\nXXSSjqQkrlcqbX69zaHhPX/mGaBnz84tuAV0+nn88APw55+Ary95qrs7f69WAytXAhkZwC23ANOn\nm3W9zcFi50KrpQxPSwOGDQPi4oAPP6QxtnQpZaAZ0WE6DAbe6+RkrqWigs/hmWdo6NoA7aLh+HFg\n7Voa4UuWcDCnCWo1dYxLl4C5czng0gbo8p4yGoE1a4CEBCA8nP/PyemaTtkJ2Exm6PWUeYcOAVFR\nwMaNnTbqbUJDRQVlR3ExdaIxY4CzZ4FVq6gfPfkk0Ldvh77S6nQYjcDHHwPbt3OgdZ8+wKJFwOjR\nnf5Kq9FgNAKffcYh8yNGAA8+2LrTX6kEXnqJAZ2pU4E2GhN3ho52hRx69+6NFStWYM2aNVCpVNi4\ncSNEIhFcXFw6bNQCwOzZs1FeXg6dTof58+cjKSkJ3333HRYuXAgPDw9s374dOp0OWVlZjYzay5CZ\nyZeXF9AgXbnDUCgoEIODgRMnaOhe6Th7lnQVFtKTlZ3Ng2/vOHaMz7OkhMZGR3HhQn3UZP9+86/P\n3Dh5khEhlYoKQmtQKmnUhoeTNo3GOmv8NyAzk/fX1ZXKXEvYsYNe7XPnKIDsFWfOUBmtquJkdZWK\nyv+RI7ZZzz//UNiVlfHeNUV5OY3a4GDef73e+mtsiH/+4b8trbc5NLzn6emWW1tHcewYHYVFRYxK\nmZCTw3X6+XFfX8lQKBrvn9276ZQoKgIuXrT16uiET04m7zDtrZISyit7xpkzPLdqNR3/DZGdTaeI\nry+wc6dNlmcW6PXcM8HBpDclheflSj8T7UV5OY16X1/g/HnyhSsJqamUxTIZ8Ndf/F1SEp1JOh3P\nnb2jqop8wc0NyM3l71oo8bQ7VFfTqA0Pp3NXqWz9/QUFfPn48P0WQKuG7cqVKwEAo0aNwoIFC/DY\nY4/hkUcewZIlSzBmzJhOX9SpQaqvWq2+rInUkiVLcM0117RYu7ts2TK+vv0We4xGKh9d8ax5eQGT\nJ1MIzp59ZaQHtYWBAxntjIyksj52bPuiDrbGjTfykMfGdi7iERVFBq3VAhMmmH995saUKTRse/fm\nM2sNcjkwahSNsAkTzBJ9l8u9IRAIGr3kcu8uf+8Vh+hoekmFQuC661p+37XXUvBHR9ss0tIuTJpE\nQd+jBzBjBqNDYjH3jy0wdiw9u97ejHY3ha8vo+TFxcCcObZPRTbJt5bW2xwa3vPYWIstrcOYPZuG\n1ZAhQERE/e9DQ4FevSj3pkyx3frMAW9v7p+iIu6fyZOpcPn781zbGjIZI5qFhcDNN5PP+Pp2OJJk\ndcTHk3eEhzObrSFCQymji4utGtk0O5ycuGeKisj7o6KYxnol09QReHmR1tJS8j0zZ5pYHL17U7dV\nqXjuAWa0+fhQRttK5nUEJh29pgbo14+63pWy/yQS6qOZmcDIkfUZQS0hIoJZWSoVz50F0Goq8pYt\nW3D99dcjLCwML730EpYtW4bly5cDAJ5//nlkZWV1+sK//vornn32WQwfPhxffPFF3e/Lysrg5eWF\nlJQULFy4EPv27Wu84KZhab2eAuwKqwuwSppATQ2VSQvV1dk83bIlaLXcF+00/OyWjuZgNNLwd3W9\nLF2+M3SwRr7pZ2x3P66IZ1FZyZTaVtJt7I6OTvACs9Og0dBgtbLjsNN0VFfzGduJo9Mie8pg4HOx\nkvy06rnQaGi0WKBnRpfpsNFZaAizPAs70L/MvqdsRJNNZUYrekVHYDMaTHWpZuqrYhM6zPQMTLAq\nDWZee0N0Sq9tT43tyJEjceTIEQwZMgQnTpxAZWUl4uLicPr06U4v1oTFixfj+uuvxzXNeCcmTJjQ\ntmF7haI70NEdaAD+3XQ4DFvLoDvQ0R1oABx02BO6Aw1A96CjO9AAOOiwJ3QHGoDuQUd3oAGwUI2t\n0WjE6NGj0b9/fyQnJ6Nv374ICgqCpgv1fSdPnsTYsWMxYcIEHDhwADU1NXV/u3DhAiZNmoSRI0ei\npKSk09dwwAEHHHDAAQcccMABBxxw4N+BduXofPzxx7jvvvtQUlICgUCAuLg4jO5Ct6709HSIxWIY\njUYoFAoEBARg8eLFWL16NebMmQOhUAgXFxc4d2TMggMOONAm5HJvKJVltl6GAw444IADDjjggAMO\nmBVtGrYCgQBubm64/fbbMXLkSLNc9MYbb8SNN94IAJg3bx58fHywevVqAICfnx/+qu1sNnPmTCiV\nSri3VYzsgAMOtAs0ahumdThm4TrggAMOOOCAAw44cOWjVcO2tLQURqMRAoEAo0ePRmhoKNxq51sJ\nBAIkJSV1+sINm0f1bNCFTd9gzIOHhwfKy8svM2yXLVtW9/PEiRMxceLETq/DAQcccMABBxxwwAEH\nHHDAgSsbrRq2Q4cOhUAggIuLC0JCQmA0GqFSqQCYms50HjNnzsTMmTOxePFi7Nixo655lLBBp1GF\nQgEvL6/LPtvQsO0IdDqOd3V3bzxnvDsiP59j5qKjr7iG0QDY4O7MGXaiv9K6z3cUajWQmMgxesHB\ntl6NAyYYjRwzWV3NSUytzRy3FYxGjh7UaoEBA+xzjc2huJhjR/v25WQDe4ZKxVGI4eGcHtMdUFbG\ncZ2RkeSx/2YYDOS/YjH3o5mbenYZJSVAWhqn0Hh42Ho1baO6mnqWnx/PzL8NNTWk39fXfui/0vZQ\na6iq4pja0FAgMNDWqzEPCgqArCxO+pHJbL0a68FEd//+HOFrLrRq2GZkZJjvSg1QU1NTVz8rl8sb\nNY+KiYnBoUOHMGjQICgUCsjM+JR/+QX4+Wd2/3/2WfsYb2cJlJcDy5dTIYuJAZ580tYr6jg2bAD+\n/JPTSZ5/nqMhuys++AA4cYIM7ZVXOJLRAdvjzBngzTdpPN5+O0fY2htOnADeeYdrvPNO4Oqrbb2i\ntqHRACtWcGxieDjw8sv2Z0w0xNtv0wj08ABee+3KVzx0OvKZoiIa6q+9ZpGJOFcMdu0Cvv6ae/Cx\nxzju115QXc2zUlJCRX7FCvt3Xn39NbB3LyevvPQSR4z+m/DNN8CePdRdli8HQkJsux7THiot5Vqu\nhD3UGt57Dzh9mnz49devfENdqaQMVCho2C5dausVWQcKRb2dEh0NPP20+b6709s7Pz+/0xddvXo1\nPDw84OHhgZ9//hlTp07F4sWLAQAikQjXXHMNgoOD0a9fv05fozkUFNArq9PR+OuuqKxkFFAmA3Jz\nbb2aziE/H3B2pvezosLWq7Es8vLoraqqIpNzwD5QUkJeIRDQCLBHlJVx7KI9r7EpNBqeabmcPLlB\n9YndwWjk+XR359msqrL1irqOmhoquXI5/9Vqbb0i26K4mP/q9bwf9oTqauoqcjnPtz2fFRPy82nU\nVld3f9ndHPLzadTaC/0N91Bh4ZWxh1pDbi51W7WaRtGVjspK0uHufuXq651BZSXlqUwG5OSY97s7\n7ae9++678fvvv3fqs3fccQcWL14MZ2dn3H777Th37lxd8ygPDw9s3rwZkydP7uzSiPx8unbEYuCh\nhwAfH9x0ExVVHx8gNrZrX2/PCA7Q41avHTh9tAaz/tMDQIytl9RhzJtegQ27DiPIuQQDPCcAsLHb\n01IoLMQizXr8nNIPAxaOQni4p61X1L2RnQ28/z656YMPAp4t3+/Ro4GMDDLf666z3hKbhV4PfPEF\nc9xuuw2obeQXFwdcukTlZdo0G6+xnfD0BBbeZcQ/nybh2potcNoRa7eLFwiAh+/R4PdlRzBMmgT/\n0omAv3kdrhZFYSHlIAA8/DDg5wdXV2DRIkaV4uNphHQrKBSkuaKCZ7yNfNBp06j4S6U8T1ZHQQHX\nKxJRV/H1rfuTXA7ccw+wfz8wZQrVGbvBtm3Ab78BEycCs2fXpV3ceSewcSNLiKKibLvELkOlorwo\nKQHuv79ddVELFpD+iAimttsaDffQNdcAYkM18O6HQGYmcPfdDJddQbj/fuDXn3SIyf4DwW/sBu76\nvytPoT98GPjuO2DwYATcsQDz54tw4gQwY4atF9ZOpKYCH34IBAQADzzQqTziwEBg/nxmnV1/vXmX\nJzDaeILvXXfdhSVLltRFZ5cvX44tW7bAy8sLb775JmKbbFiBQIAXX3yx7v8tNo/6/nsyXp0OmDcP\nmD7dkmR0GBYdnpyeDixbVp/TumqVRS5jURp27gS+/JJh2wkTgP/7P8tcBzYeZP3TT8yRB4BZs4Da\nbuGdQXvoYG18067ITT9ju/th8Wfx+efAgQO0BO++m5q9BWB2OtLSmLdj4TPdEBZ9FgoFsHgxc2EL\nCykkpVKLXKrLdJw4wXxkd3caSebMmeoAOkWHGfmLOWAVXvv338BHH3E/jRhBK97MMCsdP/zAuhuD\nAbj5ZvNreS2gSzTU1PC++vnx/K5aZbNibYvuqX/+oWHr6sq6rocftsx1YEU95NQp4K23yM8CA1nr\nZSZYjYZz51hD4eHB14oVZv16i9OxeDEdWaWllOsWqLWzKA2rVrG5h0pFWsw0Mac5dIYOm1bWnD59\nGkVFRY1SjhcvXowXX3wRKSkpWLhwIfbt23fZ59rVPCoykoats3Odl+3QIdZKTZ7cPeo+jEZ64TIz\nWf9X5+j19WVYuqSE3tQrERERgFSK44UhSEwbi4lZQFiYrRdlXlRVAX+kDYVLTgamhCRB3N07mtkD\n+vUD9u2j0ttgQ2m1wPbtTG+aPt0+Gq5lZLBWbcgQIKan35V/phvC1ZXCPCMDVT2isfU3ZzhLycfs\nISql19O3Vl4OTBsaDLm7O3OnBgyw9dI6hOqwSPyZNRQAMC0sEhIbr8cqCA1lGFqrZVeSDsBopN/r\n0iVGSP38LLTGhujTB9i6lYXOvXq1+fZGe3OajZqvicXkpefO0dljgZGMKhXtfZmMkUab1IGHhpJX\n1dR0eC8BtPl37KA6M3asdXsJZGcDu3czIDtsWIM/BAXxealU7Ipo52j2TAYE0KBVKIBx42y9xDah\n1dIcqanhmXWJiaEDzte3UYbGFYMBA+ggkckadTzVaHhmhULSWdtKyepoNWJ7+vRp3HfffcjOzsb0\n6dOxcuXKui7FI0eOxJEjRzp94dLSUtx4443YuHEj/FtoNTlhwoTLDNs2rXeNhtGN0FAqIkIhEBCA\nA/87gNMr/8B5//Fwmz0Vr7zS6aWbBV31ppw+zcY2SUmULzExwFNPgcnqajUjISUlFDoiUfu/ODmZ\nKRJ9+wK33trqZy3qEcrPR+nJS3jyi2hA5g5PTzoZ62A0Ar/+Chw9irSYWXj3wHCEhTGTq6OpdRb3\nzjXckw20kA0bGEwRqcrxfOiXiPBS4DPdnbhQHYEHHuh4GpcjYttO5OSQ4+p0FO6Rkdh/QID336fi\nccMNwC23XP4xo5EpZrt3MzV5xsAM4Kuv+FzvuKMRF+8qHUYj8OijdH4YjTzrXpdOMh158GBkjL8D\naz90gocHHaYtNtCoqWHaUGBghyMqXaHBYAC+X1sM6frPMWiYM/q8uvByDVyjAXJz8dPRMPz4qxjQ\n6/HodSkYea2XWdsPd4iOtDRoPvkaGw5H4I3c2zEqIh/XTtLi5ns9uVfCwmzW6aozz+PPP4FvP1Gj\nSgO4uQowwi8d858Ihm/vdnZcMRppdO3fzzy5LubqWvR8V1eTzwYHU5PUaNgtp7nndfIksGkTMHgw\nMGdO3XtMiRFaLWtaY2MZpGsaUDEbHaYGnRIJdRW5nGe8rAy4665m2+QnJJAfpKXVNxwcPbrjl+4S\nDUYj799vv9ETeMstnToXRiPVjQMHmFAwZUr939at4/41GsnjRo2yAB2tLezPP/kaMoTRkPDwDtN4\nxx3A0aO0wz7/vPVpHG3RUVoKrF5N9e6RRyh2WsOSJdzDRiOwcmUTllpezlT9kBDKB6GQz1KvBxYu\n7HQHS3M/i6Iinse9e+lXGDIEeOaZ2j9WVFCWGwwMXjVNh62qYtZfK2fJWnTs3s2kpNRUGuYvL9dj\nuF8m/2PqRlhWxvqQI0eAoUOBm27qkqwxJw06HfDpp6yEuv12YPQoIz0n1dX8Y2Qk4OSELVuYLAuw\nJKHheYZOx8Oemsoc5HYquGaP2D7wwANYtmwZRo0ahc8++wxjx47Fr7/+isjISGi70HHiwIEDmDFj\nBiIiIvD666/j7bffrvvbhQsXcP/990OlUqGysrJjX1xcDLz4IjdISAjUS1/Gp99KUZinx+AfNsMN\nOozN/h7ncyOBxGqow/vi0DEneHpSvtlzZ86m+Oknrres1AhRdgZ8ewux+S0tgr98Fb0jdPB5aB6V\nWZGorsbIaKQ8Ly+nftJs5t/XX/MNGRlM47JFkUx2NrB8OdyU1RhWOguHJLPr1qrRAAcPAp6VuRj8\n0ccQuLqg7I8PoIv7DKdP0y5vrqulWs2DWVjIepOICCvRYjQyjfH8eUqWFSuoxID/aC4VQJWaj/3n\nVCgNqcKl7CMoHxeBX38FnnjCSmv8tyEkhPt7xQoafnPnQut6Hc6dA9TlakQZ0qHxLYd0+MBGxlhF\nBfDHHzxWmzYB1576HuKcHKaBDBtGJmJGSKU8ii4uPMaqDX/gcFpPBKRfwImUizj4Vw9UKIyI6uWM\nucNSGFloWk/44YfAsWNUVF5+2SKRleaQlweUb9qJEYpElPxRg2p3PxQMuRajIgogGxAByGTY8bcU\n27f3gkzGYzIm6wf0+G4rcMCV2kxAgFXW2gjr16M0KQ8h51NwTbUQVxduR98qJ2DcfcjQheLin2mI\nndkD/kEiqFTAxx8zaHDvvbbvflpRwfVoNFxPYGAtq3FxQVEhMD3lDfTTn0HFeQl8754ITJ3KLIBa\nlJbSaOrZk3oKAMrSDRtYGP3pp0w564ij1Jp46y1mY7i7A2vXAqGhuHSJI7tiYxsr9sbPPsevaQOx\n/2dXXI8iTLiJfxSL6xuxlZbynm7bZpFsZrZjfvdd5FR5ImnsvQi+ZRy2LMuE4R8f3DcgGb6//ML6\ntSYQiynPCgv5+H74oXOGbYdhNAIXL9Z3f/v0U8rqgwdRLfPGR6nXoKioXr4WFVHfiIxsuTS1pISZ\nMoGBwPr1tB9N20si4SVNNFsMBgMjBAIBL+jrS/nw+OP8e3o62803UBCPH6dzITKSmbzNra+qivqI\nSET7q8Hwj04hIYGixtmZW+fOO1t+7+nT9EXp9fRnnj3Lqps6Ejw9+fruOzquCgpoeHh50QAcNIhO\nvFZ6UFgKRiNt7H37ePm8PDbuS0xkEKcOMhk3TWYm17psGZ2PO3YwMKNS0WMikTAIcv/9Fl/7uXNU\noXv35vMx7QuhkMvMyeHt3fSTCMNfb3AoiorYD+DwYcrw3FweaiunKZriRfv3syJiwgT+PjOTereH\nB9nsU08JMLyXGwTPPENeMHMmcO+9cHauP7MSCRhcTEurp2nnTjogvv2WLdMthFYNW6VSialTpwIA\nnnjiCQwbNgxTp07Ft99+26WLnjlzBmKxGF5eXvjuu+8wbNgwHD58GKtXr8acOXMgFArh4uJSNxKo\nXTDNkNi+nUqcszPOHVXh8GEpXF2FOOQ2GdO066H08MIi9SpgpRIbpfdiq2o8RCJ6gTpUQ6/VUrIE\nBFg2R6a6mtw/IKCRQhEbS947rkcWntK/AfEpN2womYyQmmqkZEjg88MP5GoNes4nJTE1XqfjAbv9\n9mau17s33WMyWSOlx6ooLAQ0GkjkLrilRyp6xwPDhhqB/AJs2uKBP3a7QHSuFE9nKTGg9U9HtgAA\nIABJREFU5m9IA+NRWVoNuY+kReXyzBnyDBcXYPNmRsOsAoOBHipvb+bSlJTUeQ6n9knFxvQMhCrS\nsLUsGtuKXJDuEg3NcZaFO2BBFBRQOwSA5GQIh18HV4kWZYVK/P6zFpGH/sD8236nMVg7G0Emo4KW\nlsYMLqeIXsD5JFqgZs5ZFAjo2Dhxgr4luRxYmz0ZB8/q4CQ0ICYAyLuogFSow8n3UzG396fkD0uX\nNp5jduEClZWyMgogKxm23t6AIDwM1dkGaJQGfPBNAHSfHsf50Et4cMrXqHr+NXz3nRA+PjweCxYA\n0T+mwk/kBlRVUtDbwrDt3Rvy4+ch1lcjQp+GgU7JCA6KgmpvAl7/qhqVNc4I/NOA/33ui+MHhEhI\n8IBEwsDOPfdYf7kNcfQos8PEYorBBQuomIjFwMULRvRaeRFqoQzex7YAqdvpHV27lvvXywurV1Nx\nlkoZ4fHxAZUQX1/y5D597HdOiNFIelJSyHNffRWqFe/gtdcEqKqicfrGG/WKfVlQNH7+ox985Dp8\n+YsnxsyiGA8L43i848dpPGi1FsrWVCiAt95CdcJZvF7+HCrOVKFsdznkUhc4VYZgb04k5rRQdzdo\nEPCf/7DflERixfFEp09Tq83LoxKRmsobFBqKnP3pOJJVL18XL+Zbc3Lob3vjjeZTpuVy6ryZmfQL\nNtxe119PPiKTWZjG3bsZ2UtPp+YeEkKnvqkVNUALq6KC1qmfH156ibbwoUMMrs2adfnXSqXM7Dlw\ngAZZV2MEPXvyO/X6trOi162jPnvoEO//559TRA0aVPsGjYaem5Rah2hubr0XVSLhgfH1BV59tc4R\nby1UVAA//sjLHzvGx+DkRNGVnU1byc0NfBbZ2VxzRgbl+d13U2i6udHzIJFwr1ppXuT69Tza+/YB\nY8bU2xQqFZ+dWAzU1BgxpGcFoBTVy+PPPiPDUav5BYMG2WSOUWkpR6L6+PBIjB1LtcLfv/55VFdz\nxOATcecw5NAhvmH7duDuuzG5fz5c7/KGwEWKuNFGYMUbPFcBAVS63dz4AC3siWvVIhMIBKioqIBH\n7Q2Oj4/HTz/9hNmzZ6OsrKzTF73//vtxf6335K677sKwYcMwf/58AICfnx/++usvAMDMmTOhVCrh\n3h5lzORFjI3lYZ01C25GFUS5laj28UO/+ydChDBM6KuG11ereZjTMnBt+SkonX1RUzkHQDvdgno9\nD01yMjfg449bJtxbXU3FOiuLO+y+++r+NGsWea/Hr3vgflQNRWUNKnx641z1aPQPqgACVTAUlaA0\nqxKeP/4Cp/lzUVPjg/JyLr/ZYLjRSMkeGMgLWNGwra6mh9PLC8zfHzMGVVv3QqNXYmxENmQJZ4Hv\nv4f60hSIfGfDoKlGjYsnIJQiOlKHVx7Jh/vAiBbrjQIDyf9qaqw7v7haJ0L1LfdAvmo59BotCp56\nB9KBveEt00KiUGCoRI5TwiD4yvRQyj3Rd3Q4XFxZU2QOyOXeUCo7f1avVBiNtOVkshbqPGJiAJkM\nhkOHUaKSAn0q4OvpjDyjAR7GCqgr9UBB7XyNWm3LyQl4emEhVF9sgEewHwQzb+D3eHpaZFK8v3/j\n2bnZgcNR43wWAk05RmX9iJM+E/D/7L13fNX1vfj/PHvlJOdk74QQwkzYewpCtShW1FJH3bbuorZa\nR+vW1tVarQsHiori1joYsvcOYSSQSfY6OTlZZ5/fH68cToAwgsHe7/3d1+NxHmhy8vm8x2tPj0LL\npMBaiaQolbQX1+C1+wmvLhDhccMNkj89adLPGlI0GODaNybQtFyL/eX3CZSZUDWW4zhsw7n4c7Ra\nPefYsvnu0Fj6DQtj5kwrqszLxd2dPvq/1070sssIGzqUnOffJKXFScwhHeq0ZLz9B+PxKtBrvHRU\n2Qj86RksNdE4m+5AofHSd4ofSD/+eX6/hB+Ki6Vz7Ck69P4USE4WXPf5QimPajVMngyTJyuwJd2A\n/s1/Y1jjxO3U4tueh+7e+1DqdXDvvbS29iPcWcf4Q0tQfRoD188NDRIvL5f6z96Uc4EArFwpYb3Z\ns48Jx/QAystF47LZRDE0GKC+Hp83gNerQKEQn2Jwbi9A2B3XEV/koMwezoBM7VFB6MGD5TN7tsil\nk/bjKC8XLbxPH7HETsfw9/tFEWxrw28Mw9WsR6dXoCs9BGoPbrOV1DsvonRAKg3bRcXoalsoFFJm\nP3p0aDbpT4bqauETSUki+4+Nyvv9kiZZXh5yCKrV8snKQnvJhWj+LQp8UL52dMhjqqvFcO3OQaDV\nwoMPit8kMfFo9NLpYPr0Xthbd9DQIKFuq1UIxuMRIwlE7xk0SKJQTU1S39TUJEae2w0330xMzFg8\nHtlf12jt4cPiM83OFkPmgQdkQEcwee6nQGamOJy83hP7/BwOUUsTEuS9UVEingKBLhHjjg6JllVV\niYUcGysehIgIsSKdTjn8tWvl01vKyCnA55MAhEol66+uFqfBJZfAM8/IOQcCXcYVBY3xXbsEuTZv\nlgeo1aJM6vWiP7e1nXWlLxCQqLjJJDZ2WJgcayAgNNrWJvgdEwOXDNjLZRtfgFyDIMiaNUJ7ILwr\nM1M8V/+F4vmwMMGtmhphx06nOHASEwVlXntNjtnvB7fGJBtqaxM96IknUH/9NZP79xdDPaASfmG1\nhhqGXHedGPNn+T5Oatjee++97N+/n/Fd6mpycnJYuXIljz/++E9+eXfNo3xdhmxFRERgt9uPM2y7\nNo860hXZYpFD27ABbr+dxq2HWP7SR3hVk5ijXsbSbTeyyjOYqQov4xJmoasq4VfDSqnfUoxB5SE+\nkAmMOr2Ft7UJ90hKEkJyOs/OzASbTZhtQoLk3d900xHOr1B01lhc8gtorSFcreZB7RbqtNlkXDMZ\n6qpYeNsOVu/Wk1DUwpWbXsM9/0Ha22W53foK6uokNcVoFNfThAm9v6eusGUL7NtH8+hzeWxhKjU1\nQtPnnacje/Q57PvnJtp9VQRK32X6DAWYzfw6bg2mnPFEjVSR814JqE0ooiJJGpdy0qnMqalSi9Ta\nelod+08KPp/w+/Z2Ebwnunq7Xfiq6aCOeRXh+MOtsGInng1FhEVWojWouT0aStMGkzA6mYIJ49hr\nVzB9eu/pj2LUHltT+78fXnlFZMWgQSIUg2UsVFRIqtKAARAbS37cVBrymljxTjkPPDqYA3e+g7ak\ngNnWTTDvyeNyzHRfLUFXsgMOemBA5jFdOc4elJRAWbmKvvbtZGV4mRiVT/8bY3C49fRRBeArF21+\nPf94xk3+vjLut77L4EHvCh3/bCGdo8FgVGCYM4oEg53rPimhYHUVw+t/pLHOR/t/9pNTsZ51Gj2x\ngVZU7ouE+G++WaIFW7cK//mZ60PaXSp+LByIYtDvKH5tGQb1JYz+xTUMmxLOHfnL2L1Py9SRNjzb\n3bQW1XCj4yGwWpm21g4XPnO8M7CwUPLWdTpxvHbp6N/bMGCAJC15PEfbz7m5sozJE0djvPbXdGzd\nhLOuhRanFk2ll4RkaN1dSEdHPzJ3LmFo1A4s6zwwqhO/w8PPTtOs2lpYtEgY6CuvSAFhT8HrFQJv\nbAxZ9C4XzJ9PhFXJ1VeLjmg2C/9/5hnQ+TvQfv8NV2boeGL7+VRWCls4NuvvtMoMFy4Uq3nnTrmA\n03HI7Ngh0WW/H0NOP+46t4HNrXGMqPmAtQeiOWhLY13Zb9n3nQKXS1JIb7jh+MeYTGc0ZaN7+OAD\n0WC3bROlM+eYEYG5uZKLaLcLT0xJEa19+HBITkaXloBaLbhnNgvZ3nWXZMJ5vZIY8Kc/yWNSUsQo\nD4Jef1b9Pd3DZ5/JXj0e0Rvr6kRbb2gQB9TYsRJMCMLq1aL3GY2wZw/PPjuW+++XI1u+XFhVS4vE\nHjweaT5+++1iuPfm3k4UaygsFBTcsEFscLNZtvXeexJYv+CCLpUyDQ1iFMbFiSX+0EOSQ1tcLH+Y\nkSE1NxkZIT2w1xDtxPDddxIJDAQkyTAmRn7297+Lqp2ZCaNGdbH3Xn9dvFXBnPUXXxReUlUl6YgT\nJvxsnQjXr5cyEL9f1mixiH64cmWofGn2+T5MB3dxfsGLKMO0gjDffAMvvSRfNpnEI3Lzzf+1OVlB\nP2ZlpQS5X3lF8MpoFFo+fFg+aWlgGTcAdL8Xb8oVV8DUqcJ7ly8XRJwxQ9KYvvsu1J1zzRopzTvL\nneBO+vRgFPVYSE1NZcGCBT/pxTabjTvuuINPgp6KTlB28Xg6HI4jzaq6wgm7Ik+ZIp/XXsP9wxqG\n2Ztoioqmwm7GFxdAr1ewZYeaVe1XYXTbudPxITnJ+YL81h6E/c1mafm1YoV49c7WIMC4OIm0bNkC\n8+Z1r+TFxUnXqLffxrJqKRa/H0aEERg5inWGSKLDV5JbnUDW7lLKvhUvkkYjdBSEoBdMbTCIlKmu\nPl6w9TbU1or7R6XCtfYADYFnqawUP0HloTbmT7Ph8qkwqlwU+mPhwnEEXn2VsCFpXDE/DmoCcGCE\nLH7IkNPylMfG9k5Pmh07pLwIxFCeN6/775WVQVtVM5cW/xunW0nywXVsT5qDpaUCvzdAwGBAnRZP\n1g3zYPBgRsXFna5r5f/gJGC3i8wLBhkqKroEg/79b1FiVqyAmTNxLt1IdVQ2lYZMjEYF1/6iBg43\ng2Jw9yGG2Fhh0hrNz5oq1NwMWqWXPllaxjjXoZg6hZgbbiBGpZIOZIcKcNSr2FkYyUjHf3DZK/H4\nHGjWr8c7ZToq1X+hh0BTEzgcKGaeyzmzFGj/tZ3DjxXiUOqhXIXCFU5abDM76vvg9QRQG4BXXxWp\numaNaIQ/c43R559LWrGhyMPlbVsxmpS0LFgMo69m2BWDGdZZPNhStIVmlQ+9tQNjoBEFSkG4Y8Fs\nFu3W6ezVhlgngmP7o9TUiL7n80H1igPc3voxXpWeBlMkDWHpRCvD8SdYKU8YQ2srxAyKwVPsEcWj\nO/z2+0WzsVp/Ov4bjfJpaTmjjrNHrUmvF6M2NlbqITstp61b5fHt7aE6R92q5fDVV+gLA4yLMrCz\nYxaHDomj2Ofroc4VFyf9E/T600/zr60VfEhNhTlzGDhvHgP9fkpHv0a/xiIydbm8sXg65oHJ6PXy\n9VNtH35ilnhsrETOtVr5FBcL7QUNA79fXtDRIfduMsGsWQQaGvFdcBElJaLTxseL/Tt5sijGKSny\n9WCPi8pKecyjj/6MfS66g5gYUcg1mlCH4GBYfM6c45EgJwd/eh9wOFCeey4Wi8QbtFqJP5SWigFQ\nUCARxy1bzupkoKOgvV1SvT0ewffJk+VnXq98Bg+W6zsSMU5MlCYrO3ZIzZPfL57ffv2kdCUxUc7C\nahW8rqoSq/IsC5DNmwXtAgEJHNxzT8gRUl4uzbDCw2VPajWCbFFRIvCDNUKtrYLLWVnyR7GxXbza\nZw9sNll3sPtxQoLgQyAgS6iuhjsm5pJU9A987S0EaltQzJgeam4XCMhFLVr03ysB7ISwsJB/rrZW\nWLTTKUlhTU3y3wUF8MIrev7xj2uPTJDwZfVHuWI5CpNJ5PeMGYJnY8ZIr4CmJrm4n6Ex6UlZ+PXX\nX88tt9zC6K7utS6wZcsWXnvtNd55550evdTr9XLVVVfx3HPPHdcROScnh82bN5OdnY3D4SCsB0jp\n88lFRKsNWK0K9HERVAWSabcOJTJaeURPWra4kUvyHsaa2AznZUuuwylC49XVEl0PD4cbblBg+s1v\npGvw2QSlUjwep1O8ZTSG0iZ1OunuermJd6vHo/cc5i3174neLd5frTY0zrClRbKqq6rg5t+bGRkb\nKwyhrU20gLPVr1ujOWJhW1JNZOiEp6bGOjln7WM0ba5Gl9WHQ/0vYNT1ObiydPwj9RUKCuC3m2H6\nOX2EWCorz9os0hNBV/7e9b+bmkRGBPlSZiak9lHh3K0ls58bTfJsCrKeYqRxP/nKVh5/KZwBpXu4\nrf5dEpNV4qA403S8/4MjoFCIzlhQIHpnXJzgd3w8KIM1Hvv2YWvwsiswjQ/DbyFRJU78yLl3kHRo\ntSjJ3eUgzp0rv4uI6NJhp3fBZgs5Tm68USJHQ4bAnfrXMbq2kjI6Fq66ijanCocD4mdfgCI1FZ3T\nSM3dWVS3HETjW4EvcwAHi/S88EGodvBncLwDsPO7GtwPPkqCpZ3U+ZeguGgOw24YxcubRlFV2M4Y\n414qGvWU2cxcfZMOdXindDSZOq0P3XG8p61N+FVc3NnTsYI6BjodGq0SZcBLVr+ARDUcDmnzeOWV\nhP3771S/A1+8Us0FEWvJumYg1mPqrD0eeO+7BJoMf2HeL+tI+WV29y89ixA8J6cT2js77xpyMvE6\nYimfeCu1o4Zy5VMQvkMiOmsVcxk0JxOmnwC/P/lEPPBms1gnP0UJCw8PpTn3qMFFF1CrBbG3bKHd\nHAsffohh3XoUGRkwfXowU5baWnFAms0c6ZoYZoS9hXoaAiL+X3lFgni/+lX3NZPdwjXXSNQyNvb0\nuq5u3y5n2JnuE7jgQmqqISJCiW/kWHwle2n16Bg7WcuAKWIwXXpp6M/37ZOkqoEDxSaprhajJhCQ\nYzhjP9BvfiN3EBYmnd6rqqSs6+675ffDhwszeuUVOXODgY7b/8TzC8Ip/pfoE8EoVWdbFkCabn31\nlaw3Ly+U7Qud9PGe7PGaa84aO+0e4uJkAQqF6CGDBklaTGpqtyOXaj2RPNH8OC0t8Bc/9EViG6+/\nLjZVv36CY6mpwqO6nsGxsH+/BMj795fmsKeToux2S3JARQVce+3xSwzyraFDxaEwbpxc2Ztvig/3\nggvE0S7GuOr4Rkq33SYL0+nkZVOmSAryp59KGsill/7k+cpr1ojTcNq07s9n4kQJ6mk0QrM6nfxs\n1SpZil4vuH7ggAQIZ958c6jEJilJirtfeEF40rZt4mGJiZEc2l4QfMFG4Dt3iskwqksUYvp0CR67\nXOIvCPqBfvlLubfBgyE2VUd5lZLysjAck+Yx84ErUS14LVTA+uyzP6tR29oqtdcOh2SEdKfu/O53\ncqypqXInffsKC+vT52gZvHs3fKZ+kivi3fQdoEXbdYSRwyE4VVcniPkzOBpOatjeddddPPvss2ze\nvJn+/fuTkJBAIBCgpqaGgoICJkyYwB/PoHXrggULWL58OUuXLmXKlCk8/fTTfPjhh/zrX/9CpVIx\nc+ZMlEolV1xxxek/1G5n+40LKCv2Ujzxt9x1czrxbgs7H80hwaDA3yAlEpr6KlI++oBkdT7x/bOE\nE59Gvve334pDyOUShjF5co+3ffagvZ3C3DZ2HBpB+tzhjMnqj+K99/hVVRVDnriaG/4ygpKDEJUu\n67/rrtCfFhYKP7dY4IdvfYwsLxcqrKsTDn22CC0yEv78ZygpQVtXx1933cf8By/gm4NZ6DbXsicQ\nS1xTJVd8OwqlSkFhoTC02Fj45isf06s/Eol45ZVn3Jr+TGHkSCH49vaQTX3okKS5+f3Sin/YMOGl\nf/pdM9/n5rC+pYOJv7uEu0cpgSFcdRXs90Nmxy6KS5UkxnlkPyUl4nadM+e/lkJ6LHRXp2s2W3E4\nbP+lFZ0cgp378vLkCJ96SjJjsrLg5SduJ2zDUnA6KcpT0K9lBZqB11Bfb0Srha/XWrglrEXSaeLj\nj1dW1eqznn68dq2sXaEQZeDi0RWo33+fkcVLYcJQsNfTXNrEIwuMNDXB3BmtzKlbiaXDxe8vv5W1\nOy6hY3gy+gkaPv12FGFhglaFhaL4nFVoayPw3iK+fcXKea5mCtsjiNy6D/NFczCZJCD72mtGNm0a\nQyACBoyBMPc+uO9FIaZbbhHNICXlqEIym030E7tdlIqfqGMdDT6faJoFBWTlXM/rFX1xOTPZPu2P\n3Dx2J8Y9W6T0ZMgQKaRC7sblgqRRCaxvm8dABUw55rH5+XJ/RmMaC/el8Ze5vbjm04S4/av4ReE+\nXi88l9VD+/PrW/9IurmRgaNGMXDZMn51vw6Hqw9NTTpmz4a//U2DWn0S/M7LE4O0uVk0+Z8qHxIS\nTl7E2tEh429qa8Xzv327/HveeSHNKj2delM6i27ZwLidHSRkGKhYkE9Z1XQuv1yMgISELoro9OkQ\nFsa3byvR9BtDdIfI9q1bJWr79dcy8uu0nCc63dF5taeCNWukCZPJBLm55F3/Am9xI+rkeP7y4C0k\n9N+BIzyFX10dy6FDkkZaVhYa7fLee+LgWbZMdMQ9e+QqFAqJeJ2xYavVygHV14tRGxsruO7zSQhq\n2zY5lNdflzBaRgaltnAOHRLx+/zzovwOGABD/Hvg/sUwZAh9L7+cu+9WsmaN6LZjx0oQJy1NHr9m\njRzF4sXi4/jZoKREjAmPR1JzL7xQLv6SS7oNfa9ZI8cA8NbTtTyV8DKjU1MZ8fK1KHUaFIpQR2eF\nQrIyj4VAQIzMv/1N8LGiQu7wdLJO9++XdFedTlJCzzlHHDVWq8Q0gmneo0cfjQPh4eKkWb1aEi2y\ns6WsU7NxjTiopk4VC33UKPlMnSqKVjDHurVVzmnfvp/EdN1u8ZdYLDIOZsKE40tIk5NlCX37ivpz\n8KDQpF4vJF9ZKcuIi5O2BTNnGuUXQZg8WTZqt4f4lM8nZQq9YNhWVYkdYLGIQdjVsDWbQ/GnQ4fk\n9zqd0KpWK767assg3rHcQ3ySg63+seSUOUn8+ONQU7LvvgtZ9D8D7NolPEOvl311Fz/LyBBf/hNP\nSMb0mDHS0Lj165VkVy/FuH4GzJrFsq86aKp1s1B/M9edo2DA9V0IoLZWFOOhQ4XWfgY4afJKdnY2\n7733Hnl5eTz44IPMmDGDmTNn8tBDD7Fnzx4WLlzIkDNoGXj99ddTX1/PlClT+PHHHxk3bhz/6qyv\niYiI4Msvv6S5uZlXX331tJ9ZuWQ9Dav2EF1/AOOeTTQOnsrSmqH4/Ar27BH5a7OB99MvGRu2jyRT\nM6rW5qMHVlZXw1//KprwMc2x0tMlBUKnOyt9Yn4a5Oby3IcJfFI6imffi6Pp/r/D00/D5s1Ufbj6\nSAOB+npxbNXUhLIB0tKEbzkcMH6yWlxhLpd0zjgLBmNNjTimFiwAZ2KGWB5Ll6Lweoj47G0mXxTJ\nD4FZKL0e3vX9ltIy0S4SdY1cVfo4E5Y/yrlRu0XKlJWJQnoWobRU0OH99+X+QeReUB4ExxAdOiTH\nFgjAvr0BUQTuuYeq257gk/whfF05ksWLfLhcwiCzs8UzuckwnYhByeK+zciQhhaNjZKm/V+aJXss\nhOp0Q5//yQ2pqqslStDcDBBgx44Azc2iGKzebREpVFNDH8cu1mpnkNBeTFRU57SDljIcSzeKVP3s\ns//K+lOSA6iUAZTKTiXlk09Ccx7q6mDGDCr9CTKmWl1F6t9ugUWLKNpcz49LbCg0apa2TIQxYxgx\nSnmkicipUv+Crf4fe+yI/dZz2LYNxfp1mNQuClxpKFua0dgbBKc731FQAOHhAQoLQeH30j/vU2qa\nDQQWfyTENX36cc7Gykrh3+HhQlongoICqWv/5JPuM4O7haIiWLECX5ODBU830tQELa0K1tiyefsj\nA09um0lNo0qMrC51B2PGiD4SZ3Aw9Ie/SVS3S0gqJkaUzvb2nzkaFQSXi5a3lrCkZDRmRwU7NrtZ\n+lWHXPKrr8IXXzAi7CD+pmYUCmnUcso03HnzBA/Hjft5NpWXJ56epUulx0RxsfDIYLfaTigvh3xN\nDnXxOeyuiOJz12w++ihU4zlqVBdDVa0WzXrcOGx2JWFhspV+/eT6Jk/uxYyAhgZByEceEQWvqEis\nn5oaqKjAua+IcfbvaWiAencE4RdNZ31tPz7/XIzFvXtFVgbVkawskdVms4jnnBzRSTSaXnJaRUeL\nYMvPFwb66acy7qmxUYzaqCihz/R0kpNFF6qvD9mCS5ZA4aPvU1mjwvvDCigtpb5efBNVVWIvjRgh\n3w3SR1vbyee79hoEAkLDL74IGzfKywcMEIdV0GL54otuO2u2tQn/aWmBfvu+gIYGbCt24thx8Aiu\naDQSWTz33O5LOysrRV3x+STqFxYmx306EBsrukZ5uTxn40YpzwxC375igBzr2Jg6VVDN7Q5l6362\n2M2u+e9SV+2l/r3vaS53hP5Ap5NLXLhQBKlCIQudOzd0hmcAarXIn8ZGMeqPrd7z+yUZQKkU47W1\nVXh5cKrovn3ydykpomvV1MAnH/vxv/e+RGo2bYI1a/A1NFG5z47HixxUUpJYzIHAT9anIiIERZqa\nTu6MUCjk1ZWVEjHX6wV/vvsOjJUHiVn3BZM1m4iu3SfnXVMjX9i9W6zNTggE5Aq6lg32JsTHy9pO\n1TS6qEhkbl5egBUrYMcmN1PKFmEN84pHqrWV8bod6EoOMLX8AxK2fHG0c6hv31C989nOcu2E06om\n+fbbb5k9ezbjeqlFs06nQ3cSr8R9992H1WrlueeeY2g33DpYY+t2w7Bh07j00ml8tiWZcYE6HDUK\nXCkq1i53wY9rGWv34rCm0r+2nkVzarEGFFyd3IEhO1sUka45HcuXC+cIFit0aUk6Y0ao3fp/e17h\nseCpqCGqtog6BqBUKtDm78HtDuDdtIvsO85leJSTZOoxJEfxw1cK8r6o5JwrEzn/EiOR+naeSn8f\np6sMS3kWnHcetpEzcTohgWNaDQUCYukZDGds3X/5pQg3txuGDPIzfnSY5Ml99BFtMWms+LyFb8Pm\nsbh5HsPiarE8cAtkWDEOHMj0lEN0xKspceZT1mIhzVV71rtOfPCB2M/5+aI4ZJ8gm3D0aKh6dxnp\nqxfjXWfisPogqeOSiLRXk+CtpF4ZT6Kqmifmh3PQFsnIbC9LHj6EITMJXdzj1KsgprVEOL/NJorj\n/0uDlf8HwRdfyH0Zm6uZteIFLqpOp7QhnIoBM7Hqw9n49EZqa8Yz3fcltw/fiP6aVGwThrB6NXz2\nXiy78qfzh7hPSOzTDD4frR0qbDZITvChPFwaajV5NsBmY+QXz/MoKrjhRtJGpcKpxihxAAAgAElE\nQVSBaNFITCbpgJOSQtyOQn7ZuJGxW17GqzPxsWsiJr8Bc1Q7geZ64q3hNDfrWLVKZMzo0adecmWl\n1JiGhUkjjDOCmBjQaLht0GqKw4eS2GxH31IvmtjQoeg37cZ8MIlAbi53KveRMmESb1X9gvb9bmb1\nP8xcnw6jxyNGQFzcEQ2xXz+hveLiUBlFd7BwoTjsCwvFZ3Zatld0NJjN5G1ooabMSVh0PcXN0Wg0\nCt5rHM9v/e+xSdmPi8eNFA2srg5iYxk5Ev75rAftovdp+88uamMSiPvhhyOu7/h4sWlstmPWEcxT\nOxXs2iXIPGpUz6MlLheUlaFNjiFeWce+jggiAzX0XfE69r52aldWENfHxP19P0EVF81ebQRrFzcw\nclg8Hr+KVatEkRw3DhQBvzh5glGb6dPFqjpRY5by8i7dDU8AlZUSfoyOlrlEJ9IHIiIk1JSfL+e2\naZNEa4OWXmcpU//+0CfHzDLrveTkQP16KM4XUfXh+36GNq0hWddA3fBfkDggnLo6Cf56XD5mxewh\n6VAzf/7TZJpbVVitYkvbbCL3ezwhy2aT8NT+/RJSbWkR4bF6taS8trbK/dTUkK4uZ60iieHDRfF/\n5v4m4vYsY/cPyWyqn0B7hwKLRQyh6dMlZXfiRCGzyMhQtBR+Yobf4cOh7LXx48Uj0NEhdDhkiNxX\n0CIF2LsXc1ERj/86g/ZmF/s+LeCZbwcRP3A4D+y4BDVelBol1+6KYdxMsSGrqyUZLCjW4uJOQB+9\nDZWV4p12ucTq3LhRPBhRUfJzo1HwcPdu4bHNzaEIX0sL1NZSX5XGhJhS0mq34NJFsLoombeLp6J4\nsQ/3R4l9HAjIq8LCuue1JpPgY1KSkPT9959+7CAxUaJmmzeHnHbdJUvU18vvgskuV1wh5LJ2rfxd\nTg68vUjDxLZzGP2f76nVp1E2v4TrnupP2gCDdDuqrpZ71+tDOcNtbfKQN98Uun7oIY4UV54GKJUS\nVS4rO7p0OwgKhZByaanQW12drHXjRjG8Jk+Ws3v4PidPzG+gzadH9eRLtHV8jb5fMpqHHoIbb+Th\n9eeyrnEgo8MP8vSk79BcdZXwiuefF7q7664z7h4aFib+qerqkztizGZhZ62NTsbp9zF65xfUZ4xn\n4/LRXNfyLXXGWC73vIc28j45mLQ06n0Wdq/RELfnRYbcsQdlQhxflA7n612pRJtdPPRgAEu8/ozW\nfSLo10/oz+nsJvve64UXX8S3bSfeoXejbkxkYstOlKVGoi1j5RKDue2HDzN5jBv3y9+h9dhoWl1I\nzVOfsG3ANQweDMOHayT13eMJeSrOMpyWYfv1118zf/58pk6dyrx58zjvvPNQn6WuVnfeeScPP/ww\nhYWFXH/99axdu/a47zzyyCM4HIJk337b2Ykvpw/+ZWF0RKZQUGvhwEeNzNz2JY90fIOh2snBXUnU\nB2JZyTnYWmtJeu7uo2/zq68kR6KpSQpCjglvKBQ/k1fxDEC1cxszs1roV1tLxaTLUUbE0bRhF02q\nJDQ/7uIv9vE07K1mi2Ic5co0Bsc1oGhIhQsfhZ070a9dhn7PHtgZxeEt1Tzp+zMul3TVOyqlZsUK\nCV2q1dKj/wwgORk2r/dyfuGrDHphJ1x5obhyOzooK3Dxzb+K0XX0YVx4FTPty7As/Rh/WzvERKMa\nOYLXyi7l0zUT6OsM55lhi0nqKmzPAqSliedQpzt51l2MqZ0ra54nt9FDwOXmM9UE7mhchPn8Wdw8\nPxPD+wswf7mRqqa5rDBez+//cxsZ4XtoVkfxaPRLtGeP4x7tlww2mUQA//a3Z3Vf/5shOVkUgH72\nrUToSrnT8yVN6X3wRK6h6ZVYnto0Ar/bw2GNhj9MT4BhA0h8/h50qyI5t7iZ81o+wdDggVgvLSu3\n8cgP42hogBt1HzLZtULCho891jmbqpdhzx4oKyPNaIT8pTD5JlE4g0rE7bfjzc2jsimRXzgPYlS5\n2BoYwwLT1TRXxzDUls+DxbeSYuhL6eDHaGxMIS5OHnuq2cjh4SKUm5u7dNDsKQweDA8/jM7lYmBr\nK/x7NyjUcinPPIOhuZk/bt+E0t2BEh+VC9fj6vsP/Cj4ak0E+wYt5uGLdqNvtwkfvvdeUCrR60Ux\nOhWkpYlyaTL14HoiI6m97s88/vlh9gWyoNrPsHE+BmWr2brYxVjfBvp798NrEir2WSLpCIvFMPd8\nwpcspunHHeS7M9kRNYSJM0bQNZE3JuaYEcfLl0uR5LBhUtd2Mjn6xhsSHf3886NT7k4FgYDUmuXn\no4uP5+ELdvL9Cg1JbW/Rv3ELTx2+nkqS6FNcz31jV2NUNHFdw5MYcsvoiB/DB5bb2LFDdK6YGMhU\nH5bcv7Aw4fvR0SIQu+uWvH275KwF2+KeKIwYnDm7b598p7v9+f1Sx7t7t2hfwfDe3r1iDA8ZInmV\nfftiMomhABIRGzdOAk+rVoGrpol/5bVzqXophyx2fNffRE6OPCredZiS/+yFwu9Ra7VETZhAXp50\nZ1WrJeDao/nEdrsocT/8IHw8WMep14v19qtfiZb+zjuweTOxWi1/nLId5s8CYFrlB9QXHOQ/tosI\nhDXjcFpobpZEsuTOxJ5j2zCczKDt6BAjISnpJKi2ZIm8QKWSFwQNWq9X7mfyZCEqvz/UOfgf/4Da\nWrQVFWi9XiZk9OUvlijeMD3DxrBRKJ3tlNQY2POwmrdTZO2lpcLKXK6QH+M4+ugG/H6xQ4MzbXsE\nzc2CK5s2yf6CwrymRqyrBQvEaeJySSj84EG58JdeEs/UI49AQwOzVCMY6jpAs8+LpUzJE+FPUOkz\nE9hjYMsWuZNlyySAZTRKWvWxGfZWq9iDlZXy/aYmMdZOxz6srpZlX3ihGCRO5/H9PQsKQuVQt98u\nFTMKhegtSqWwkk2boKhYQarDzLWtW5ja+h2NP3yONy8d/nKl4GhBgVxURYWEhX0+yXNOShLa27BB\nFtPDDu9GY/c94oKRyRtukGtZuVLStRMT5fiDWXEsW4bmz3/m1kYVBapBqO31KFuK8Zfk4+2fifel\n19lTfR+3eJ6npc2M+0AhGpVK1n74sBz2ypXdtxg/TbBYundaNDQIucTHi1Ph6t+4ePWWPIqqy5nV\nv4lf6D9B77SRULOLBJ0e1eBLCQ5D7lCZ2NMYT7pjMzVNaRQ+9gFZ01PYnqcifYiTScteJFDrhSf/\n2Otjck4UpHNtzUXx7zd4v+1XrFpezZy2pdwe+AdKpxqz/4VQ0z+TCZ56Cn9ZOVavkWR1ER0OJQf/\ntZS342eQOCaZZ5+FBG2jOJHsdim874k8OwM4Let04cKFuN1uvv/+exYvXsytt97KzJkzeeutt3p9\nQcEuyJmncOHV1kpwy2oVuXfP/DBWvT2KaHsRzfooTHoD6Z5CIjVtKNtbaFAMxxpoJJY6TLXF4j31\neEQCJiSIZ3z4cCHqe+75f6OJz8aNsH07yqREJiV+zzCrEsVfrVS2PUzt6ma0WgW66laoOIRLEcMw\nz1ZUChcVtmTGpVcLYsbGCsfr7IxX3hxOm0Lwdu/eYwzbwkKRjk6ncKIzgF/+ErKMNSS8sh1zZoIw\nTo8HOjpQKf0YPc1E4CBOVc+vFZ/ibXYS8IGr2YcpOY2VzZdgajyMzW+l3BlDUlHR2RlF0Qm/+Y3o\nXVFRp+gNotVCVBQKqvH6FYT7Gmn0WYiKiCRjVBS8X0PAEGBo025WthaTThl+p5tWrxczJTgaB1Lc\n4mGwtkG4zdnqtP3/A7jgApHPlrqBhL+hAaWCyHgdNObTnNUXr0+BBy3tAT0tHUrMV18NCgXJLenk\nOHfTpgon1ncYmpupb1LR0CBKlWv9PhgXLgpQXd1PN2zb2kTzDg+XJhhKpTjbwsKEuRUUyNB2v1/e\nVVcH+fl43X6SOw7hDajwBhQojVps0QOJbSmiw6vBrrDQp6GWVEceQ4emcPCgeO5PBeHhoqtUVop+\ne889p/iDjg5RFEwmUX6DXVC6esSffFL+tVplH+3thOMggBsnevS+dppaVdDcRh9dPe0tAVyffoN+\n6jCJeLW390ibvf56yXqKi+tZ+aciKRG70QutfkxGPwO1xbSWx3DbRRVkFagwlymhtRWfxUrrxjwa\nDMkoDzbSp3kPbZoIOjwGEq0dFBiHH2XYHgdffCE8d+dOceidLOMkI0NScSMjTy9suHOn5NtPmCAK\nemws1NYSe9llXOH4lPaSOpqb0qg+kEi0wkZJWxxb88MZ7nqHgFaPYWAykSXbUQzzEwhIRFmhQDS5\nsDCRF11DTN3lepeWyr8+nyiTJzJsU1Mlv02nO7Fl43ZLvXWwq7RGI7RXWCgyIyFBkLWrx9nrRaVS\nMWyYgoEDZTmWlAANW8Kpc5owpGlZt0v4elYW1Db6+WVi7lH72blTdGGF4ug6utOCxkbRchUK0XQD\nAaFrgyFUm5+RIRaG1yu/a2uT7ykUjJuiZVW5BT16rEaorJDjaWrqeQKPyxUaVzp69Em69P7wg6yj\npUWEfjCsqtMJDhUUCENYvVoU0pyckLVZWwtmM4pmOznDYrnjBhWj8lX89a9mIqxCvh2dNcxDhsjX\nm5p6lvC1aJGwmago8XP0KIJus4m1FCyK93gknX7VKuFb+/YJb9qzRxbrdgtOHTgg+29ogI4OciqX\nUJvZh4N+JR6tGa8xAr1Sh8cT0gvy8uSaW1pCUxqPhWCfozfeEPswPl547smM2w0bxP7WasV5c6IG\n4kVFHJmtW1BwdCuIXbvAbPTRJ/cbpmlr0cR4sHi8KNr96D0OIlzFEiV69dXQhoLZKRER8u+550pJ\ngMVy6lbdPYB160I1qfffL/sIdhK227vgyquvQnU1MUYTRmspFXY3TnUYCoUfvS4clUrJFaolBNww\nUJmPvqNJ6GzmTOFfkuJ54oX4fIInPWwvXlgohrjXKy0ixo4Fd2MLSq8btU7BgUMaxuUomVv/Bq1D\nkjGaNagvvRg++QgsFjyVDqyeOrR4CPc0EAhPAbWai1N3sKXGTYK5FbNJLVmkJzJsg41jeyHLz+OB\nfy+2Mq9RyVbXANKstUxpW4NO7cVIK8p1q4Qf9+0rjtohQ1BWVWAdMg3HHjsV+hQI6Gl3qXC5uhxS\nfb0oGWvXhgzbIyNZejdQetpP02q1nH/++SiVStrb2/nyyy/P2LCtrq5m9uzZ5Obm4vP5jhrxc/Dg\nQW6++WZaW1tp66bWIQjp6YJAwQ5pjXYVy7L/SJKugVSViUlRB8hImohqdxtUVdG/7jAbXSOZ4/sP\nJlcD3oWLUFdWiiLwwguiDGzYIIgfTKAPBMQNV1Eh2vKJpmL/TBD0bEVEgMnZKNyxpgb270ft92NR\nKOCOazC88BK2/n1pqmolceYg+HwbcdV1FCkzcERlER3up2rkefSJjAyl46xeDSoV2WPOZdBnIg9+\n+ctjFnDhhfI+q/WMQzpKJWRNjIGPdJKX3L+/nGtSEn1sldyjeB6rvpE4pQ2N2k9Z+BCi3LVUmLJI\nHzGZ380y8czDKYzR5TJolEmQ4CyCWn3i9OMjEAjARx9hCNeSfvEw1qzwcLH9M1wuI87/rMC4dTPK\niHAUVgtD+kQwvE2BrXIwae2bsIYZURsspGurGGfaC60ukVynW3zzfyBQXy9hFrcb5fz5DBqUBO7O\nmQcWC67UTNqmDaFv7jp+keKhzmnGGhWJ6r2FUFsKbjdZ2WY2WS5mbNmnaBP7wPXXkxo4zMSkGPJa\n0on9w+Wwe5EYob2RvvHZZ6IoBKNfw4aJwv/MM+Lyt9vFZT19Osycid8UhvvZF9EUF9BANDZFJH3V\npQxMcXDbJY1s2pfCwP1bGeAthvgxaEfmcPdFPVtSdHQPUO/rr+UDoiQe20SnuFhq9LZvD3UxWbcO\nU1IersO1tPlU5FvHMXCwipFpHlZ9quM61duEx+jEsrjllh43/dBqz2BSWXMzsS8/w18HhPNy4jUk\nthzkGtUKBhuq0N50C+yaA9sSoKUF38494PVgcdcRKKsmMH4Qlp356K0myqZczeXTuigWVVVSWNWn\nD0eGUwdbf6amnnr8zx13SEFZUtKpz6G9XUZZ6XSiYf/qV/D003htzbgcbozTJxJx6wjML7/CtKIN\nrPJMZqZpIwPtm2k0pxEe7yMtqhSSMrh2+mEyMtOJj4eMdD/UtsusDYdDtPW1a0VudNdfY9o0MaqV\nyqPngB4LF14octZsPnHKsl4v0c+nnhKZExUlRkdVFX6FkrYmD/ohw9GAOHk/+EAU7ilT4PLL0a1f\nzx3DY/iwaCxTrkhG13EB69oncvnl8tq//AVwJsGP54TqhjuPcvBg2W6PxVx6uuTK22xy/zabWBqT\nJ4sHfsGCzhbV7fK76Gi54wUL4KabUE8cy9ADtQxMjSIxPoIZRiGFuXN7HqxpagqNK929+4jtfDxc\ndplELU0mSXkIC5P0jlWrRNmYPl3o2OuV9PErroCyMgL5+fiUGhTmCFQ334x21Ciy+1nJniJX9fbb\nIp4nTRLd9bPPxDbq6dSr3bvFn9LYKGy+R4ZtaqrQwqJFcg85ObLf884THF26VKx/t1ssQZtNNPua\nGjHw0tLgpZdQhoWRkOzHc9t8DkRO4In+Oj79VDIyJ02SV513noxiHjz41E2+d+0Sh0VNjbzyZIbt\n3r2hEY3l5SfOpB0zRmwfl0v8SfX1IZ/RpZfCd0/lcWn7a8S2FeM0x2Aako66Xo+xvh48yL4tFjmP\np58WmmtpESW7Xz9px1xQIHih1YbG3v1E2LtXHtfWJqr2lVcKus2YIbhSVwcabwdWux18PpQV5ZjD\nzShS+7G7MIaYmACDb52LatJ4pvztXTw/riXGUYzKoxPn2cUXi0z1eE7s7Tx4ULIQwsKE1/UASkqE\npHU6OaqxY2HEjEg29gvQurWOGXG5tK+qQa/1Y6nYKWfc1iaNyt55B8P4YSgrI6g7bMYzbSbZf78E\ndmxjdP/+jLZa4e8rhfZOpOvu3SsZBlarrP0nOtwdDsh1ZKC78C0SdxTTz1xHqsGPodqNX61HuWmT\nIGFJiRBAQwOkpNAnyQtX34KnIYZ1q6J4oPZNxmkaiS35tXwvNlZ0mmDHVb9feskEm6UG67h7ARSB\nwKkrqr/77juWLFnCqlWrmDZtGvPmzWPWrFlnnI7c1tbG7Nmz2bBhA9OmTePJJ5/k/fff51//+hfZ\n2dkolUoMBgMul4tdXYqpARQKBd0t2e0WpvLDDzBJvZE7la8QuWO5ILNeL/WyNTVUbqtAY2/Ar1AR\nPqo/xvFDJf8+EBDOabGEiDUvT9LF3G7x+jz++Bnttzs40T5OBp99JgFOiwUe+WMrlj/dBGvX4muy\n0+LSUadNImOQEfWInFCHguAguSuvpL7vWF5eZMHrV3LnFQ3EPfUH4RoTJ4prOyZGUpJOU3L0dA82\nm+geej1cc+ghtPY6SRXy++XsN28Gv5/qQBwevwproAmNQckhy2i0A/qS9cafUPRJ79GZnek+/H7R\n2fPzRSicNIEgN1cam6SkgNdLZbMJdufic3swuB0ojQaiohXCXBcuFBd2YqKk9en14qDIzRWlLCtL\niPwMiuy724dCoUAaPh35ySn+H0ADeI/52bHf6Tn+ng70FKc6OiSzM2rrd5zX9BH6MLVoTxddJIJ4\n925cHthLDl8Pvp+hF6XTd5iZtz/QMcxaxjVvTkJpbxJtICFBhEdOjjRPW75cPPpnMHjxtPbx3nsh\nw/aPfwxp0fn5Ei7Nzw/lEf7+97xjuYtNSx0MPPAZc/vtQbVyGZHOGvQGBcpxY4UxdM41Khn0S5Zo\nf0tGxgkbff70PXz8cciwnT//eMP2llukfKGiQvYwZw7s3Yvf0Ypjfzn1xKDyOnFlj6Hv+4+iDddL\nB5EvOptPvPnmUSGzzZslgD1t2sltph7vY+tW4XstLQTGjOWFndPwHzzIVc2vEJcThzLcDNHRtG7O\nY3/8OaTu/wECYIw1Ez5mgGT3xMVxxGIKwqOPSh2SzydhmYwMkTMNDcKTezhK7aT7cLvhvvtoPdzI\n/voY7L/4DVM+u4O2g5WYnDa8iWmEPXav4Han0trR4acg14XPryTz3DQiXPWioen1csBvvCEOichI\n2d/DD//kUQ1nIvdwuWRdF1+MZ88B/LYm9mhHYtQHKJ51M7P/NgXlw38J1SUNGCCyLD9fHFDXXXd6\nKQudUFoqPgKrVcR/d+N6T7kPj0fmAy5dKvf/1FOS8mu3i1zetCkU8b76agDKbvkbC3+3EerrGB+x\nn/gP/0HOiDOPZPj9Im83bxYeMH36SfbQ0SH46HDIWW/dKoxVpxNe6HLJrJaCAjmgpib8gA8VdlMy\nyj25RGWceK5xQYFknw8eLD6NngSWtmyRCqghQySL9Fi187Rwqr1d6M5iCbXj3bhRdLqNG0POxaFD\nZX8DBwoSzJ17RC8hLY2Oe//Ku1yLzwdXXRXCjWB0vKJCSpSPnaZzLKxbJ+xz5Ei5fumm3P0+yspk\nKREREnU/2fjokhJhoTt3ik1/xx1dSqN37pTDD3amHTw4lJnodovu4XSK0WK1hhqMmEwSgLjrLkmh\nN5nEIn/00eO6Dp0JfZeWwssvC5u59Vbh8YcOSV/X+nqxfUy08kzRpRgP7JDDDgsTfA0EhMZvvVUU\nteZmCZ8uWyYKZ0eH6P6vvHJy5+Brr4m3oa0NbroJxbRpp70Pm03syvZ2Oe/kZPHpLnnLQeraRYzf\n/jJmj40IhQONwifruOACsTMaGuQs582TT3dOvv37RfEfOVKs/WOJ55//FMO8pUXOYfx44Ax5LXKk\nH38sOHrRRTCr6WMa3vmGgg0NeFwesiJtJEa0yz7sdsGhvn2lbEink8h6WZnwEodD7mT8eHEcHj4s\njqU+fUS3+dOfZM+VleIJ60ZROZN9nBbXXLRoEfPmzeO1115DfyTh/czBZDKxevVqzjnnHJYuXYpS\nqWRMZ2g6JiaGlStXAjBnzhxaWlown4ahpdWKx2rXLigpiaGkooVIu11+0dmogQsuYMPufCaov6Pe\n3Afn8Bnohgwl8qnn0Wn8opjFx0taSnKyGFuVlfKCgwd/8r57DH6/rEWrhYED2bFDQUREpyfWEYbl\n9tvh8GHctbsJKJU4fVoOJEwnO80kzDoQCLn6SkqIGTSIRx+PFGS76TbJ77FaBQkvuEAQrTO16GzA\nDz+IA83rhTEDRpNd+wWtpjg0UydgeO5JYapKJRq1B7Xah8bVgcatIFtXCOEmWPJxj71pZwqlpaJf\nGwyinzz99Im/2/7yW6jLa9CWl8PcuSRFttOiH0jFzlo0DjdhbZ0586+9JoTtdof69BuNoaIbv1+U\n43PP/Vn2eGLwcrzx+z8Ttm0TNE5qz2Rgo5b+mX4YOJCOb3/Ef7ACQ20tPr2VNqORJMdeSl4vYO7C\nHF68SSEFUf0yj0SBiIwUqWq1CnPu0yfUTfFsNPK65BLxIOv1R6fTv/RSKMwSE0N7m5/A1r1sL9+N\nZWAqPqUKQ1Uxsf3CIK8DOhB6HzFCaDkujoVbB1GTKHZ5Tk5o4Hqvwpw5snazufsRSEqlKBZBx9X6\n9fgPH8bd4cXvVGLUtuLVaOkfVY+yoxn6pYliuXWrEF5R0RHD1umUoJbJJPQYHKfVK2C1Cl36fPgO\nFbE35hHuPvQyGr+LQHEJRJghPp5drsGo6uxsSLiMUVnNxOnqRav57js59x07hMaDuBIeHprJGywt\nUChOXVR4JqDVwgMP8PmD+ezyJODaoGKwx0yEqwVlwIu/2SGGn9NJg12Nv6mV2Nt/zbA/9pEITH09\nlFbLmv1++Pvf5f5yc0UZDsqG3p5B6PdL/W5hodBD0HkUCISKMXW6I2O2SgrB4ihA625BF2EiYfMX\neF/cg7a6WnAtEIDiYgLmcCrdsUQcbsJ82u2xBdLTpXP/aYPLJZ15mpvFIRkVJXL3qqtEj7DbRTFJ\nSxM8a2s7Oo17+XKYO5fXl1g5UJ9Ee2s8yQYbTQcg5ye0kFAqpVXDKds12O3SX0SnC82QSUsTRaO1\nVXD3ggtEcV616kjX4ADgRY0jYKLjgP2khu2bb8qjgk0Ye+AjZOzYXkjMMhrlLoK4NnOmLEqtlvvT\nakUxMZkkstTcLDRQVycH6fPhj4pi/T4rq+vleuPjBWVB2FtFhfxsx45Ti4zJk09/ZGRamvjETwfe\nfVd4fkmJbCk3t4th27+/0G9Tk/Cl9nah97Q0Md5LSgR3P/9cfldUJOfmcgmPT0mRRX//vfxNL40H\nSU+H556T/z50SBL5/H65gsxMMfqjy/NocWsxBstdtFr5Q5tN9NlVqwS5oqIkrB0cR6bTyR3W1Z28\naVQw3G2x9KyTWVMTkR9/xMPpRgK/nkeVTU9zs9j/dQ1mdigvZbz/JTz6MHwdzWgUfhFmwblQRUVC\nX7m54kACIZTCQtmfxSIORpdLwsGDBh1fExec+2W1djuDuaegUAgbmDQJIgxuUM7ih9WJfL/Vwa/c\nHxLe5iZR2yg44u/cT3Gx7CUvT2ylwkK5F4VC1lxeLvgVHy/7efpp0bf69xev15QpZ+Z9PwGclmG7\nePHik/5+/PjxbNq0qVcW5PP5jvx3REQEdrv9OMM22BUZYNq0aUybNg0IyZOG8HSKY8eRHchD62gU\npfG55yA+nklf3c33uy/DHxZORMsgkh56m+rGCrJVB9DEWMTTqtNxKH0m32bNZ3zCRYwx7EVx7rmi\n7HZ0iIvt50gVXbFCojoKBcyfz9y5I3n7bREMfaOb4b1vOFgTRoVyAh6fGmdiBiP+eie+BY9Qtbue\nPe4cKgOjudD5GQmaNUIY//ynKO81NUIsLS2Sc+xwgMFAy77DfLI6A7VWyWWX9W6pZ3x8yNb+0TSH\nhw+MJqBQMOD75TxaX8wRl8moUbArFy8a9gSGkG2vwLBrlzDjq68++dzDXoLwcNl7W9vJU5FLSmDD\n93oyW/sTpWlmp/8SpmaVEnVxPB0PLCa+fi9anPjtzfi372a5+ny8fgUzTWLbhnIAACAASURBVAb0\nbrdEsvx+8chdeGEvD+j83w9Bmq8Oy6LiimfoP81HszaGd+6rYnSRmUR9P5LHJLN37yCSN33F9Kg6\nGq7S4ChuItxrI5oGcSpkZIhASUsTGk9KkmHFGzaIQnQ2um+bTMLc33xTaPLPfxZcyMuDykq8EVaW\n1Q1lRfsk7GvSOG/ARirWb+VC82rUURGsOJjAaGUFYV4bqo4OSfmdNAkuv5ykw4Mo7rQPz1YDZw4d\nEkUxPFys5yBPDM4NMhph/Hh8u3JZ5ZpA1V4tY5wOGgNWdjGMemMmtxoWolQg0YEhQ0TQJSTIM7oo\nGBqN2IPBEZs9DHaeHJKShDkVF6P2e7j4qjBacuPpZ9uM1+bFHpFC5IgRlA28hA3rvWzYqiO7tZDr\npxUxI22/8NRAQCJcQ4ZAUxP5o67iw/KbiPePYtZl8WT+DDyLmBgC5moaVtSgU/vQjM/BU3YAXUsr\nDo+BT9b3I3nnHpY0zyMQbuEPmkyGDkmQcJBWK4qK3S60kJgoyklsLPZWJbuUo1CVpjIlIyAhtLo6\nCZ0fO4yyp1BUJHmHer147B99VH7+0UfiCR05UsKmKhU88ADNn/0eu8aHjjaa1VFk+g+ydWsG3pb+\nTArfh1qthEGD+KJhMl/XZBBucPNIoY3IV1+V/V1zDURHU1cnr42Lk6jEsVFAr1f099ZWselO6uvd\nsUO+rFYLzv/mN6JoG42idP7mNxJ1UavFaZWZif/gIQLtbbjQomps4dDGZtapA1SoRhBtrqNw0rXc\ncY4syuWSbK22NglKdc00bGsTEtTpRIyfEV388IPwOb9f+NyMGSLYysrEWrv7bjkEVefIK48HH0oO\nqgeySPFbDimy0b4TxzWd4266M+iSk4U9mc0hlNm0SWyRmTNP3kC716C4WA5SpxNL1GwWfW/yZLnD\ntjZx/mi1omQHaxY1GjCZWNE0ipe+SKFI147BYmTfPrnWP/9Z2MeUKWIbzZv33xtoEGzP0d4u5Ltk\niUTfhgyBhy8rwzxypOyrokKcLNu3C64G9e74eHH0BnuoeL0STLjtNrm4X/9aLsxs7pU05GMhIkKu\nqbpa7O/rr5czbtyvZu62+xjp38ELqf9EbdSHinADAbHmo6MlcpiWJsIiLEwOYtKkUw94HjEi1DGu\nB92e+fbbI/Xyy+qGs3hfDkYjBHw+9i+rQNFYz1LfDIa7t+LCR7KuAXVEmKQe1NcLwrS0CP+Liws5\nFcvKRNA9+aTcyb59sp/uvLnjxkmGgVbbawr7p5/Cfz5yYNm5irsDz5OkHcCm9r/SHvDyd+VjwpT0\netGdOm0Hbr6Z0rgxuA43EONpJ3JImqSwBwvRg069YJaAWi1R3ubmXh8t2isVu06nszceA3BUva3D\n4TjSTKordDVsu8LgwUJ/Tz+tYenAu6nqP50/3OIRqu4cQFVhyGK7fijxnipaVhwg3deB062iVaXF\n2tQkxKrT8e/95+CMT2R37COk3VxKPDXiDlOrRRBcdVWv7fmEYLMJh+x0X42a3iUzb0chVFWRpxnF\nCuNgjFoPQ68bT0qaktwCLfmOISxwXoO53Um18VIeLlkU8rBFRYXaJM6ZI4f29dfw6ad8/8gm1gYs\npEW1sk2dwZQrek/inHOO0K4tv5bf3WWiyh6H1tOOKWCizJdMhqoMTVwU0dlJuAp20OCy4NGZ+UB9\nDTdmdw7cbmr6WQzb6GjJvKupOXGzBhD+82PM5eT7stjX3gfr127yIqO4b/IaKk1ZmLUJRLgbMKCl\nhD5s8ozAHrAQqG1nzrvvSgqnUikCIzhq6iwIjP+tMHiwdJp0OmHQoEhQQk0B7NSPxxVzGK23nbH5\nu9lRk0yyfwuHmqJI7mig3J1OkhvC1Y1o7XZRoOfPl3Ss0lL512IRrfdswooVIiBKS0XJ93qFNl0u\nampUvO64Er3CTVW9lev6beTXF3nhMPx1z0XEVWyijcn0V+QzIM4eaod5/vlc64Yxk0W+n7XWAGvW\nCA+pq5M6n5EjReGprJR0h7AwSEgg75LH2XDvehpUKtYGRtJANLkMJa2tlvszPgt53n0+udCnn5a9\ndKFzlSrUWCQjo5dJRKEQgk9Ph/Z25kxvhSdms/4uJwqHDUVbBInxY5l3SQpGUwX1e8qJCnOyaiXM\nGLgLAgHcSj1ejBjXrCEQE8s/7q9lnScDn28ym9Ww4JwTT7TpTbgiaztDs0uJVtiIddaD1kmjIZ4F\nzqv4KHAtUQ4bmfpKVEol+SVahiqVgiDFxUJEWVlivMyeDV4vgQvncN9zmdJ759UWBuz/jtj1n8sF\nVFRI6ttPgfBwOZj29pB88vkkhTclRQwOm00Q2WJhWHIjDo8dg8qNcf65bPngIJ8eGkZERzXtA2/g\nl+n58PLL7J66hvAID3ZPJFUb96Kz2tFqQRMnsvujjySI6vEIPg0ffvSytm+XhI7OYN3JxX1EhNCB\nzyd49M03MmUBRDMPjtLx+6WO75ZbaMwcS3GBB6dbgUMVj6fSRPpEH9Z4AxdemMyVV4aM7W3bRH9W\nqeSoOjOXATmmr78W3T4iIlS+1iMI1h2qVEdbzU1NsoiqKkmLiYiAyEi8Lg+7FSP4RHcFX3ouIEzt\nwrPbywcfiM6anCwOAbM5ZOD9/vdi+CUkyCuqqmQsrkolAZ6TZUT1GpjNovwHHZeXXSZ4r1JJplRV\nldxhWFioNM3phPBwApGR5Nn6MjC2gYamRg6WGnG5xE8xZoxku95ww09quNsrcM01cgdKpeB2sPfg\n7p0+0tbv5I5+KjEi6upE1pSVyR1rtXI5kydLDmpDgxgriYlS0hP0RigUvW6EdIXoaCH7fv3kKiIi\nBDcGxqRT59ezh2zG2vdzpfMLkZtBRPP75V7b2yXt3+mU+4uNPfmQ1q5wJk666GjBFZWK3KroIwl4\nTocHr62NNqeJr32zcSjMjGcjOrWahBSrGIZFRWJ0V1dLgbbFIndSXS1EEsS/228XwzZYVtgdnCw/\n/QwgNxci2qpptCn41j+WVP9h+ijLSFQ1ovG7BbnUapEdVVUQFYXXp+BvNdcSFuHF72jlsYhvCTvn\nnFDtbHm57K1rbwa1umddHk8Tzs7Mnh7AsbnTOTk5bN68mezsbBwOB2E9TH3KzJRzcrl01KSOhUnB\n90CrMgLN5DFctPYt9I56av3RfK8ay1BTAeMNhyAhXYjb7ycmvD/5qgjC4hQYxuZAuVKEud//8w2y\nnTVLGnW0th6fRpGRAbGxTBzUxI6kDBQZ6Zx3ezxYPXiGjqJxz340aj+tukhM8WEi8e64Q5j4mDHi\nEW9rE8bVKUH9re2sKUpmaPuH9NeV0j8iGmb/vXeIxmZDUVTE4MRE6j56ClX9fExuMx40xFlb+Hvg\nr0SGuXjwJgfWA5tQKQKoNCo2Gs8lZXgcjNLJ5Z6VnMruISHhGBva5xMF3mg80slj2DBYd8FgajYZ\n0e2vxe1o4bBXzx2r5+JO7MNVlkLi2otJ7WvAVFTPzPav8GhM+FtHh1JNhg2TtNOpU//PqD0RBALi\nugVJbeniEj82c6hPHxgz00q+6kKurfkbhoo6tnlHogs4MHqdGP8/9s47PMoq++Ofqell0kNCCCEQ\nWiC0ACJNQGkiiNhdBdcusLt2d3+irivqWlkbKiC6YgFFwYqN3msSIASSQHrvbfrvj5PJJCSB9EQ2\n3+fJk2TmnXnvee+9555+AgKZlbsWb3MhKgeVzKefnyhVOl3zq5u0BlFRYvJXKkWQHDq0Jh3CaHbn\nz+aVWK1QoA1giJcerl8iLbochvBpQRSXF2ziF6/rmBWWxPRrncWajsgpLW7Z01SMGycnoKuruAY+\n+kgkq2HD7H2DIiPx+eZ9JpQlU2lR8Yn6On4zTUWLnnJNJaabbwNFhXiJbGtfqxV3g6NjHUHbw6Nu\nK802g6MjTJ5M+Y7DaEdfjiY3F9LTSRh2PYqkRCq9g/GNHIEmM4VZMS+SZgziTGoAN3p+DocPU+Xq\nzSbzLH4a9DfuV2xmRPlJfHtosCTLsnVxadMoqwtCM282UWUfg3tPKYh45gwlZ4z8or8KvdaNgAgl\nvYK1mDy8mDDfD7BK/tO+fTJnBQUy2G3bsDo68X3WCPbtC0eFkWj9QRzLv4K0E7K42iLH3t9f8ptt\n/VJBzqiJE6Wg4eDBdkFaoUDzf4/j/fbbQltiImRnM7dwDWqFGbdULVw+CAICmH+TllXvqxnul0X2\nhOt4aY0FP8cSnpzvihcij9pks4a8sQ4OdpvyRZ0gAwdKvYSKCgnv+fJLed1qlbU1Y4bUVgAJGXzj\nDdLSnDitjOCY20iu8Isjen4Yh1Qi64SFwZIlsq2eeEK+wlY89HydwsnJHvbaYmfNlCn2ntE2b8rM\nmeJ6/OgjeVAnTsiARo7E4tuDoykTyHYfSkBRGQaLCl8fQ03E/Ztvij1i3DjR6ysr5aO1jQdarTz7\nyso2TCm4GM5fazbF6L77RBsxmWRgbm72FJHwcCgpQTFqFCMy1Lx1xJNKBy8MBTX6TD19qKLCrit2\nNLRa0ZWSkiR92GKxF/v11FbIgIcNo8ygxTHpBGqDKO74+clz6N1bUiucneWDOp0oVR0RcYKwnjvv\nFLtodaoojz0GBWZ3TJjRKMz08i0HvRZKS6mIiEKdkYpWoRB5tl8/kWk7qj/nlVfKs3FwYI41kHdX\nym23bNFSbPbHyVKIWePAduUVjGMfGleNGBUee0yeube3KIaff06VRQuzZ+N4111isbrmGrvs3c5F\nUs/H/PmwJsWfPj77+SV1AkVaXzK0vQh00VNe4irPuqpKeF1YGPzpTyjOpuL0vTtpXoPwcq5CvSQM\nRtZSYnv2vLjnvI3QKYqtyWQiLCyMzMxMevfuzYYNG2qKR6lUKqZNm4ZSqeTmZhR8sEGnk3zkhIS6\nrZI2boRvVmbTJ72AO41HKMAJs0JBtkNPMof3RRFokgqkffqA0cjSxGxOncsgYHgQHh5QYB7MD0Nf\nws+jiikTetIhckp6uoQpqNWS91C7/4ZOB8uXE2Aw8LyLC8UJ2Wz/72kc8tMoO1bAty434TgshDtv\nMzFhkBuMul2Usvfek41YViaH2NatYrmcOZPSc0WU7A8kUvkNRqUj3i5Vsnhbq9gajWJFO3kS0tPx\nKyjgfY903s2dzznvYfxYOYWoMQpyda6kDs5Bl3wE9ezpaBx6MOmGB4ga4wiOqtaNoS3w3XciwKvV\nssi0Wjzc3Bk32Z+MsjL6nX2HMkcXvnC8DfeJAzhX4M7KkavQaODhgP8SnfhXnLReKDw98XlsNEyf\nKgfN0qV2y2M3Gsbu3ZK/CFKZ4/zqQWazuFgOHCB3/I24uo3ljiUejPy4AnrpuG/LJ6wpnU+E41mS\ny4dyNDCahf2/ZF7QAVEG581rn760F4OPj4TxenqK0HvFFXDrreSdLuQ/h6eT66jlVqf13Oa9HZU1\nAuMrK/gxPZKeg/O5/E9j2Lr1r4weDb85wPTa7TzOnJGKK+HhEgrZHn3Hhw+Xin1xcRLO6ukphriJ\nEyXcISODI4WhvPXGbpSGfG5TfQIhwczTxBOb7sXTI77HdfgooTklRSQxf3/JucnLEy/d8uXtb+xR\nKNg95F4+2GXEK03N31c8i64ygwWeCex84ln8BvkRPsAKz6zCYf8OlkToRAG0WKDERLYmlHznUIqC\nBrNjSC9GzD3Lo4ERjN4jgvv48R1or/Lzq3tO7NlD6H33M//gKd5NCqFQ6cWCp3vaK0cfOSrFVpKT\nRSkbO1aUmJgYLL37kHCwmCuvhLjDVh50/QV3HzdwHygxsdUpQK1GQwLPHXfI91dV2RXo3FyJkbMV\njikpYSSHyXUAi9mKn5MKAqYAMHTZXFb8rZRisytz5irJVRgI0elJ7CGK7byxWeR+GoNZ64Sf6wig\nbvhhVJRE4FZUNEGmVCjsnRRA0kksFvHKxMWJ5yUkRPZHdQhopMJEibs3Pa7xZHxgABqdkn8tKgU3\nN958U9ZLfr5sp88+E2fHPfeIjlwb06aJXqLVNpzm3iQolXVLiVutInvcd594n/V6UfoUCkhORnv5\n5Uz9x434GyIYVrELnbeSWM9wgkJk3IcOCbnbtwu5Z8/K/5GRoi+7SS02Hn9ctn07t6KvC9tay82V\nm2/fLnNkMokiO3iwPIvt2yWktaJCCvtdcQWTFAqOvW7FJ0mL1ynRSW6/XUqzfPedHOHBwZJfaTNK\ndEYjDYXCXgPR01N40GOPqbgl6jI47c0PVZP5PN+Znl7HeCL+DpwVRtn/r74qsmFkpExYaqqEq23Y\nIEysI0JOkDVdbZ9l1SqxuU2c6kDu2VL+NOok46LGwtYqDp314p34K3CryuVJ0zP49qgurWyra9AR\nUCprWpr1R6KZT5+GhAQlDn09KUk2M6aXjuiULwk6W4BOW93/Kj1deNvs2QCccRzMv5/RofoNHn10\nNKFPdawiez6GDYNhH3ny+083cOqVUvqcjWWkYg83+/3GwDID5PhAURHZCn9+zJzGlO1JBPsbiZoT\nwomfnegR5gRRuk5znXbKbWNiYpg+fTrvvfce999/P0qlkhUrVgCSV/v1118zZcqUFn9/v351zxmQ\nkIwAx0ISKwMxhkUQmnyQ701zMHn5M8Ftq3CAjRul4fuuXbh++CEjKivB8S7oMZV16xTsP+KH1Qo9\nRl+kdWp5ucSopKXJ4dDSPqu2PAa9vuHwD41GflJTSV/0LJ6Zeg4oRnPAPIZolxNEpX7M5bvAfcoS\n2YCrVtkLUgUESJztggXyXY6OuC9dyGVn4/lp5wNcG3oY1Z9Htw1nNhpFUN2/X7w4Gg1jg0/yRZWR\nI5UulDv7sDfFifmjIGSKB7jcCElJeM+di3dQR5lzm4DsbFEQjEaxau7ejf74afTqaexSzyfPehl/\n0X2I/salfH7cXarlq9XodLC9dBRj/HzoUVgIt8yH2dPtXkelsvW5apc68vPtAm5+fv339+6V/h3F\nxeR8HMvpyW+zzb0/L976V/zO7ueG4GySPjhIsqknnoHO9L3Miz2nZzLv2p4SKtMGRfFahIgIEbQK\nC+1lS3U6zlj7kOfQg4jgc/jlZqMqK4HSUg4WRvBpUjSKAmdmPCrDPndOWiTUwccfi2U4KUkk3gvF\n07cGzs7y3cHBwk9sxsjqvkE7/wP9/IsZkvkJakURCwreY33EP7hxaDFXLuhv75Wxfr0ImidPCv8M\nCbG33ugArXDrNgWuXlpyciFJF8aIijO4ubowY5YKvIHMLBmbQiG/e/WS8Q0Zwt6EYax3uJW0WLj/\nfjeIjMQduNrxZ/h2A5SMEtdVR7lta0OrRTFiOJm7vTChIS1by/r1tfSYkyfluZeUyHkFwuc0GlQ9\ng/C/agpHd8LMuVoGjJoLx2NlndYO7zOb5Ww5dEiMKC2Khz0PhYVSF6O0VBTcRYvk76oqWXM5OfD4\n46gMBgJOnJDrVSqJL05IEF7Rty/JMUpcXCDPQUsZWvpWywUnVu9h/4kAlBYTX76RysLldSOBFIpW\nKIp6veSsFhfLmL295bwtKhJDk4cH6kOHmOh8HPz7Q/I5OGMWQ3PfvkwMdyAmJsjWhphjx2TpbN5c\nP9RVrW5ehfAmYds20c70envNgaIiGYTBAFVVhO75lNDlywHhWWNKSyElBYuuN6NHO7Nvn8j7sbEy\nFV98IQquXm8PpQ4Pb16dnjZDdrYY3ioqhM+4uMgceXuLl+zjj+WaI0ckRHn69JqPThxZQNx+BcOG\nuvPE31X4+MjR88kn8nhU1QFA+fmi4HRWh8iePcURWFIiDrVZs0DpPRiGDObXhyHULZ2Rez6myqDA\n2bU6FcBolEmaP18mLS5OBOfgYJFnH364Q2nIyZHbl5bKz5cPx9Fvz1rIE+V7h3EC2thE8s0enFb2\nx9eUILynM1zltdCzJ4wZacLv65UE5sUS4z6PIzlBzPIuhwqjPM/kZDnnPD2hf38O/eKBMSgUfYUE\n7zU1erq9MWCwikXFr+NWeIyB2gQ8zCbJKQi5muJNW3kjfg7ZhHLiewMvXraJw8lnGTrej+xsWX9t\nUMuqRWgTxfajjz5q1vX79u3jyiuvBGDq1Kns2bOHkbXaOjz22GPodDpefvllhjbQ4L2x4lEXwvTp\n8ME74RQqPfg56hEWfh7AQ9nZmD28cHinCCoqoXdv0lMtJP3tS8JSj+CjLcWhuBgcHXF0HF/TR/ii\n+yY+XsI33N0lAaalim1oqCja+fn14gqtVnHi7t0LcyPKCLBUYlA4M4jj+DkVkV7lTR+3LFwtTsId\nFi2yxUjYK7HddVfdHgAKBd7jBnCwbAAZM6egmNiyYdeG0QgrVzuTkbWYx/U/467VCve/7jqu2nyS\n2FN9cXfWY/Lvj7MzVOkV9c3SXQXz5oFez+HCUJK+imdsVg4+Fj2B5fEEupzFsSQbFMXMOPMmgbqx\nrC5bQEGBCw4OcMUDA2DxpyIxDR/eedUl/qiYPFkUJ9vf58GamEReoYqqMnf2KQZy4KiamYHrcd2R\nBFdPxWvvu7wwZhel0VN4XTGdcykKbnkoEqZerElxO8PLS7ySZrMwlqoq+P13+vW14u8UzKCk3wlS\nW8DkisXBke1l0RzJDaKnoYRD32VR7hbAvHkNFNK29Zlzdm6XHJY6cHMTb6stlM+G339nYvwpsouO\nYnBywaIvZ2vZSDRJp3D3NKK8+mrQVh9BoaEiwduK75w8KZ7f5hTyaAWmTJFglh49IHzxtZDSl3R1\nL95b4Y2HB9x9izuuOh2UlGCp0nMqzYVibRiK4NGcDLyKQHUooU7nsekvvpD53bFDXFXnV7NsD5hM\nct+UFDEyhITAwoX0Ts6gZJWO0gw1R4/KZWo1ImQFBkp6zVVXiSZy6lRNL9ObRrkw9xY5LhSKUTB6\nVP17ZmSIIufvL/duC8U2P1+kWXd30RBA1vScOWIE8fICT0/MH6/j4b+aCPj8daa5H2OYvgzFI49I\nlNG11xJ2xVyiosSR/ec/2wupaYP9UVgtmBVqnHzbuNKzrVKrh4c8OL1eDLv9+8tDt+Ul2yrUfvCB\nnIl5ebBuHZEKBbeNf4KNxyMoLxe7jslkj6zMzxfPUFWVhCy3eXRfcrKMR6kUjcjbW+YiKUn2o0aD\npVdvPlwt3rTrrzUy5bfnMGXksLZkLuci5rB4sYLISOmkuHevLH1bZHanIydHFDkXF+FXzz0nNN94\nI+zcKUqtQgG9erE9+mE+vU88WHfOySVq/TLe1FahGjQBtc8dgHyFLWzdw0O2e+/e9Z0rHYmiIllq\nLi7ivHz8cRnPg/eauEqznRNf7STYGIu7jwmuvUGMF7/9JpYGG6/KzLT3WrYZizpAbikvF16ckSHb\nQ6+XNd770Hp52J9/Dv36McliJM5hMH7kEOFZAPOvEzm3E2Wrigqp3p99IIVxubtxqchlXvxzbO13\nL1R6yCRkZsre9/cXze/mm4leYGDr6w6oVB0cwdAA9uyRDITJbgeYr9nMVM8DnJkwhMTv87H06UOU\n3oT64Ycx3fMkOXflo88txfnMD7BvH1ddnsQXOdH07dtxGZsNoUmKbUPtdjw8PBg1ahSvvPIKkRcq\nG9sAioqKCKtW5T08PDh+/HjNe0uWLGHZsmWcOXOGRYsWsX379nqfb6x41IVw9dWwdasWfVgQO0uD\nmKSGvpP6ygN49lnZQf36cWDFOQKLcqg0qCg1q3Dw9oaUFG6+Wdagj08TrIy2JO/y8laYfavRiFkz\nN1d0Zh8fWLOrL2/dMA7V/lQ8cs7gOVCDPiUOracjSoXFXtb3nnuEy/3yizCI7Ow632krCtijh1iH\nZ8xovVx57pwUv/DvN5CjmdcywfCLeKkmTGD6Z/czPGQXP1eM46uAF0hNVbFlS93iGF0KPj7w4INs\neBK0/SPxzT2Bzt1Czz5BTOmvI+rwSTCEQGws68tmY/E5h0/QQP7yFxgyRAmMvOgtutEI3NykSnEj\nKB8UzWn3EWgtWey0TkHp6Y6/MQ3ntNPw3yyoqkIV2hNPbQVPPalAr2/bit+tgkolPyC9Bn/9FS8H\nB16Y9hvmgFFoPzwKqWVkj5nLiV9HEBWQQZHBmbxMA0G9pD3C7NnnOQRvvVVyMXx8OiZnWKmsq9SW\nlMBHHzHE3R1j0GnyAz3YGxPCCf1g9OogrGdymJlsIKR/9RE0b57kKnp4CAOaM6f9x1wLo0eLh0mj\nAZXKFYLG8t174sRMTIQjo1wYP3w4bN1KlYs3BaUa0oaNY5v7/Tz3gppDh0SYrWNDGDXKXlW7vY0L\nNsTHS4VeR0dxIz3xBDg5ce1DfXhpPfj4SaRxQoI8bqKjpR9MdrZ4av79bzEolJbCkCEoFE04A3x8\nZM4yMprew+RiCAsTa82pU/YogGplA7VaxrthA0nTF7P5Bw1X6EbRN/U4g/pocFCZ5ZxLSsJ9rthc\nbO3sbRh811j+6ptCqcmJsde08f7o1Uty7+LixLvx2WeyBuLi5PmEhtpzFq1We52Lgwdrkmk/2eCA\n8wCx77z9tiixtpzDQ4fEsabVSkHbNj8vZ8yQUEkXF7EGTJggCoOjo4z9zjvJCrucbU+JbP7ZOgtT\nFNkkqiLYdtwH9yALX32lYuRIUaiqqmTNlZXZaehU9O8vNJ07J2urtnyVny/GFL0eZszgs29dcXGR\nbTw9vJiQsjIcPFzhXGLNR4YNk7qDpaVSX/SKK0QfVHVi9tSPP4pNKytLeJqjo9isUrbEMy1tDePd\nD6Ety0epdJf9PnmyMAWdzl7ELSBAopk6uNTz0aOyFZycZO0MGCDjzwgcSa+j38g4/P2J2voFb40+\niio9BfWjj8qZ0dbtyJqJmBgx9hw/5c80kxMD9GdQBfTgjpsNMPm/wp/XrpWL+/QRS6hCQe8IB954\nw16EuzPxxRfg4mDCb+NKSi9zxhMrG7Muo2+oCt+KDLK9+hPk7Iy3q5LHXw8keU08IwKPgmkAM69z\nYfJUYb+dEaBkQ5MU26VLl6JWq4mMjESpVBIbG0t5eTnDhg1j0aJFju4YBQAAIABJREFUbN26tVk3\n9fDwoKSkBIDi4mI8a/WjsFVBDm+HGJXISDkIbDkeWK3CsdLTJahfpSJsmAd5Dt6YfTS4hStgaCRc\neSXOzvUbnDcKPz/xwpSXty4WJTNTBhwRUU9BdneXr87OhshINQ5L7yPUbJYiFhkZOPbtKaW0rVZ7\n30QHBwmtqawUxm1LZKiGs7O9rZSNmbQW/v7yrHNytaRPuRUGRYlltLqxtl9ODiNGufGrgwKLtWPy\n/VuLESNg8+ZebJy9mqgHcvD2c2CcSgWrE8Xym5nJgNQ0tpgG45GTQFB6EUSO6vbStiOcoiLYfes7\nHDpo5XSBN4N7lTAgLV60kttuk2d/7hzcdBNKZScotZWVUhDCwUEE9sZOLy8vucZkQhUciGrmDIiW\nYkzuCle8syrJLy/jyh65FEREkJIpldLrHSJqdbXm0o6wWsUdc+6cuDxr92d1cBBacnPRjB+Dde69\n/PKuN+X7DGhL8wgYGYxPSC2NSalsv3DpJuJ8fte3L+z6tRKHnAx65JSKstW/P9qkcxzoey9HQudx\n+SglXl71WKngzjvtHq+OyvnS6eReVVV1eqj4eJqI6pFHbJIrgWGOBARUH/2OjnUrG99yi5w5d9zR\n9APAyUlCO/Pz267IjK3i0KRJ9oJGIGtKq61pIWEr8PdrxiQqogdw9TtK+HajSPTXXQfUtRvZoFAq\nGHFtM5qpNgUWizy7wkIRsm+5RZ7Jpk0SkXHzzfa2KTUDUdgVK3f3miq9A41+HDwhW2r06LrGhbAw\nmRpbEfE2R0CAlJq3ITRU5sDWDm3ECLy0GoKDxfAzdqwDhN6I708HcB/Sm9JyFdFj5KNKpYx9ZFey\n6Wo0orDXRlWV8OeyMntE1aRJjPSQyOyAAPAZGQrp0ySCoFbuh0IhNiyrVXTA+HixVXRmyYzwcEkT\n7t1b1s/u3WIz9O0n/MFxQG8wh4jCesUVwsdTUuqG/igUYnCcN69Dxx4YKCzFaJShJSbKs3S580Yw\nThSZvdoD4+DpBJFTRabsKB57kbE7O4NW58IXXg/Tp7yYAUMdUIYHyQIpKBBlNjpajEW1BJFOjqCu\nwYgR8PMWFSafQFyM52DwYCKGTWXT+5H4qvJYujSyRuAID4fwvw2BVQNAMwQmTOgSDgOF9fyyxLWQ\nnJzMa6+9xsqVKxkzZgw9evTAarWSmZnJ3r17uffee9myZQsnT55s1k2PHDnC7bffjqenJ8XFxaxa\ntaomFDkhIYF7772XsrIyysvL63hzARQKRb1KyhdEenpNfyrz4r+QVO6Pj091nZjTp8WcC/ZqEUDe\n8Sw0eVl4jBnQbpvlgnTk5EhbgN9/F++vq6soyuc1xC4rEyN5aGitTVFcLIdjWFiLij4ZDKIsBwRc\n3HLU1LmoqIDCH/cRuH6F7Ic5c+w5LJMmwbx5ZJS5YzSKlbGj9b/mrimrVZ67h0cjBsKkJMxllSR/\nvAOv1Bi8HMpF8OvZU3ohnzghVSfa2HytUCj4+OOP67x22223AbVpU1zk/6ZeowFMNf+5uekoKSlo\n0bjr3Lm5+7sWbGvXaATtD98Q/PrDIv099ZQI6h2IenRs3Ch9Tk+eFAXupZcabxhvy78ZOLCexlpS\nIjJ7795CWm6uHKbtURuq0bnYsUMKUwUFSZEqpVJOuNrCMIiAf/asvOfmRm6uhMg5Ooqxq6MOwJau\nKasVzv3tdRyP7Scg7aB4wefOBRcXKnv0qdHjOsoz02Q6kpOl0FpBASxcKBWE9+6l/NWVHCrozYDr\nB+N797XtP+AG0GQaPvpI0masVvjrX+tqRqdOCX2VlXDvvRT2iiI21l6MuyPQIB1HjkjsLYihZ+FC\n+Tsry943LjlZCq35+Ymbr5EBGwyydQICGi6/YOuOVduW1CY0NIT/+z8ZTHGxFIGsrl5t2LAJw1eb\ncZoxCdWtN4NCQWGhRFSHhXXBfXEhbN4snnWrVaxUl18Oej2Wt9+l1K0H2keW4uRz8Xofer3Y+Xr0\naL7zsE3oqIbVKuNwcJA1lJkpS83NDclhW7dOogfuv1+sE7YoyP79JcqjhWgrGrKzRW7s1Uu2Ts3Y\nQQhbvFjOUh8fqczbxmkeraEjJ8d+zvmf3YvD2vcl+iE3V7ReJycputjOLs2W0mCxiHzrpSnFOeMM\nFBRgefHfJKdr8ejrh8/f/iQRDx2EltBxQXHoscce46677mLv3r3cf//9LKguNLRhwwYqKyuZNWsW\na21u9WbAarXWDNT2e8mSJaxYsYL58+ejVCpxcnJC2xoTRlWV9JLbtUsELKUS1aH99L36avs1KpVo\nUWZzHS3OZ1AAUK1E2qo3RETILusI7N8vK0uvl13dr1+Dm8DVtTqPo7raMNHRom2d35TPaoWff5Yq\nd7NnX9CLrNW2Uc6O1SpxGfn5OI8Zg3OgBSrKhMMeOCCb3Ntbrrn9dnr8EWonpaRAfDyKIUMICqpr\nZMBqFRPpqVMwcyaqIWGE99gCmSWgUMtaO3tW4si8vaXSYDvEZd1117Oo1dEXv7DVMFFb2S0t7UBr\nREEBNbGftSI7atbumTPww/uiHDo6ism3s6FWCx8qKxOp9ccf7af2nDnVISTV6N1b1tovv0h8bK39\n6u5uF3Q1mg6rnl8X69eLlBETI/87Otota4WFwne9vMRbWYsX+WqK8D17QKxXTh3XtqulUCgg1LcC\nMg4LfbGxotyGheFksRB8cJPk5F19tYTzdRWYzbKuvL1lrioqYOtWXEzFTPCLB6+BcsZUVIjS21Vc\nBbWh1dqLxdW22mzaJDl2+fly+H3zDbplUR0pZzUOmzxhsciYt24V4/n06kKBu3bJczebJezzxIlG\nSy5rtRfO0WzzVqJWqyjmRUWidO/cKZ7L6Gi7bOTra9ekDQa0m79E26sH/LIFZs8EnQ6drnOKyzcL\nFouso127hEdNmiTzZcshDQuTcI0XX0SpsOKRGQ/n4sHn4mllDg6dm1trg0JRtwBRHb3PVvH58GGR\nCdVq+YDRKGflmjUiJ547J/HVY8d2eHJ0bRG1ns6qUokyrlCIFWXnTjE42kpTX3NNpxbj9POrlf1z\nJFv2e16e8AInJ9lPR492fjJtI1AqbcE+buA/DJ54AqWjlj5lxyAzQGSvEyfEtTuqgZoLXQAXVGy/\n+OILAMLCwli6dCkPPPAAAGPGjGHdunUEBQXx7bffNvum+/btY9myZVx33XV89dVX7Nmzp6Yqsq+v\nL7/99hsAc+bMobS0tMEc34ti2zZhXkVFoiCGhtbnOGFhYg3OzLRX56wNq1VyjnJyxNLy8ssdE8Pf\nr5+cbAMHClOZOrXxPLm0NPH+GI2igNdu9WDDqVPiYVGpRCB49NH2HT/Iwf3KK7Kpk5PFY+bsLAdj\nRoZU8SgoqFNxsEujokLaYpSVicD48st1TdKpqXIgqFSilDz3nISa9O8vnLlXLzkkfH2FybUb3VMp\nK3u71v+ftNN9OhErVojy6uQkc1I7f9FqlQgNR0eZi7CwmpDETsVVV8na+ewzkfzc3aU9kUol62Lp\nUvu1FRX2VIYff5S11pkJK+dj1CgpSNenj+RgFRTYjTRffCECo8Uip2Ptw/vtt+VAdHAQz09nlQxt\nDu67T+g7fVrOENuYDxwQz4bBIArBJ5/Ui6jpNAQEyHmRmyuGkY8+knXm7S2hh66u8MYbslfy8yW3\ntqth7lwZr6trTTsNUlOlzZrJJKELfn6Sy9pVEBkJDz4oYwsJkT1sq9RcXi7jDgyU/e3mJtd0FZw8\nKXzTZBJjfni4KOF9+0r49L59YnCzrX+NRubl2LGaiIw/DPbvl6Kcer3MTb9+ImPZzgxbmenhw+W5\nuLt3kgWxnTBqlDg6bBqYq6tEK+7aJcaYrVslnjo9Xfh4VpaksHUVBAdLmsebb4rca+sb/fXXMn9W\na9cp1NKvnxgOMjJE/j19WvbNW28JD+7knOAmYeRI0TNsxfDefVcMXvv3y97vgpasJgWw3X777Uyc\nOJEHH3yQcePG1VE0L29IIbwILlQ8ymw21/zt4eFBUVFRPcW2SVWRbUkpnp4i2E6c2LCZMyqqXsXh\nGlit4vmtznmj1tjaFf36ibJqsVy86IjRKNdpNBKa1RCcnGTDGwwdZ8kyGu0dzKuq5PfAgaJkOztL\nLrBC0XWEwYvBYrH3R6vdW9EGR0d7x3lbCLiHR90Kz25uUqisqOiPQ3dXREWFfU+aTPXfd3eXsLlp\n0yTEqisIkFqtCAczZ8o6KikR4cJgqC8Ums2yfxpba52NW26RUEudrn48sZubveTu+e9VVgqfstH3\nR4BOJ7w4K6suvXq9necqFF3L6+nqCs88I3zGbBZPs14v3vOpUyWfzmoVY0lVVWePtmE4OjacuKxU\nyvMODhbFsSMqTTcVtgaiIMqh7ezT6cR4pVKJgfORR+QM7ErKoE2OUCplXVdUyDrSaOT3zJl1r1co\npCRzdrYYa9sjF6K9UHvvgvBZjaZ+Ne+pU8VY4eLSteaqtbjpJqG1Nj8bMkTW5N699kprteW3rob7\n7xf+Fhcna89Wxdts7lqtE21pR5s3i5E6J0fG6Oz8x9kz114rkT3vvCNOm7w8MdI3JV+xk3DBHFsb\ndu7cydKlSzl+/Dgmkwk3Nzfmz5/PBx980KKbvv322/j6+rJgwQK++uor0tPTWbx4MQCTJ0/m999/\nB+Caa67hk08+wbWWVaPJ8dYWi4RaWCziMm9pwkdSkoRuDB9et4l5K9Fm+RS2AljJyWK9bswLEh8v\nC3L48DZroXFBGiwW8erk5MihqNMJI4qJEUWjqzTqohlzERcnnpoJExqucpWYKFbOjkz2qgWFQoGj\n431UVdX22F4sX7alObb1r7nYM3R396K0tLDOa+fn5jZpLlJTpTXBgAFiOTwfBQUyV717d5qlvUl0\nnDghYx05sn6oV2yslIZsbK11AFrEo/R6CVVyc5NcvNoJ8xkZosz369eh5VHbMnetBkajpBMkJEgv\n8PYu1EUr6Dh9WhTz4cNFSDeZ7IVyZs3qUK9Bq+fixx8lGuv66+un3HQgmkRHYqKs+SFD5NzIzraf\nhV0AdWiwWCT1IS8PxowRHhsW9ofwVDZ7Tdn27unT4vTogL3bFLQLn2oubD2ho6KklkJRkazZJiqL\nHUpDQYFUgPf3lypTsbFikBk5stUKV5vTUVEB338vxpTAQFlz7WyUa3MasrOl7oGXl5wj4eF1ChS2\nF1pCR5MU26lTpzJz5kz8/f3ZsWMHmzZtQq/Xk5+f36KBHjlyhJUrV/Luu+/ywAMPsHDhwpriUUuX\nLuWmm24iMjKS2bNn1yi5NQPuCpu/DXAp0HEp0ACXFh1dWbFVKBr+ntqfu5Tm4o9Ox6VAA3TT0ZVw\nKdAAlwYdlwIN0E1HV8KlQANcGnRcCjRAy+hoUuLWjh07+Pzzz8nLy+Ouu+4iLS2N4FZo6kajkQ8/\n/BC1Ws2mTZsYOXIkS5YsAeBPf/oT48ePx8PDg5SUlHqKbTe60Y2uCDUKhaLOj7t7W1c46UY3utGN\nbnSjG93oRjcaRpMU25CQEKxWK59++ilvvPEG99xzD86tCGfdtm0ba9aswWAwYDQaOXDgQE3xqLVr\n1xIZGUlBQQEhISFMPj/voRvd6EYXhK1Ksv3n/LDjbnSjG93oRje60Y1udKO90KTs5Z9//pnFixez\nZ88e4uLisFgs6PX6Ft/04MGDLFy4EKVSibu7O3l5eTXvxcXFodPpuOaaa0hISCAlJYWQ84q/KDq6\n0Wk74VKg41KgAS4dOqqq3gHeOe/V82m72P9td03953rxay6VubgU6LgUaIBuOroSLgUa4NKg41Kg\nAbrp6Eq4FGiAS4OOS4GGlqBJiu1//vMfsrOz8fPz47LLLmP8+PEtqoZsQ1FREdu3b2fZsmU4OTnV\nKQ5lNpv5+uuv0el0jB8/nueee4733nuvzuf/V+PGuxouBRqgm46uhI6ioX6+b9vet3suug666eg6\nuBRogEuDjkuBBuimoyvhUqABLg06LgUaoGXKeZMU24MHD/Lf//6XftV9YAsLC3nooYdYvXr1BT+X\nnZ3NjTfeWOe1gIAAPDw8GD9+PLGxsURFRREfH8/48eMBUCqV6KqrBnp6epKYmNhsorrRjW50oxvd\n6EY3utGNbnSjG/87aJJiW1xczMmTJ1m5ciUKhYKJEydy+PDhi37O39+/weJPixcv5vLLL8fPz4+k\npCT8a7WoqaysJDw8nB49epCYmMjcuXObQU43utGNbnSjG93oRje60Y1udON/DU0qHpWRkcGrr77K\noEGDGDBgAK+88grp6ektvungwYPJy8sjJiYGR0dHevXqxc0338zq1asZN24cGRkZHD16lMDAQP7x\nj3+0+D7d6EY3utGNbnSjG93oRje60Y1LH01SbB0cHMjMzCQ5OZnk5GQyMjJwdHRs8U3vuece8vPz\nKS4uZtasWTg4OLBu3ToWLVqEu7s7AwcOZPTo0axatYrAwMAW36cOUlPhyy/hzJm2+b5LFQUFsHEj\nHDrU2SO5OE6cgK++gszMzh5J62C1wq5dsGkTlJZ29miah/Jy+PZbaeZusXT2aC5tFBbC11/DgQOy\nZro69Hr48Uf49VcwmTp7NE1DcTF88w3s2/fHeMYdgdOn5exMS+vskbQdsrPl7IiL6+yR1IXFAtu3\nC0+tqOjs0VwYl8r52xhycoS+2NjOHkn7w2iEn3+GLVvAYOjs0bQNbHvpu++6/l6y4VJec1YrHDwo\n+kVh+3bMaFIosk6n45133uHIkSMAfPjhh9x7772tvnlMTAy5ubn079+/5rUlS5awbNkyzpw5w6JF\ni9i+fXu9zz399NM1f0+aNIlJkyZd+EZmM7z0EpSVycZ99VVwcWn1+C9JvPeeHFhKJTz7LJxXkbrL\noKBA5tFkgr17ZX7/qDh5Et59VzZ+VhbcfXdnj6jpWL9eDkSFAtzdYejQzh7RpYvVq+HoUdmby5ZB\nWFhnj+jC2LIFPv1U/larYeLEzh1PU/DRR6LUqlSg00F1XYn/WZSWCm81mURIfO01WX9/dKxYAenp\nQsuLL4Kvb2ePSHDsGKxcKfy0qAhuvbWzR9QwbOev2fzHP38bw5tvwrlzwguWL4daKXOXHHbsgDVr\nZN2ZzTBjRmePqPU4etS+lwoLu+5eqo0VK8QJp1LBCy+An19nj6jtcPas7CmzGRIT4eGH2+1WTVJs\nn3jiCebPn0+fPn0IDw/npZde4uFWDqqgoIDFixezfv36Oq/bCkeFh4c3+tnaim03utGNbnSjG93o\nxiWDP0q0wB9lnN3430X3Gv2fg8LahHrQTz/9NLt27eL48eO8++679OzZkwcffJBdu3a16KYmk4k5\nc+bwzDPPMGrUqDrvlZaW4ubmRl5eHnPmzGH37t11B3x+CevUVAkrGjwYLhAebU5OIf+H/ThfFoVr\nVLXSXFIiXgWdDiZP7lBLdGtLcVutkJICnp7g4dHIBfHxYmkfNKjptG3dKqF406bBzJkXvLRdy4lb\nrbB7t4S/TZ0K3t71rzlxAuLjsY4ZS6opEHd3eR6cPi0hspGRYvm6CDq0LLrBIGvOYoErr5Q1a6M1\nP5/CqMmUKdwIDhZDYz3k50NSEvTtW01sJ9BRUCBe2qAgiIoi/8vfUeg88Zo9rnl7yGqVuaqslP2r\nUnW3+7kQCgtlfwYHYx0xkoxMBQ4O4ONYHYni6gpTptRf81arRAWYzfKcm1g+v7U0lBfoKfnmN/x6\naFBNniBjcHQUz/7WrRAeDufx//ZAs+goLoatWyly8KdM4UZQLzWKiH5Nfmb1YLXCnj3CrKdOBR+f\nln0PrZ+PrCwho47jKT1dQkkHDQInJzkTf/pJ+O2kSbKfExIgJgbGjIHg4Bbfv0EajhyRdTFxovCT\ntoLJJOF87u7Qp0/997OzJf2jb185JxpAXp5E0/foUX/6a+jIy5NQ++BguOyypq0Ts1nG5uIi968N\niwV27pR5uOIKcHZu9GtKS+U46NmzScdcPdSZi8JC4SGBgTB+fNPoOHFCnmHPnjJ/Tk7NHwTC/rOy\n5BFqNM3/fIv2RWmprHNPT3nOtc+ttDQZkJ+fhE6Gh8OQIc0fGLJ+MjJkDTk4XPjaptCRmytRwz16\ntGg4jSMzU9INAgPh6qtFrt67V/hzM6JW2uPcy84WNhoQcN4bWVnw22+yh3x8ZA1HRtoXUTP20vlo\nLzmkpETEp5CQWkvORoe/v0xudjYMH94oX2oq2pqGC/KboiJ51hkZEB0NUVH1v8AWipyWJmdLtRPz\nYmgJHRf02B46dAiFQsG6detYt24dt9xyC0FBQVitVnJycpp1o9pYvnw5P//8M7t378bNzY3169ez\nbt06VqxYwQMPPMCmTZuwWCw8++yzF/6irCwJl62qgnHjoLHw6NJSfl6ZyNb4wVQlhPPss3Le8cUX\nsG2bXOPt3fBkdFF89ZWkZLq5wdNPNyAvHT4Mb7whm3vhQhF4QThjbKwwg549634mL09C8UA22kUU\n23ZFYqKERZeWwu+/S1jGeYocAwfCwIFs3iQ82dUVnroxAf9Vz4tgs2ABXHNN54y/MezYAevWyfji\n4uDaa6F/fxg3jowM+Oc/5aC/4YYGooEMBnj+eZnDwED5uyUSTVORkCCC74gR1RumGh9+KGE+QMw1\n/8drW69GqYRH+gkpTcaJExLCZjbDjTfC7NltOvxLDjodzJsHwK4fStn5+kHK3HuwZOwB/A7/KAeH\nTldfWTxwQEKArFb48587JCS4shKefdGBrKwZREfDA9Yf4b//lfXq5CQHoNEIb78NvXu3+3iaDA8P\nzg69hn/dl4oxIZmF4TuY+O+rLyzYxsXJiT9qVH3hKTlZwuFAwhofe6z9xl4bOTkyrn79IDiYw4fh\nP/8RfeWhh0SPJS9Pzs+KChg5EpYuhc8/l5BjkENlyBD5jvYIyc7Lk0GBKLj//nfTPmcwwP798qyH\nDWtYCdu4UQy0ajX84x+inNSGv7/w3kaQnCzs1WCAO++ECRMauXD1ajh+XP4OCGhYiT4f330n52xJ\niawH29kMIu02ejM7SkvhqadESJ40SY74VuGTT+SZgoRlDxhw8c94ewstVVViRP/LX5p9W4MBnntO\njpnISPjb31puQ2oWNmwQGcdqBS8vUSRA9s2zzwoDGzsWpk+XEMrCwiYL4jZYLPDyy3KMhoXJMmzN\ncZ2QIFHzZrOIumPGtPy7apCWJnziq69kHkNC5Bx++WXhz9u3w+uvt9ho0VocPw6vvCLTtHixfZoA\neOstkUPKymTNarUyX7aQ4ybupY5CYaHI6kVFcNVVcPO0all80yZ589AhEaBCQ+Hmmzt7uHVQWmhi\n9X37KSzV0OvaESy8s5YhyGwW+XzzZtm8o0bJ+jnfGWV7rwOM2Rd0rzz00EM89NBDZGVl8cgjj5CR\nkcHDDz/MX/7yFzJbUTDg7rvvpry8nKKiIiZOnIirqysrVqwApHftDz/8QGZmJt98882Fv6ikRExi\nTk4XLmCwahW+33zA3IQXsaanU6OTa7X2gjfqJkVldxnExopSW1LSCOlFRbLgFApRhEBofeklyaVY\nvly8mrWhUsmPySTPpjOhVsvcxsSIlefttxu9NC5OjN8lJZCZVCkMWa2GVhhf2g22ky0xUbyeL74o\npzryq6xMnFo2WakODAZhgO7uIki3Z0GezExhVh98IAaG2tBoZC0pFCSnqGqGdvZsM+9RVCRzpVLZ\n12g3mgTFqveYlPgBUw+9SHF6ac18NMjHCgqEF9g8TB2AggIxPPv6yhYmJ0cEDaNR/o6NhVOnZA90\nMaSlQUWxEY3SwskC/wsXukhMFIXsvfdEcT8farXMi8XSMndUS2CxCF+x8fnKSk6flrdMJgn4AEQ7\nqqoSBdF2iKjV9jOxPY1mIOtBqWz+ebN5s5wHr75aY2Crh5wced4mk/CZZiI1VfR9jUYcyo1Cq5W9\nBU2XIbKz5UtPnxaDU1lZs8eXmyt7TKdrozozarVdXmjqvP/yi+QEnzkjxrMWoKREzj0/PznHO6z+\noE32O59nlpTInnByko3ywgtivHjjjWbfQq+XKQ4IEENJa+sXnTsn32kLomg1KiuFP6xZI553V1dZ\nmzZeZZOjOsTS0DCSkmQL24K76iArSxbN6dNiKHVwkNe6KHJy5Cjx8IC4mFqy+O7dMhcGg8h2BQXy\n7LsQyjb+TPS+N7k68XVKtuyt+6bZLHKFo6PsHau10+swXJATb926FavVyj//+U/S09M5e/YsN910\nE6tXr+b5559v8U1r963VaDSoazGWuLg4xo4dC4Cbm1tNaHJt1OTYWq1MiohgkpMTzJ/f+A3LyggJ\n13ImwUL0ED2hodWvL1ggni8Pj2oT9h8HCxbAqlViaG/QmD52rHBCg0GsWDaUlwvTNhjqK0Y6HTz6\nKMaTpzEOHUXTAzfaAaGhYirPz5eTobpasNUqf7q42M/fefNE/+rXD/rP7Q+qGSLMVHu3uhRsYV5r\n1wpDsFioKtaDtyzBqCiRMRts3+zqCnfdJV7fKVMuHtvUGuj1WIxmzEotmvMNIHfcIR7/gACi/cM4\nkC9yQnR0M+8xYoSszdJSmDOnrUb+P4FBIWWcPqXFS2Mm4KYroKgvFUoXNAOHUk99Gj9epEejUVIM\nOgCBgRL9dfBgtQF90GyZZ1dX8QT++99yiFev4Yb2dWdhyBAYPCWAor2FzJjuCaNHN36xXg8WCyaF\nGktxBfXUs5AQcUOlp0uoakfAYhEp2slJxmcyMXGiyIBqtezTkhJw6xWKYsEC8bbZvJc33CAhwTqd\nRMS0J7y84NFHRTFqjhW/slIEJ4tF6GsI110HZjNWbx/KwobibG7euho6VKL2i4svUkdn0SKIiJDY\n0F69mvbl11wDH38s2pyHh10xrgWDQbZrYzUuQ0IkSO34cQl2aTVuvVUiJ3x964dHNwadTmguLpbN\nfgHY9rera12Z19tbnu/OneKk6rC9f+218vzd3OqGfIaFydqePoRTAAAgAElEQVQ5fVq8fW+/LQJ7\nE7sVlJeLTqjVyva77jqJeJ43T27VGowcKdHBlZV1nfy1YdMrmuRgNZtl/3h42CP4ZsyQDz/6qBiN\nhgy5YIpfe6D2WTB2rAQfmkwSmVAHs2bJPLm4iKezZ0+4/voOHeuFoNfLI7YF8YSFiZc9IUHkd1ZV\ny+IRESL/zJ8vMvvEic0Km25PWK1id/NxqaTMT0FxkZUrJ1bVvUirhfvukwgZDw+hpZnRDW2Ni+bY\nWq1WIiMjee211/jpp58AuOqqq4iMjCSgXtB78xATE8OTTz7Jt99+W/PaxIkT2VYdHnzbbbfx/PPP\n07NWyGyL4sazsti97Ee2nQ1FMWkiDz2s6DDjeWPo0LzO2jhzRsKvhw+XMK7zkJ0tRryyMnjggQYv\nqUGH0LB7twheV14JwcF89hn88IPwsYcfbhsnSKfMRVYW/PgjaepQ/rl9IkqVgscew250aQHako7S\nEivr7tuO6mwSfRdPZ+KNbdR26yJoLQ3u7l6Ulp7vYdMADVlA/2A5trWRmSmtdMLCYMIEdu1WsGqV\n6Ap//3vbnCvtRoPJJGMvLpZ8Lnd3Pv1UXmrLfW1Du86FxUL2p7/yw+pMYoJmcs/ffYiIaJ9bNYuO\n06eFz0dH1wmjNholtO/kSWGpt9zSPmNtDG0yF6Wl4rV1dZV0mQt4SjdulA5ZYWES9dtWMnqr6UhM\nlDzzBs7hvDz417/E+HDPPS0wGDYRraahqkraEoGEr17g4X7yiaTwDhggofB/mP29b59YhKZNu2iH\niL17JXBDp4Mnn2y4LMiF0Fo6UlLEwWwyCQ9tUvZATIyEoE+Y0CbpBm0xF01eKwaDhMIbDHKOtKEy\n2Fo60tNlLqqqJEK/Qb/ZRWTx1qIt5uKbbyRKvV9QOY8M/Bati1YMCh0Y0dnmOba2Lx0xYgQeHh68\n/PLLNa/PmjWL7777rvmjrEZjVZGVtcx5JSUlNVWSm4WqKuEyOh0MGYLVP4BVpjtw6gs7PgOzRYzo\nnZQ20O6wWKQLy5G9eq6POMrwyZ7USFvh4fXzjWrh9Glxkrq6ihW1HfZbk5CUaGXNC1kEu3tzx1M3\n4+Ahh+avv4pDIT5eQjvast5Ih6C0VA6SoCC44w52fQ7ZORJy88YbInR2ahRHXh4cPUqKZQC71RPx\nip5IcixMbIZXwGqVtJHdu8U50VGOKqBaqT2fCZ5fKMr22h8YgYGwcCElJfD+q2LsCQ21knOqkOQv\nEtH9aXCXZXBWlZpvrbPZeVDP7NxYxl/lwq+/DqjZ17m57VAcpRXY+30+Gz8qIXqyG9fe7VM3Mk+p\n5JBuGr8FyVl/4ADtptg2C337Nuh5y8sTpdZotHe5ufLK6jczMiTvfeDArjUB58PN7eI5aFYrHD7M\nbx8HEBAWQHKyiszMhtO5c3JEIXFykoCY2uUE2g19+jScj5uWxpmNGeSlReLu58SOHTK+HTtEh+8y\nHbNsOYHDhtWjIz5eHNJhYfCnP4ndwVZf68QJWYOBHWMnbT369pUzuwlpP9u3i25l62QybhzcfnvH\nZSDExNg9xgcO2PVUqxW+/17GV7OG0tOFEQwaJHUXugisVkl9DgqS4TW0Vg4flvI4w6I0LOgdjNJQ\n1XEPuYk4eVKCBp2cRBVpULFVKKBXL6whvdiwXqKb5s9vP0NWS/Drr1KOICHdhbQ/31C/w+DZs6Kg\nR0U1uzCi1Sp6yqFDEtnQlqm3TRKh9+7dy9ixYwkLCyMyMpLIyEhSU1NbfNPU1FR69+7N3r178Tnv\nYVRWVtK3b18mTJjAiRMncHV1bf4NvvgC3n9ftIT4eBQKiXjcv9+evxgT0+Lhd3mkpwsjqzwYy5rX\nikSCaWJOdP/+EqFjNjcQ+tGBWP9mNjnbTrLzyxxOvPV7zevTpwt9gwf/QdvKffCB5OxU59ZGR0v+\nDYjF9dy5Thyb1Sp5a2vXEvrZC/QKqKKoqJbg20Tk5YmnxGiUcPkOy5v6H8S+fVJ3x8EBTh+roEfy\nLvr8/C589llnD61RFBZKsTfTkVjW/KcM0wsvMyM6j/R0cS52pdZ9VrOF1Y8nYDgWz6bXzpB9trLe\nNUOHSl07jaaNCrq0I3x9hcfv3y9RpJ9+Wp37ZzCIi2HtWvndxXK8mo1jx+C117gq/xOyD6bSr1/j\nRtAtW0QZOXJE9lOnobISXniBfjtWE5C0B32VhVGjpM6RySRT02WmZcUKKSL4wgtiCa+FTz+VPb5t\nmxjKbfJXWprIv12lZXCT8MYbQufy5ZL7eAFMmSI+ldxcoXn7dikj0FGIipJI0PP5UHGxKBA1a6hM\nb9/rL77YvrU6mgnbWrGdBQ2tlTVrZKt8/9980pd/BO+8IwJvF8LgweKxVyjg8ssbuCA/X+bgww/J\nXL6mxvG8enWHD/WCmDFDDGsN8s+SEtkXa9faK3w1AxkZMm16vcxpW6JJ1Q5sIchthd9//x2tVotS\nqWTKlCksX768piryuHHj+P333zGZTLzzzjvN++KqKgnxLC0Vt5fVKqarLVtYMG0a6icGsnGjWNb/\nkEpRE+HpCTpPKwV5FqLdMkVLNRgu/KHt2+HoUXxmzuTFF8Mxm9s3hfNi6BtUznGjGidDEX77f4TU\nwdCzJ/Pni9XRUWNGkZ4mVqLGEpG6IsrL7YUr9Hp6h8Hdt1exZ4cJnbMRry8+hzEDOs80X14Ojo64\nmMt5es4RDHsO4agZDjTgdq2slNj14OA64YBubnIgZWeL86eT6wg0EerqFkB2uLnpKCm5sDDTIcjJ\nkXggf3/JX7ElohUUEKQxoVb74uOj4KG5mUzcul7ebm2lkrZEZaXQkJsLu3bhOno8/v7DyTqmpZ9H\nHiqriflTS5h5mw+Ojp1aq6QeFPl5RJQdJqYyHB+PfDxKUsHat84gg4Ls53pn19y7GNRqeGSpgeKU\nCjJLXenZUy183mixF82pqmrcGpWbK2vR11fWYlcrumjjSeXlYLEwu2cMUycHoV0Y2jAfKikhNG47\nlsSBaEJDCArqIHqsVom9T0yURMLQ0JriK16eSl4YsR7TaxNQaJT88IMIgeHhXeBx5+WJdn3ypFhh\ng4Lqadv9+omx1tXVrphcf71Ei3a1/V2DpCQJe3FzE7eZTaaoqJBBm0wXVQBHjJBCvevXi7HExaVj\njXTBwQ3zIRcX8XrWrCGF2b7XKytlr1ssYnnQ6eRZbN0qLueRIzuOgGosWGCPbG9orUREiFivc9aj\ns5aJgFFZKeP/+msJuZg9W/JyOgkBAVIY2GJp5EywrScHBzzNBXjpLOSlVDBspAoSMyTEesgQkQM7\na8McOsSMhJ1Mvn8y2pFD6vNPk0lyFq3W+oVomwBPT1lu+fnnVbtuA1wwxzYmJoa7776btLQ0Zs6c\nyYsvvlgTGhwdHc1+W3n4FmLy5Mn8+uuvdcKPn3nmGTZv3oxOp+Pll19m6NChdQfcWLy10Si9Us6d\nk93bu7cs9E8+kb8dHLAuf4HEsypc171HQJBKEuQvltFfWCiTFhTUpgusTfNCCgvFTGfzbldUUHTn\nQ2TvSaK3ZyHa8aPtoWnDhtkbgmVm2qtg2hKQHByaXAGwTWnIy5NSlBER4OyMxWgm8emP8fjhM/wG\n+8kcPvOMnd5Zs0QoGDRI4p5aEZPcITm2+/dL+Up/fzFHursLYwgOxvjpBpJyXPErPo1OUSQn0HPP\nSXxGM9BqOmz9dI8ckXiYxx+Xte/tLflFvXvDgw+KkeToUXG75eZKrPHSpXW+qrRUyLTJax1FQ/3+\ntNB4KLL1ote0dCytosNkEt7l5yexbX//u7jAHRykmImtMNzzz4NeT9rsezCGDyRUV4zi7bckPGjq\nVJEmG2xy3Y40FBaKN6e8XNaKn5/0uUhMlHU9YAAoFJS98CZpB7MI3fExjqOHSlhAQoJIZ3l5sg7H\njm2TAkYtosNWQfqll9Cv30RyVSA9+rniHuYj8ZW2Yjk7d4o0O3ky3H13q8d6IbQJn7Ja4R//oGLX\nEVJKPAkJVeL813vk7PjuOzkPrrlGztD0dOFXtUPa33xTYuZMJkmAa2auSrNpqKiQOGGNRvjPt9+K\nO+rWW+0Ws/x8iX/195c9UVVlr6pYViZnRWPn/GefYd38LWdLvdHcegPB1zctb+KidCQlSdxtVpas\nY1ss4t69cl6BKIcmk3g+Ro2CJ54Qevftk5zH6lDysjJhB716tW12QQ0Ner2Mxd+/ftynxSKepS1b\nZK6TkmQucnLkPW9vaV9Xy7hsNst29/JqVdvm5tPRGIxGmQsfn4blhP37pVBlYqJI2rfcIuevVit8\ndsMGcYc2VrHpPLSU/vaUQ2rWUE8LTvlpwos3bBDLw6JF0ubru++kAFNRkeQVGwyiKA4e3CVoID8f\njhzBkJhKcuhk/IcH4bnnB1FqZ82CZcskZj8tTYSO8eNFu2xBiECb0HHwoISGTpliLyyXnS16hJ+f\n7PPjx0GhoHjlZ2QWORE20gutc3Ular1e+FlZmSyq/v2bpYO0iobycliyRGQOg0Hku/37hfcOGiTr\nJytLdK7cXDkTz52T82XJEruOYTbbIzp27JBNMWFCjXG+uFjUkLCwxo3CbZ5je9999/H0008zevRo\nVq1axbhx49i0aRPh4eEY2ykmZsmSJSxbtowzZ86waNEittt66tWCrSpyXh706jWJu+6ahKelVGI5\nAwKE+S5eLDEAaWmQnEx5QG8yFv6Tip79CY/7FraVc8YUytv6O/H3l0JJ9aKe09OFwVVWCrProIqi\nzcKhQyLsarVSsaBnT4iPx3A4FheLGdXZM5CfCSoVpY4+LFf8ndig6Tx1axKjtr0sC+y+++TELC3t\nnNyqsjLpHVdUhCViAFtGPEFRbAYzE3bgXpYEecoay+GpU/D8TamEx17JUstruG/bJmUhf/yx63pu\nc3IkXObMGTLTTXzrfjPX6N/Gp+wcSn0VGicn+o4ey9qzURzMD+UGv61M2LRJLMcdaa37+mv5cXMD\nb2+qDsRQqVeS5WDBb24/vOPihBF//TXEx/PtLw78oL6GSTEnuW6xFYXSPlY3t2b2tO2GHe+/LwJw\nQIA0vktMBJOJ2JIQPviXL72nwkzPNFzPlOMd7Ezw/o3w/fuS62I2iwFl506shw+z65Z3OHtW9MYO\n8R4cOSLxh46O0g5k0iT03//KOwXXk1zgwZ9Tv2FQeBUxcUp6fvwOGmU2KQmF5K87wQBlPI7ebsJv\nNRo5+Fes6LCqnCaTPHYA970/cfjrVC5POUS4E0QYTrMu/35251/GXOcipl2BjHPePBEEN24UxaCr\n9c0+H0lJWFauRF2up69Bj6okhOLH8shR9yDe0o+fiscyzCeCO75fgSrmiBgali2zSx1eXqIo1Dak\ntidee03SN0CUrssvl8SvK6+U/WHroZiZKS1LcnNFOVGrsS79C59+rmTX41JlPjRURIORI+WSX36B\n/CP9mWn4hd4eBRDWRu72EyckRG/vXjEQ7NsnxmJnZ1Egiovl5gUFWC1WNnrcwa8V13NVrzLm/GMI\nDB6M1Qpbf5fjPTRUZON2S5m3tRxxchJ5p7YicPashOIqFOIm8/WVNZBZHQnm5ydn99NP1wwwIUEq\nAaelyXRMnSriU6dF7qxbJ8/b0VGM4+fLOMeOiexYWSk/H38snrJZs0QxiYmRhVMr/+noUZEZPTzk\n8dWOAFSp2qftc0uQlCTioaureMWcNq2n1/HvwWrFWGEg7UAexqMrCD+5GaUtsiY/XyZPrZbY2Fdf\n7Wwy2PJRFt88f5xxRd9x08gzRPTcT9GI/7DFcQ4h/aC/uRj27aMqNoGKKhUu6mIcfv5ZeMcTT3T8\ngPPy5MErlRAbS8Yjr/Gf/8vG4dAeFg/8Fe8n75Fq+xYLLF6MJiGFQKsadYkSegZBWBg52mAOvJnE\nyMPv4+drRXHXnzuuL69GI0Jcfr5YZ6r7jZ/7OYG3rPfjnnCQxf5f4OFgEWP14cMk57iwLac/4c4n\nKR8VQGgvKxG/vCMKcXy8fJdGI+fJTTcBsn9aYXtvFBdUbEtLS5le3Srm4YcfZsSIEUyfPp3/NtSv\nr41g8wiHX6DA0dNPP01mpjgyjh2DlSvhsUd1EhC+fbu0LLBYqLA48h5LyTZ5MNaSjNOpAj6JH8zj\nGi/6+8CmXd5UDIS4WCsnXvuJ6IxvJF5m5ky5UVqaKF0uLvbKeF0IRiPse+Mg2jg14cHlbHqrjDgT\nTBnem536e5lW+BmOCjd8SovBZOKw70QO5fqRVWXkX/9x5eshiIU4O1sWWkVFx1b6saG8XKzWajVF\n325HuTYNg8WPr7xHMtGrnN0lE+kbeRvRiJwbn+lBoWUEcZaBXOZ23N7M9wJrpqJC1klOjjhWGioi\n0i4wV/eZUKupyixgZ/4YjmU5M8ZcjqublcPF/aksdMH6o5GtUbfh63ySdZU3MmH06Y4PQYmJkbGm\nppIfm4bR7IbebCXJGspPp6L5y4gdIugWFKB3cGet/lrSTT3ZlTaSbUsUjB8vYURNFmAqK8XblZIi\nk9IMy/AljaNHwdeXnGOZfHnnAUKC72ZmyStsSFmIxS+AXbtgZ9lQ3OJvw5Kg5v+uPU64tkQYQlGR\nWE2tVow//ELu7qfZM2gpKSk6nnyyA8ZucyuZTOJtLSsjgX4crhqEhzaPL/3uwU+7nlXvGOi7M4gT\nqun0N8XRz3gc1FkMcd+HKixUBGYvrw6VhrdtEznOZAL2emCpcuKn4sW8NOQjHCMD2HJmFgGaAj7N\nncIUC5TnVPBuyT2UmJ24x/o+wQcOiAfXxUUs3B3c8qC4WOxnlZVw772iBxYUwOan9jP40Fr6zx2A\nS/QgykxOqIwGTFYNVr2aI3nBWJRq1mSMoEdvBdu3w7TKVEJ6+crePHRIrFQ6nUSRhIfbW4S0N2wh\nblaraA+21Afbs7VYhHBbL3uNRgSooUPJP3yOn34KJSBAwZo1otcYjaL/zpsnOlxu7hAOjvgnrzya\nB4MHYzKJXnPmjDiFBwxowZgLCmQRaTQytvBwWcdffikCS2Gh0KNQUObqzyb9lfj7O7PucH8OPiUf\nmzJF5OIjR+RRJyRQs38rKqR2QUGBOBqDg1v5jFNTRemuqJDx1lZs9Xo5X6tTVHBzk9ciI8WA1rcv\nZGVRkV7Iys1OZGaK4+b4cVk6YWFyBE6bZnfiNBWZmaKXeHiIU7HFdpS0NHuIfWFhfcV20iR56AqF\n/ceWTxsbK/u5tFS8VNUa7J//LFOpVIre9+KLDd/65Elpbx0eDrfd1nGh5EePSljyoUPCB0pKxHax\nOCsGz+EeeJSmkZKiJivfSEaBGn+FCx65KUKQp6e997nBIAylAwsR2opPbt0qtoXx4+HfLysIzi3l\nB8MErsw4jk8/J1a+pyD2hNjclv9Vj2/PEOIOKwlWnqbC5ERAWRnqb74RntURvApZ92vXQp8ezixS\nOqCpKgVvb77/IIODv1XgUOzLTrcQrklMFHmnpIRSrReJBjXBxiTSfSLoWV4IlZVs8LyNigMZ6BJN\nODurcOuAHr1Wq9hod+zQ8v/snXd41GXW9z/TW5LJpPdKAgESQq8iTcUVRRTWsva1KyL2smtb67q6\nLq6K69obgquCBRSlSofQIT2k92Qyk2Qy/f3jMIQuJbDv8z7vuS4uIJnyu+/73Oec76mXnPsk46P3\nSnO455+HlhYW142n1dNBjT2O7aF9GJtQDRYLvgmTeOU+FTannj/9YzARsT4G9PMw17MBg8Ugd0ev\nF57at0/svj17JNJ7vHF6p0jHtRoUCgVtbW0H/j9+/Hi++uorrrnmGioqKnrkAQ4PMdv3zwtramrC\nc5yaBre7e450VxcijK64QjZs8mSwWNhlHs3mjiya9XEs9F5MgTOZZFUV+WEjITeX7Om96eoCk9pJ\n/I4lIkHnz++uGenfXwR4UBAVQy7j0UfFEWuz9cjST5sKC+Eb20QcLjVLa/qxfF8qbjcs+NlC1cjf\n88HkebTGZuNJTGWfthff+39HgyEJuyKIlP7BwmD5+ZKC8u9/y9//jU4/UVGSyrdjB76qWlqbPATX\nF9HSZWBvWyz9634k5A8Xw5o1JCZCkz6R6ujBMGp/itfUqb/Zin/nThHyzc0iNM8Kbd0q0fA5c2Dm\nTDy33MmSoOlsNYziNdPj3OacwxrvSHSeDpRdnYQ2l9CYex65Nw+WOQ9nmzIyJBq7YQMeLxSFDqVU\nm8XcxOdoH3cRD+v+zl8/iaP9ltlohw/Em5hMozqWRkUMtbXSCKCq6iS+r6BAwLTPJ9L0/xMAjVNu\n5MlVE3hk4zTSNn2B+vuFND/xDwY8fCE2G4TW7MbUUskq/QXsjp7IfzRXijCw28VImzIF4uPx9Mkm\nur2Y2PqtZ28UYXo6vPQSKy95hVnv5/Lp/VuIMdkxB3mxpeUywFJJ44ip2JVmPlHfgCvIwvvua/hU\nfT3htn20+/e3FbXbBVmcxaLVg9sQ9PHu5o7Gp7nI+w35UWMw//sVEqfkUtd3AgMyu1C+/y5bl1vZ\n1vcqagxpLE67S9IyW1sFFW3ditMpV//++0WHn2natEnkXEUFLF0qP1u5EiKWLaDBqqVp8UYICqIq\nfhhthmg2JU9j7ZB7eDrob8wxPIoyMZ7GlKFERSuJyE2QC52fL+nHTzwhoCcwsPpstX6ePVvCrRdc\nIDriyisltT3QAEKjkdS3xERBPi6X6PEdOwj5x19IcpdSVycANWAvOJ2C4crKoL5eycL1sXSmZ4NC\nQXExLF8u/qHPPjvFZx48WMKUM2ZI5C8ra7+H4VtJOU5JEQeQ34/R2Uqv89KoSxuNxqSlrOwA++D3\nd9fode0fHZmXJyDv448FQC5c2AN7fNNN8jxTpggS+/zzbiMnMAomO1vCrpMnSwQn0LEOYPx4djbG\nsGWLLLOqSo7BZBI8HBNzdB+P0ymsdf/9AggOp++/lzMKNMg7ZbrmGgGkwcHycAfbOD6fIE+TSQB9\nSIj8WbdOMvamTRODPDf3kBSkwPb8lrn06afCS8uXi1gDWcvs2TB37ok3A+vqkqD/Aw/Ilfwt+vRT\nAd7t7cJPPp8sa33SDLw+JUycSMlVj7M87Y8s7nMfvoho8fZ3dcmBpaVJ2nZBgXQg74GulkuWyFX9\n6qvj9xlqaxNzQK2WdezdC3almXJFGhqTFvOsG+Dhh3G4VGg0sjZXaBSKO++kNS6LVk0Ueo0PRcDZ\nNXt2jxjtPh989JH4LNeuPfprvvhCZMuaPCNFv38cbrgBtFriv3sLRXMjTr8GhV7XHUBSq1G6ujCY\n/GxJm45XoxcnU0QEGU3r2GMZQ1HMObhzh/Z4YC3Q++nRR0VngNzfRYskvvHxtxa8w0fJ3XnkEbj+\nevrPmoQ7NgmjSUnSoAhJ9X7pJRRaDaNiS1GadPzJ/gj37rsXV2U93qBQybCJiZE7dOGFIhM3bhTB\nNn9+j64pQMf1Hz300EPs2bOHkSNHHvhZTk4Oy5Yt4y9/+cspf2llZSX9+vU7EBF+7rnn+OSTT5gz\nZw533XUXixYtwufz8cwzzxzzMxITxfYvKREdcgR5vcS25WM0j8XphAHDjKSsqKGfqpyYEC3ceiuT\nKrfT9y4zppRIQv9pFqA3YEC3W81kkrlALhdLPjbQmN9MhcPPthGhjB3/3+7iAFE0EKloYkGfx8nt\n1YllRwWtJDFmop6sLC3l+zTExmZj+6KEHf4hdBktJGTHc35fJQ9d1gJvJgmoXL5c6oBsNkF+oaFn\ndyG1tbL3Fgto9ITvqsdpCmOPeRTudj2DKhbK/KwXX+TeBd8SFaVEo4lj0IxXQes7oahOXJzIC6fz\nLKUJWa2SUur3i2ZxOHDefBe5RghdU83e4tHEOCvYuTeXwb489AZ40vx37Oe4Sbh67NntEuJ0isW0\nZo0Y5y4XUfPfRBmTQUNUBA9Oq2JTUCYVBVC9A35I6Y0muTfTnwHFf3xUVyvx+bqbAZwwxceLtm1v\nF8P1fxu1twsCMZsFkO7n4189I6jOcBBS9AX5rdFcYPqVIHUXsb1M3GJ/hj6JDdQ0aqjVPk9orIGs\nocHQkCDKsrJSnFS7dmGcO5esYDX+S1LIPhMZsp2dUnsXFCSgY3/djN8Sxsdf2LHYS1hZGMvECQN4\nbvRWmmdNo7Q4lwq3kisGwgKlBbV6MP3aIbQ+HP9eAwZrHah8YjSXlp7V2QcTJshVoKmBETs/obzF\nx2h1HgqC0IYaefxxaKjxEP/Uw7DHSohtDw2hLxI2pR8ZdwCGDXKHXC6IjBS/zfoO9GY9X36p4okn\nzuzzJwe30NtWQl1QL3r1kouYFOmgUqMjqaUQ/aB0CAsjpX8wu9VjMVrCmK++nKyIRoqdSTz4Jx29\ne4sIMP65UjKXFi8WvgzohjORN3Y8ioyU0NM994gTbNkysex79RJDT68XB7TLJUZSVJTobbcbrVHD\n49k/s3VoGvY12xnbz0VFxCDGn6cmMrK7a2lQkNgR2dmC2YKCxK9yyoEEg0FCqb/8Iqmver0wlkYj\nAGHgQPF0pKWhcjp5cJaLulTJXvznP0VlDB8uCQthYbK8GTPko+fNk49vbZU/R4zfOBVKTxfrdtMm\neO01Oe+uLrjxRnEcL1smwj04WHRZcLBsUkYGgTSduBblAf16220SmGlpEbzs84nfLTv70K8tLBT7\nNiREGi4dPhIlJUXK8nS6k4/2HkLJyXKwFRUCYhMTu2v3XS45k9RUkZ2RkYI2Kyvl4aZNE96rqzsE\nxd5zj0TUzWYBmwHaulXees45ogszMoQNgoK659rOmyf7s3atyJwTsUf27pWSzeBgAYbHyr6pqRFH\nQHi4sJ3BILz0wAPi9EonGEvyDIiJZlxFHdreQzm/ppjQnfHwS3430z3xhCDpXbtkP157TcoCTpGc\nTll3VJQAp4kTjxQlXV1iimq1Yq/V1HR34x0wXE9nQiKXDHCimTgAmpuZ6fucpcFDSZ4xjMREDSSO\nYfSID+EXOxqlBpXbIbJApRJmPM05XjU1cpYREeJYOrb2gyYAACAASURBVDi50e2WCLPXK8A8JASi\nBiVAaQ0sX85IUzjBhl0s6XcfEY/dBpH7nUI//YQxPZak6o0YgyoJnTEF9u0Gl4tRt2ajUAQRF3c7\nYaffauII2rZNjtdgEKfDrbcKfwUajfXrJ9u2brWHPp56MvvGMKZzHemXm9FNHENYq0UYPiQExYcf\nMC1SQa5tNdURSpxuJbfnriMo1Cy2XXu7MG2fPiJcw8NFn5zsyI0TpONaz384xvT2pKQk3nnnnVP+\n0qioKCoqKpg2bRo//vgjSqWSYfsNmNDQUBYvXkxOTg5Tpkzh3nvvPepnKBSCxQ7C3IeSWk3ijZN4\nYu7fKVT3Y37rA+SaFGS1byWqXQ13bEYxeDDxG9bLhX3sMUlzUqnETZiaKofx/PNQV8fw8PGs3Z6C\nUekhoUwJ6WnCFQMGnNlhqsXFUrM2ePChRXIdHUT+9UHu374Ot0KD1pZIe1gyjSlDSbnxZtRqGBNZ\nCN+V0ajV84vid9R3WbC1Kaiqgp/3xHFFXBz+mlrKRlyNq7qRxPOHYUpJOXNrORq1toqW2N+QxDj0\nXNY3TCTGupfLNj2MNyYen0pLqMlJc7uGza/lMeXGgURFB9J0TyxVMTFRht53dHTX8Z8x8nrFFVZS\nIuen18Mbb7Cqq5RWWxJTS94l0TSaVc1ZhIQHE2oOo0+UlSCdi7DVn0Bwi3jHzxYtWCDaMpDGWl2N\nQqMhsrGRyHHj4Dw9DrvYuABfLvDTp2sbMapG/vbsaDShJtrbxfj4rV5sh1BkpNyv/1Zt93+bvvxS\ngG17uwi08eMBsTMnFr1FmnY5/VtWo/eraXv5dd7Svc0VFW10le8hZ0Aknz/vxKY0kJKkg5qBoqkG\nDhQPzvDhkJKCokNDbV4Y7BRF3KPZ7QsXirWiVosm3y/DFdZWcip+RF20l2HOVYSXKND84xW27bax\n8W/rsBpiGX1HDldfLT6tGTOgfY+JsL8PQLt3ixTmbd8u2Q5nkXQ6uHSqHx54CcI8WBpL8SakYHhG\n5jwaDJAc3g5bN+GtayDClY+vz1M4nRoZ6dAiTQpRKODHH0lKruOPeZ/SoE3cX+dlPHMP73aTseB5\nHjA04gmNJmT4C4CKwb/+g+y2L0DhRXvN7WCx0ObQ4Gxz0NilxFjyC7s7UzFGuBmYm0VERznY9VLL\numiRNAsxm6VA74wLzmOQQiE8XVgogHDrVokY+/3SmdnlkhCP0yn6+9ZbBYiXlaGeNI7VT29hzObX\nUKn8zHjpavQJFwESKfzqK5FbsbESNdy5U9K4dbqjj5k9KVqxQlCOz9eteALNUz78UH4XHY1O4yM5\nxkmyp4rnJpbjz86hKyiCJUtElfh83T2dcnJEZJx7rtR49u0rctnvFwf/aSU4BHjX55P9BilIHjtW\nctw/+0wMUqcT2trwb9uGrbGLyvV2Yt588hD9GpAzTz8tanDxYlGJBwPU2FgRG3b7AdF3CE2cKGaY\nwdAD6sFolPRwtfrQcQ96vaRD/vCDoNGFC8X+q6kRu2TlSrj9dnxATfRAygddxqA/T+GOO/RceKFs\nRyAOUF4uWNDrlUDngw+KGh8xQsBQANjm5Ig/0GI58b4HcXGiWzs6jl2x4/eLD6i5Wa7BG2+IKA1k\nsP5heLFEXxsaQK1GGxnJuPR0cWT4fGJj+v1yMP36wWWXCaKOizttUKjVypUtKBD+OFo7lEWLujMQ\nbrtNHiMpSY7ruT93obj3YdSLC7F+0IBaDeH+dq4MDYW4q0E3AYYOxdgrHjaqwa+Cm24XBTN8+G9m\n9J0IhYXJeTU0HDnWbdkyudJ+v/gDp0wBS2Phgfr/0KadjFDrGFywg4aHB1Jx2TSSJvWGMWNQ7N6N\nwWIgsZce+qXAHdeB04kpJoajxex6ihIS5Fq43d0lF1qtJMTU1MiWvfSYFfOa74loWExCdA3GCBOx\nwcFgKxDc5PfD2LG4PAqay9sJM2tJivbhDw4meOYA8GWLF2Do0O5SweBgaTp1tLKAHqLjAtubbrqJ\nO+64g6HHmJy7YcMG5s6dy/snOYRIp9OhO8YsmV27dh2IEAcHB2O32wk+zFoONI8CGDduHOPGjRNu\ne+01ARJGI5x3Ho477+eVXX+kzm4ib7eOkL73k1L2IMpEpXjjqqu7pY1CIZ7gDz8Ul8vvfy+h85oa\nsFjIafiFZweEoFe5iVCPgpcWiEReskSkyZkYEG3dP4PW6RQB+8IL3RqjrAxWrEBttaI2GmF7E+aQ\nEsx1BTB7u9yskBBQq4kcEM9T2p9ZP3k0H6+Q93u0Rnj6aYry7Dz7Rhh+k4LhHrhb4ROX3+rVIuiO\npnF6kmw2MVhaWsBgwDhuGA80z0NRtY5aTyTN9Y18FXcL12eup2inD1PFa8yv/TN3/+PkayYiI8/S\nDD2PR9zvmZnCPy0t8MUXjNH/Sq7fSJc+jAsyLKx3DiQ1JohtLaMZEvQD1DZJ2kdgnMvZoA0bJL9m\n505Rbunpoj07OuQeTZ8OkZFoX3kdc+W56JOi0NTYOb/+NXRKF8nPf4gyPEwUZp9jeZmOQ4HUr/+N\npFZLFKG6Wtz/WVkQE0NODqQNqUUV7MOw1glKDbo92/AP8KP1duLfLwLCLT7Cw4DSfVLbqVJJ2mZA\nRkRH89M9vxL64zz2hg0k8r0byMzqQd4KIAGl8tA52V1d3NFrKY6ajRji9WhCouHrr0leX4syvwWv\nWseuX59nTVUKCgXElK9navP7kBoN+QrRqOnpZ2/gpcsleYH5+XD99bKPaWno4uLEClswHyyhAvCa\nmsBqxd/RgcKt46LCV3DsC2HX4zHkXr5/HovBAFYroQ1LGTgpHE9dJabcCuAMdlNzu6GlBWN0CNSW\nCprIzISlS9G2NsgzffUVLFyIQx/GytjRBHmsXNMwlwJnMtudk1kz18PU4v3zQvr1EzB7zTWHjs3w\n+8UgMZnOzjw4u10al7S2yv2w2yW7x27v7uj/8ceih53O7hziiRPFJnjlFbRdV6DAjx8liv2lTiCg\nY+xYASZ+v9hpvv3q79VXe8AJlJIiEQqbTdBOWZl8WeCuGI3y72uuETlrtRLndMKuOIr/+AKgQKE4\nNG3zqqvE5xAWJmLzp59k+YHS0AsvPI3nzc6WDDWrVUKN27YJKmpokP222eQ+WK0QEoKvphaVdScx\nhWUsePl67ngpRa7sunWiU/r3B89tKBRiZh6efhoRIXXObW3ieD6cFIoecC4E6A9/EMM6IqL7Q202\nuesTJshmPvWUPEwAwcybJ0EFjweXtQtd0S+wuYmt27Yyqm8b6Skp0vkd/SHrC/gGQFj08Kz9q66S\nSTqBMzwRio4Wx7zNdnyM5vN180JmpvhOGxpEPbw6pYLQpiYB88XFco82b5a7HBEhjsTrrxebxW6X\n0r6cHJGLpzl+UKEQR1JVlWCZoyWkHcwfOt2hZbERP31G5+bVNNR4UGvA6/ERZGqX53ztNalfD9QJ\n5uZKCvDw4bLBPWSbG43CIg0NR/Lr/pJ5YH/qvd4hAmXHDrkvJhMqpxNHsxVj6waayxtwbkpAlxAp\nHo6HHxZ9+uOP3fMSjcYzahulpcmWdXUdGpszmfbv/aZN+H+pIrQqD4/RC/Z2ULvl+d5/X+SZSgXL\nlrFywvMYKr9E4XeSNTSYsJf+3M2o+6c3YLPJWhUK+ZIz2Oz1uMB29uzZvPzyy6xfv57evXsTGxuL\n3++nrq6OgoICRo0axQMH52H0AHm93gP/NpvNWK3W4wLbA7RhA607q9DmbcXfrx+eL5agqu/EWTYS\nXVwvcnIg5+K+RNRPhXdeFabZvVuUSlOTAMi8PDHU9Hpxe737rpx4bS2K664loaVFuGDyZJEUWq0Y\nFGeqvbnPJwoxUBh0MLlc4s4sLOzO1fH5xAD4+Wcav9+Ac/g5xE+5EMUHH2AxtTOx5F8UD3+G9k4l\nF1+MPH9QMOwrw+90o8qJg3c+E0EREiJ70bdvd8s/l6tbEObknNbSurrEwxnmNxFuCUdZWwtuN77V\na9CV7kHhdZDoLycUB2bXt3QVdaFq1aEyu9Hwf8uU+sNo40ZYuZKGfuMozb6ZrF0LCIqKxZ2/D73X\nTbh7H3qVGUeQCrLjMIT0wdGaz+CqhUCTXPprrukeJXKGydNqx/vmu6i90NnQiUKhIEhRCgMH0llW\nR32/ccSsy8Pw9deY2npxfd0GzHYPinPPJUHlJ8roRFlcBTFjxAg4ZvrE/6ej0mWXSbfOiAiROfX1\nco8LCwmaOAKPwoVz5w50ChfG3kn8KfVTYlauwhSqxt2i5afntxPv3kfuomfw1dajNOjEoDwo57XP\n1s+oUhro3bAKbdP5wFEsyFOliAixnrzebgchQGwsmisuQ5O3ARqqcdraUTncJG5aj9oVhlKvwfPD\nKyx3/xFraBqOknUwPkzCOrm54tYfPvwUO/ecApWVwZo1dHk1qD78DM0Tkpbpq6un/fuVaDWgnzlT\n7mdcHE5dEGiduFXBnOtbQWubkeg3C+GXULE+y8qk60l+PvrPPoN+yZB8ChGDvXul0HDQoN+WCUaj\nRCrfeUecUi+8ICBFpQK9HodPh7O0GQNdpBTsZHwaqIdnY+y0EFVjR5cYjqq+RizOkhJ8tXUooqJQ\nJCdLVHTJEnkes1mcnpGR8Oc/H2l4eb3SzECplOc+VplIQ4OkDkdESPf3w41Pq1W+LzBTM5AKGxYm\n4CMiQlIQCgvp+H456k4P2ro6FFqt6PH9OYHq9nYumTGY8uRpZCV2orvsogNfoVR2B6Hb2g4FJMuW\niZobPvwUAG5xsUSQ29tl7775RgzcQOR53jwBS/Yu/D4VusZG6aCckXFA16enC86oqZFlOp2i5lUq\nwcsHrwHEBDmaP7S0VB5n4MDf8BMVFMiZZGeL/r/rLvm/RiM2kFYrf/frJ43pKmvwKHT4/WDXhpNe\ntAS4XT5r/nwwGPBt2MQdd0zm57J0srKOnCQEcqy/VfnU2ipmR1LSKZZ2l5SI83DwYOHX0lIBHdu2\nify6914JZDQ0yEaee644JJqbD4RJPU4lNbYY/Aol6uJC3H3iKPu1geiRxZhHSwg1JUW2rbRUKkuO\nRUqlfOz69QIujtPzEpCzX7dOWGfo0GPzYwA8rlsnx2Q2C08Eeqt5R4yG0aPx79iJQx2C3u9A6XbK\nF9TWigN+7Vrpgu1wCAL/+mtBozabgN6yMsk0GDDgpMsStNqjp847nfK1cXFSQm8yHTk+111SQZEp\nlxZfAymuCgx6BajVODu9qNxdqHfvFm9UeDg+txfle+91d+167LEe66xvMh3ZeNTnk5/n5orKGjcO\nmgptWOuCSEtKQVlXJ3ul1eHrcqBzd+JVaqC5CTauFp4rKcGZ1AtFVBTaRx6RD4qO7h47dYboWOOo\nyku9+F+ax0zXOvaEZhCmd6EO0smzDB8uOkCjkXKkuDiitv5IlV1JhKcBZ6UDn94IgSpBu13WUV8v\nsv7ii8/YegJ0XGCbnZ3NRx99hNPpZOvWrZSXl6NQKEhOTmbAgAHoz0BHkoNn2tpstgNdkn+LakwZ\nFBdoiXREUrRWj9OnYOsqFw9lPsOOsBtpHnohSz9vpLLazP1OP1qXSwT13r0i4H78UW5YR4eA1UDq\nyl/+IoDu8K5w998vrt1Ro84c44WFSTrMrl1HDmru10+EcWWl5CDNmycC3O/n6/w+zHdNJW5fHTco\n9pGdkMCqthzmfjaE/HAfGb2VbNggJUoZbZuZafqBBq2FsfowkTDR0RJJ6tv30HUvXCiCTrV/BvAp\nkt8vunPjDw3UVvmZFPMnHjPfS1lwDv9Zfw531a8g1OdH6fehc9oIaS6jJjyHPtrtdJpTybzI/ttf\ncrbJ4cA/923eKxvP1887SQ1v40pHBd+0XUqL90puV/6L/t5tlPmSaWmLJ+jca7kv0Yjn7a1kVbSI\nc2X69O6O3GeYGhvhxWcN2LfcwGVt79Pft4d6ZSx9/Q20/OlN/voPPdlLXmalYyQjVSpuMc/Dagil\nK3skcaxBdfclItQ2bRIDYNw4UX5ffy08M3Xq2Yno/E8mo1Hyft57T1zAffqIFfrCC7S0a3nBejut\nluncmfIDg8ZE0/vneZAmtWI/7BrIv1Y76e9vZLtnHCv84zjXv4brQ8wofD6RaWo1GdNzsSxagyY+\niuhB4b/9TCdDl18uxlBY2JHzTPfnke2wpfB6zRWEWD08aqohkhpK2mPw7inA5q/Hq7bTnOCmo6gG\nU9++IhxSUyXidrYyFyIjWbPdyP1lM+nQhvLspHCmXnYxv/75J4K2tKFQKehjbsBQXo533QYq2iPo\nMiRQlTKKbE0BKZtWY/FaobBBANXt+w38xEQJzQQQycnSG2+I1bRr15EFiEejESPktYE634YGaG+n\n3a1jkWsSH+y4izjbXh7VvMKomv+w/epLWLjlRlpUaoInTeD86xrhg3XssSfQtrmIoEbIMFjQV1RI\nVxSdTlLER46Uz66sPPK5VqwQfgbJJzzWeIovvxQA7HaL8XmwJev3w1//Kjpo61YBiG1t8hq1WkB+\nezt4PORXB1O/S4fG05f+vTSENJZ1W2tNTdgyBvPvlZnUZY3nlnMgJhjZ00BL25wcUCgwm0Wl5ecL\nMJk1S8yBF144yXHi9fVypzduFD2alCSorKNDnt3phMhIWlIGsrjGTKKinCxfKZG9ewu/uFwwZQoK\npYIRI8SfMHGiGM7vvntkneq4ccJafr9k0h5MbW2SCelwCFA/OOHrEKqslBe6XBJlDcwC7ejoRvs5\nObKe4cPxJCQz5/MoDEnNTGicT1BqFCNvOSg/dvBgCv+zg1dKbqXgoSRiEwTIneTI4wP01luSga7V\nyhoOHq3zm9TYKG9yOGTzrr1W7ufWrbJxWq3Iys7O7o6kIMbRggUSuZ0wAYNKi2dJFQsLh9AQ2R/z\n8gqs/lDCP07nLwO6Ozbr9VKHuXGj9Ns5ljPhH/8QjKjXS0zl4KSIw+nbb7t7K95/v/iLjkUJCd31\n2CD4aP16Yb1Orw7fKx8x6zYHW4sbmez+lucNT2HAIQfk94sjbe1auV/l5aLbo6LkEKZMkeibwyG2\nYQ+12f/mGzEtlUqpBc7NPfI1b3MbG1t34rd4uSX8PwzTbGNbdSJvdF6DGSuPal7BUl7Jf3Zkstfa\nn2sNC0jtFyTgq77+jJZRbNokCT9+vzheWlrgqdej6Gi+iylFr/L7sEJQqVD0ycC4Ox+3vYvEVBW6\n2nJxKCiV7NAN4cm9N6JVengqqZosi0V41+E4qw0UQa79h4/mc/6mSoKaqzGhpMEYyxL/DcxO/QVF\nnz6i3zs7Rd9VVNA71AlR8RRVJ/Bm0WVo71TiMon/Y+akKjR1deL8/vXX/z6wDdD333/PRRddxIjD\nE8tPg2bPns3WrVu59957mTNnzoGfOxwOMjIyiI2Npba2lqAT7PHemdSHeYNeot3qJXbVPCbyC4Nt\ny4ip2krKlP7ctflCYkI6yS+IoyZzHCnsEwk5ebJojNRUUUC9e4swDwwiVqmO3uq8d++z0xkyN/fo\nN12ngzvv7P5/dbUIIYOBxeqLsbislJNE6bqVZM+5jG8e06FMTsBaoxZ+bGyBVgWKUDNDoyvBuw+S\nfw8xU0TSDB8us4AP9si3t8t+eL1y4U6RfD6oXF+JYcd2UnwKSo3xlD/wOksWtFMXlcky+wYmdn5H\nqKcJr0pNXWgWHeoQ9BmJBGcmQVsF0PMtwk+Z/H5obKRFE83K8mRCtF2U1AdTpQ6jzh+FWWdluep3\nhCsdfMV12OJ6M8wWxZXZQK4ffuoQxXLWZhCJAdfQoiZoSC7zVl/DrPAyHO1+HGMG4IhKQeUpZ6lz\nDIn+fWzwDePSjCri0gywdzv49w+BfOEF0aLNzeIkWrBAfu7zyd06zfSl/xXUq5cYCwGy28HtptCR\nRn2bjuARvVgemsSgca2SblVRAT4fa5VjUSt9hLitfK+6hAxVKcsjr+TSGcMJ/eUX8borlRjuvJPE\nSy/oTm3qSUpMlBmWR6OMDDAaWenIQR1hpsGSQEG/W+lTvRRrXge1jjjaMNOXQna2JdN01+WYRiVI\nxLOgQFKzn3vu7KQjm0x8o5pBmz4apcLPZ5/C1NxSzN9/hkejYa9uIDFdP2No3YffbKEpOI2l/e+j\nKWkQk+8tQ/HQgwLoMjMPTcmGI/fcahVDOjn5t+97TIzsRXDwiZ/dlCniJDObBaQYDLTrw6ntjKGW\nGOL8e/nVO4reqqV0hMSRlzgaZYKXq+Pr0cZHwtNPM+/Pfkzandisfq6IyiYnqFX0TUeHhIxsNjnf\no4VfAuN54Pg6ItCkR60Ww62uTmRGAEi1tBxoAkVWlgisQOdjp1MakkREUOaCn/r+iVB3Iw2TY7h0\n9/MS5vR6IS2NUkU6VdEDsQRLberIkUhZz7vvynPcddeBTJOMDPnz1FNis6nVMj3whICtzSbP5XTK\nGrRa0Zcul3yQySTre+AB+PlnrA4N6wZfxbqWFiZl13Np11Kx7gMGbUYGRETwySfd27Fo0ZHAVq0+\ndrWQ1yu+eZ2uu6vyUamrq3vBPp/wzfr1gjTUagHnjz0mPPXNN/iK9pHrDGKZ7gL+Gfk0r/T6BN2Y\nAd2fd/XV/Fh2Ee3aICo2aYhPkrjBqdqzgbHWPt/+UVwnQ11d8ia9Xs6ovFzOKNCyOTBSLD5efm82\ny8+SkkS/bd8OH36ISqUibNzvaIieQXS0nyXfpjNhgp+WDh2trd3AdsUKMZEaGuTqHkt8BfCKx/Pb\nawqwlN9/4l2UA9TYKCrG4ZAr1tamYNsOJRqNgo2GSVRO7SBTXyG8OnmyZGEEAIvJJHvS1SX5706n\nPIBeL16THiKnU47geOvLb4sl7Hw9resLSPv9UPSaZFa87EKj9NCgiqdAl0OfCAMxVYVkqPLY5cki\nuWUHyksuOeP9O7z1TeidGrp0Zrq6BEe3dygI6pdMofJi8O5v6T11KppNm9AEGaAqXw5VrQalkm+4\nlMKIUfhdbr4a2ovHg9+TrJ+z3awPOXq7IgS3Phi7Jow2bTymUDV1mgTcEy5AO3asOCzdbuGDjAz0\nkZEMqKvjvaoLiPbXsWFZFZm/07N9u5HKyamkZWaKx/Cmm87KGk4I2C5atIh7772Xc889lyuuuILJ\nkyejPo2urRs3bmT+/PkolUq+/vprBg8ezJYtW5gzZw6jR49m+fLleDwe3nrrrRP+zPR0uOqucMrK\nwFWnpLM4iGRjFbqUWJgwgYkNsOjrRHoNbSekd19qdij5fPMQeu34hdHeCiKaC0SYKZUwdSr+O+/C\nZlcSZPKh0vyXJos3NUlaocMhXRiSkg4IxCMCAE6nGEB6PedN8PLZT0mEKtvJnJAIK1Yw0pLMt/Uh\nDMxO5Ibhezjvn3fCc63iXX7sMejsxJ+dw4KvVPysm8b5Q9VMP3w+3mWXyRcHmomcIqlKi/hDwYts\ntJv5VTWW5K59zHk7Gm+nl84IFZvPmc3E4j14rRq64vrSPPJmoq6eiGbNO3LrznTd78nS55/DTz8R\nrA8hdUw8q3aY6SyqodifhiXYg70jhLGJa4hrasWgVqAe25+JE/e/NyNDUqQUih5pcHBC5PeTme4j\nyNfOxu+aiNIGsUc7gDHGnwnxhqI3tHLd+EqWrS9mqz2DtJhOwqeeA7fdICklVmt3dkN4eHetRHCw\nWB9K5WkMHfxfRu3tAuKamiSSkJ0Nl15Kr5/yiHC4aHFpGDLBDG88CxUVeDsdKCIjua5fMW/mxxNZ\n7yHdVcv22KmMuTKB4Bg9rLV2A4T29jPf9KerS1zWFRVwyy0CRIKD4a23GPPUN2zfmESoRU/8OWls\nN/6D17eXYKSORCpJUVZyuXkdSdpE0KWLlWc2d89kORuk0/G7WRn89JQGrz6IScPb6Xx/HmnaKlod\nbYQYvYTnJkF7MOrqavqEO6k6J4Jh00GRnIp9/CXMWT+Rxn3h3J06nF6IkdbW1p12eCBS9vrrYvEa\njRIlO16oZtYsyShKSjrxrmwxMRIqAigsxGsMwqIsQROkxeJtRqFUMkK1CRITGXp5MlcF+Ule8Cr9\nXv8MPgyCjz5i5IgkvqjMwZIBewvgzbnhDM14getHFaPO7d+tgI4W/ps0Sc5NqTy+Y2vatO5axw8+\nEOfYJZdIFoBKJU7VpUvFgGptFRmpUgmPbd+Ov6iIzlHnMaJ6JTvqlbiDLIxSb5I9LS2VtMTQUFJ/\nNxHNslCWLpWIZkcHmKxWANxuPzS3cXgF3rXXCq5zu8W2/E2qqOiuI7v1VrnHGzcKHy9dKmes1Qpi\nnjoVUlKI/OMsrqitoeB3sxh9oRG+8h8AXG0NTv7+YAeqtAjOOUf87Xr9kRHZAAWAweHZ3GFhso07\ndkhk95gp1Xa7yHSHQ94wdKgAwC1bxKmfmSllAqmpsHYt2o4OclUq1ioncG7iHtSRFmwODUatF5VW\nxfwFSpblWQ5kjLvdR59c4fOJ6Pgtn82dd4q/NCPjFPp0JiSIMV1YKNl1b78tG5aRISnIeXndaZIT\nJgiQmz5deHjxYrl3hYUAxIw9H5PRz3ff+YmJ1dLlk2h64Jl8Pkkq2L5d1OLxRqfOmiVR9L59f7uB\n1NSpcrbBwXINToQ6OmSpmzd3VwX07y+AOyPWRmt1LQODikigSjL9QkKkWDsmRjKHKisFCZtM4oy5\n8kp5gFtukfB5D04xmDZNnC9HMyvtdmlh09gI2vxKzrNsIa56GwwfyjmWJezy9SVc6yQjxkHIji2E\nKjKxGuMxx0ehXLDw0E5mZ4I2bmT4V3OJb9ewe8KjjJuSgt8vamzjRgX33zkaW+rfQaPBeN9tqAPO\ngchIWbBGA0lJ9FU78Rb4UAcHMfGmIBhx6lNnTpdCQuC6xxMp+OnPhKsKmP9RCEX2GK68O4WuaR60\n774tKQRWq1zgxEQZ7Oz3M+HGr/mP7Tz6+nZhX2sncVQiMSn7HWNe71mb9qHwHz5I9hjkcrlYvHgx\n8+fPZ/Xq1Zx33nm8G/B6niS99dZbREZGMn36CfCzwQAAIABJREFUdL766iuqq6uZOXMmAE8//TTf\nfvstFouFv/3tbwwYMOCQ9yoUiiNm3wbI5xP9GORoxPXZAnwdnXzceTnBfZO58molHlsnP/yk4pPZ\nW2i1qbiMLxmuyiNSZyMzuK67iOPVV/niC1g8p4hewXU89GF/tL17Npp2vHUcoJdflhQQgMmTWTb9\nTT7+WGT1I48cWntduK6Z4r/+h5g+oQx8ehqN26t55+92iv29mNHyLybE7sHu0hPyp3vQzbxVJF5U\nlCit778Hv5+23VXc8GAkZbV6urrEQ3y8VvQntIajkOuRJ/jbGwYU7TYmqFeRl3gxRfSmUZ/A9Znr\nUOgNtC1Zg87dwZacGzj/bxcwYvSZuxCnuo4DNHs2zk4vz3+VSbmuN82mJFJ9ReTVxTPcv5YLlUvJ\nYi9GRReWCLWkG7/+urzX55O0KIVCIvMnMLrotNbhdstMiR07WL43hrd3jqTBbeFmz1uo9RoSNXX8\ne9wn3Ds2j36bP6K504D1ghnMb72AmBi4fmwZ6sXfikaeOPFQpeHxiKGg0x1I8Tsja9hPISFh2O2t\nR/nN4e9XnMDPjv6aU+WLE17H+vVyHiaTZIgESg9efJG6Zg3PWe+kIzqNW52vo2ioJ2TveqKMHbj7\n5rK5Lp6OWjuxES5+OedpHnsnlUWLoCrfzrW6BUTEaQUoHC3jpCfXsG2bAIngYPGOP/74Ib+u+GIt\nL//ZRqdXT6vLRG2dn72eDCYql/GK+VlSpg8VpffWWxJtW7RIwPGkSYfwUFdXd5DlZFjrRNfR0iLV\nJf+atRNbG7zqn012YivKlBRpylVVJdZoebnkWH34ITQ1se6uT3iz5HxMXhtZv89h1l8k0vbGG2JD\n33KLYB2FAmmV2toqd+XFF09qjsnJyinHrEfYusKKt6iUl5UP49YYeDridYaFFEqk8qabZN8vukgM\nWacThg3Dr9HSPPoStFdexj33yL7s3i0ld08+CRpbs6D2lJSTlldHrCE/X0BhYD7JCy8c+837O3D6\nGxuxNbt5v98rXOj8hsxMUKxaSVfWQDpHTQKrlU9/icY4pC9XvzKE197QUF7kwuNwc/v9Job0aafo\nhQWsWK2meMDlPPSU8ZAScZA00ZdeEvF8zz1HdqI9ZB2rVsG//iV3eOBAScGuqJAPefdd2aPBg+WD\nQEqIliyRJQ0YQPP8ZQSX7UBXsAPH3Pf5uHgk/wp9hKBECxkZYuzn5cnyZ806NGpbVCSGv1Yr/WdO\nBvgdWMPHH0uo0eWSHg8XXCAHXVkpPG80ihHrcnVH6uLj2TX5flZ+a2erIhdsNqI7y7jzHjWPrZtK\nbKxckzlzRB2sXy84ecoUeX6nU8yb4uLTL7s74XuRny/8FXA0vPSSrHfdOgH1I0d2Z4k8+KCcW0mJ\nOFRUKrpuvJ233oY1pXFsdA5AodMzbpyM8rRYpGx3925Ri1dccWQGaSDTd+dOAXMHjcU94XU4HOJH\nb2+XfliH8y3IkT36qGSUByZ1TZ4Ms25uZ2B0La68nTheeRNz5W7UJp2Aq8hI0T9XXSUP+Ouvoof8\nfgkknGCQ6XRsqW3bpDn18OEccPy/9574HRwOcLfaSTfWMD92FsmdBRAfT2dZPephg9AuWwK9e+Mp\nr6bj9tkE33UDyqhjFJD25DrefVeY2+EQeTphAoWF4t/q6gJbqxuNz8XUxn8z3v0Tw3Q7MHnaBNQm\nJYle2bULLBZqbCa0T/+JiMRT09envIbj0PLlMj2woUF8dUPVeXyQ/AQJrbvF8aHXi94fOhR/YhI/\nd4ygYmUJ6PRcNKgOy4BkdPfdddbXccJoQavVcuGFF6JUKuns7OSbb745ZWBrtVpJ25/GZDab2X3Q\ndO577rmHJ598kuLiYm666SZWrVp1xPuP2hUZ6ZuyfDmkpETy2GN38umnkLcK3MtggG4Pg1b+ndBl\nKgZ7M/F5O6jxx6DQKDB7W+UC9+0rFkhoKMsWVhCrqKOoOYz67zeT2MPA9oQoNrY7ByUigp9/FgFa\nUSFKIzCKDeDNL8Jxxd5KZy08X9SK8aVnmLK2ml1pU3m26Roa7F8y5K7hRO4r6O4U53B0dzlYu5ag\nt/+NavftdPiyCYk2UFCgOCMzX2tUiRSoo4hRFvGx4npmNr5NtsdCWUgOOYPS+eKvxcR0ddLkN9EQ\n1IvVa9WMGN3zz9FjdPnl5N2/gJo2Izd5/oJCAYXBg1nDbdSH9KGxcQOK4P7UeaP5g3/Jod0iAkbP\n2aLqatEg0dGk5+3CrMphdecgupQGzF1tVGgSOafrJzZvjyE7JorIvDy2fbqW/1jH0dalw+9P5eaA\ngXY4qdVnde6ogNqjAdb/QRQfLwax09l9obVaqK+nYo+JNnczISlprLYNo7xTx/R0JYqGnexzZRFS\nvoYhrl20OGMYONpIWZnUY+n1wbyZcBNPXHOW1nDwLIrDcyWBmrYgrG4vIcoOPI1OdnlHcQWfcoPv\nIxTOLnytrSh79xb+SUnpBgAHkdUq7Q6am8VoPK3ur8egwDzNDbXJOJxK3tRcy9/jv8eoU4vhb7VK\nNFCvlxDC3XdDfT1JjjBMXYNxRiaSMzYUv19SLwNTnJYtk4kiJhPynp9+EiPytIZz/jbV+SMx16yj\nymUkz9ubTo2ZpamXMSx0rlgpF1wg/Hf55WKdR0RAayuKwYOJWLMQ/7W/IydHz9y5csTlpR4aluUT\n/9XrYrVNnSpZPKdDqaniJCgslKjQ8ai0FFJT8VptFOsy8Wf1pWD5WtJqd+Fp97DjVxtN27dRahnE\nZk8/3JuDSduiYUSvJgZ+/DzB/jZSGm6FIcP52nwjFTlgaxPscjhAqKjYH901iY1/rBErgPB8aqqA\nvvPOE6D73nsCiALzqQPIraNDUpL3512WOBP4y8NqYmIH81RWMW3eIMY4lmLosvJC54ukpFhYuFB4\n02KR8seDr9i6deIj6ewUPHJKkwfPPVeQs17fHTK79VYB32q1oA2QLBy1Wv6OiaH852IuKJiHsakP\nGRSTr+rLtjl60mdcRMk+NYMGCUs1Nkqj6qAgSU55803xXxUXy1acTprySVGA1woKunnt5pulO7BW\nK86ePn3kHNVq0ZUVFQC4QsIpfeANLmxuxK++mJWevoQm6A9MY0xJEXwSHy+Z7tccRfZWVUlpudEo\nfpBXXz35JWzaJDW8gQlrN9xw5GsCo2c9Hol46vWQt8nLwhUL0EUso1+mC2PVDnB2QUdbN//OmiWM\nPny42J579x4/VaAHyecT7KzVSs+nAQNE3L79tjjWuhw+otUOmtqNFNUEkRymhMpKjJEWKM2X+1Re\njnrcOMxP3ndaAYKTookTJSUiOloeGrnijY1gb3HhbrExxL2eWApA56XK0IvelsbuXj79+sllKC8n\nrrUVnr9PnCo9MqD69CklRbZ2/Xro7PATr9yDdWcVCeGO7jx7vx/8flxNNnbs6GS8di8VDQZ0CiO6\ni8/MnNrfohMCtj/88APz589n+fLljBs3jltuuYUFCxac8peazWZsNhsAbW1thB7UFi/QLKrXcVrF\nHbUrMrDmyxri2krY19ib5uYoYmK6mwpHV2wEt5ts9w7Mjj1YNaHERPuITw0lMjhLDmnUqAMg43dT\ntXz9ajj9LdXEjDuDYxqOR1dfLQaj3Q6XXcaEtfDppxKxPSRrtaSE+D0l7KgOIyQlAsuXX6DdsoJo\nj4nOwiWYs25gXZ/b6LJD/1FmuYQXXSTeufPOk88oLkblcfIX5ZM8534Ac2w6AweeATDv8RDrqSQj\nVEGxIpMZmq/I1DYQ52pjmLYE36I4EkihRNmLd5S3MjA8hZsm/vbH/ldpzBjaphkZuvlfaPxO+lLA\nYPdu9L3jebz2bmqDLPQdoGLMUA+MmXzWGkQdlaKjhYEqK0m651Je+mkF4d/X80/3veQai/h92mYS\ndn5NekMHpOhBqyWyeBNGRQ1Ocyr5+f+9R/9/khITJYrQ2SlWUWenICGvl4wMBTH1Tlp2FDAxdT37\ncrNZ4rib36v/SlrHDmz+dpxqExGaVvr02kNDaDQ6nfirzupY4Kio7lkUh89B8PnIjG4jNlFNi7Y3\nD2ueQV3i5HbPO4RixWxSopw8WaJYxzFGKislW9tiEWO+R4GtzwerV6NatZr4glH4VKNQ6pXkJU6n\n9e4hGN37pHlSQoIgVadTLMzdu0GrJX7YMF78mwbHyL7ExMhLLrlEsJrXK9jmQLplcrKEcM80+f1E\npIRQYQrCbdORQgW7lQPJTmgFZbA8+/r1AmpvuUUiB11dEg7avRuGDEGh1zFzpgCS1Ss85Db8RPSc\nt6G5XiKTPSEMdDrpiHPwvIyjrIVvvpF7kpCAKjOD/L7Psm2xm2BzOuqkVmydGlr3RRDma6K0owOf\n0ocmOZyICOhvKKGzbxMaSzDavb/C74YzcaIY0rGxR89K6t1bAnsdHdL/67hksYjXJbCGQKGlzSaZ\nUYHZ0i0tUpPe1CQWo9lMc4Oa2Mbt1NpSqR+fQ4yrAZ/BTW9jI1cNKaPIZzkwy9PlOrIX14gR0iss\nJOTE+osdlZKSulFWwJG+c6cAu0DRY//+4sgI1Hu3tzPqD3fT1dbGJb58likm0Z/dlGnO5+57VLR3\ndPvlTSZ5W1ub7LVCIfIpPV2cCtOmneJznyi53XJ/q6okzBm4xyCXc/ZsWf+bb0qL5oEDJSXuk09k\nrQ0NuOrsRLQW49Oqmca3bM6+jq324AOtVkJCxC+5Z4+o96OxcmDr7PZTH2MUFtZdCn20LtMgfBAR\nIfjUapUsa297FyOCdmG1q/Bv2SoP7HLJ2Y8dK2nyJlM3j7a2Svro6NHdMj0/X8oG3G6xTXvQIR/g\niZISOQKjUfg6NnZ/6xi/A0eDlyHmAka414FHLRt+//3yJz5ekPycOUfqkc5OOcv2dvEwHq0VcEeH\nlA0EBZ1cqVtKinRCPejA4+PFv9+410qLrZrrPR+CH3x6E6pHZsK/HpE9HDZMnIvnnCPP9803IpPn\nz+8uJzkRstvl2UNDux1pPUSpKX6uvFJB4S4Hjl2l/M77LTqNS3TFAw/IoSmV8PPPaJUqzg9eT4U1\nhszkBsyPPnj8fHwQXbNjh/BZD5binRCw/fjjj7niiiuYO3duj3RCHjlyJG+//TYzZszgl19+4cYb\nbzzwu8Dc2qamJjwn0ynAbmeacx4LmkcxzPMjUfaRZP/wJSGaSNJjOoh1t0JREXHtRYQrvXh1JgxD\nRtJV1YhfoUKRmipM5nLBP//J1D17mPzyDLRjz0cRepYLuNvbhdErK0XJDB8OBgOTJkm2jE53UKr6\n5s14/nA9M5ta2edLIkapxlBuBaWCCEMH9SNGEB9kwO3en96Rmireea/30ML088+HdevICsvn/UH/\nQZEQjzrhTz23po4OCam3tKDbV8CjA3bh27IVRUI8/vx2vO0OWtBibsmnb4iKqvBzuG9mCjfc8H9n\nc12bTWRTeDh4isoYvvNdusJcRLU2E+y1ofTpuEo9n96OHyhU9yctIpkhz86G7ytk/6dP/+0+/z1F\nbW2S97V9uwjR+noRSBdfTOiqVTx/6WZmL/8AQ7wFY1MFPpcdtdUEjt5QWkpmeAQDYl20hgv++Pln\nkeOjR/dYF/3/96mlRXJ6du4UI/Gmm7o9nmFh3bWWy5dLmnpXF5bkZF64roDOLd9gSI9jYO13nP/o\nIIwzy3DWtJBvtBDqaEMbEoSyrZXoaMEnhYVn2FjMz5eZqP36iYIrLpYw6sH87PdLqu7ChYS1tPBC\nQhLe5DQ0zdvI8n+LV60myGfHqUmmccTFRP5GDWl6uujI8nKxqXqUdu+Gp55CsX07j6T8SFD63ay3\nXEh662aK39xGZOhetFu2iOEQF4dPb8AbFonG2Snrz8oidMKgQ8aWzJghaZdu92E1tmeaOjvFSF+1\nimCfjz5ZOhKcu/Da5tDmD2b89rV4vXYICka1caMAW4DISAoLoXrQ/Qye3kpIsswb1GgkeHfdpAZ0\nT32BIrIXrG+SvTi4/erp0uEbVF8vKbJmsyiur78Wh8KuXShCQri67mZ+X16COjYSxfIOjCPGEVJi\nZblmEpP71TD+zgRIiqFPH2gsycSSGIPG3nLAaB08WOzRvDwxpgcNOvQRYmJEZHq9J5HJ73KJ5zkw\nr7a9Xe793LmSXj9jhoCrkhL522IhoX0vrWv30j90NRH9rqH09pcxfPEBWdmxZD3ai8K6AxgYn+/I\n9NbMTOmwq1Ccpp48ePFNTTJlISSku+PWDz8ISHe75SFiY7F4GvH6mvFHWhgc52atfTyFk+/nUqOC\nsIMi4CaTtAqpqBAfQGenAJfHHhMn3Blvx7Bnj4SF9Xpx3AQmOixbJtH1pUu7Q8jPPCOOuqIi2fQG\nmQGtzUimtV1Lp1dL8LXTeP+ZXrS2SVAz0PD1wQfFF3Cs9YSGSoZ3dfWpTzLr31/6O3V1HZqx53bL\nsUVGCg79299kn4uLBRg2Nxqo/PdgJriXoKx1CeK1WMQe6N9fFEdQEPzxj/JBTU2SZjtqVDdQ+ve/\nRT9ZrXKYr7/eY1kngVFFW7Z0O0SGDBG28/vhoQeN9C1bhunnRWirs2RRO3fCjTfKPQsNlYU3N4vz\nft8+4eHUVNmUlSu7sw+uu+7IB1i4UPLE4eRnxx50dwKtbmbOBEWFg4Q/z0azdwf2oFgiorUY3rhf\nBMqUKfLMKpW8YcwYucg6nWTUuVzdl333bgG9AwZIQOpwWfnllxLGB7EjjtZs9hTINe8r1D9+x4Sk\nLIzWPSj19SR692FSdGINTsDU5UVz1VUCxL1eFJMm0f8yC70//hxNnwwUyQc5uX0+kYF79ogczMgQ\nuzQwPHz9+iMcBKdDJwRsP//88+P+fuTIkaxbt+6Ev3TgwIFs3LgRs9lMWloab7zxBvfccw9z5szh\nrrvuYtGiRfh8Pp45VsfNo1C9VUeSuobnE98iZkgiNa+VU/X9DqLbyyA1GrJCISsL275m9jjj0fm9\nrMw/n62NiQxMtzEzogRVXJxIgu3bITIS3fIlcIkUybvd4liwWM5ClsDq1fInL0+8GNXV4kVMSjpi\npnH5v36kujIWhzOOdEUpvlolnD8Uf30970U8yo+uCexdp2BC72ra1zZDStbRJW9srDDZnDloysth\nWg/nBq1fDytW4G7rYE9LDJGVWwh2+ajJd9PQNYQ1ihGMdK9E6VfgUiZy1XfXEJHSs49wKtTUJBlZ\n8fHdDTjKyyV44HLJHXU+9iGGZidjg7cRGmNAWR8BGg3NZTb+2Xkvbr+SMUVWRlTtEwFlNIqSePHF\nM78Ap1O+a948EaJ79sC55+KpqKFgSSWhY67AvHYxc7QPMLD8V0Z5GohR2mTBkybhDA6nrlbJNRe2\nMvRuCcx9+KEs4b77zlqTu//5tGSJGFL5+WK0R0ZKtkRrq1goAU9VYFa2SgV9+7L34oeYs7yM4MXF\nPHJ3OxHle8lvjsTVFUROUjWKoEyU4eGQn09enpQr1taK+AgEHE6GNm4UFjlas5cD9M47YpFu2iQX\nIjpaBrY/95wggb17RVktXy5G4o4d+KPjKV5eiX+fgQrfMBzoqTBlUTjgjxjfj+Kvfz2+o9lolNJd\nv//4r6urk0zf9HSxyU5IT9rtcqkBe1kjBQkpDGz5mT0tsbyRn4lZ9TX9IjxotJ14ULNrj4KVnTcy\nMXoX/f+QS8clV7G7MJTExEOjKAbDKZc3nzoVFYneqKyUTQsJpcEVSrZzMx6vgvXtuXznPB+vIYn7\n/KUEVFltrYgjp1PFloERHD6eXp8SA2PPEQZ5+unfYJAeoG++EUZ0OkXhms3iOGlvB6sVRUmxOBYK\nWmDgQAwqNyMvi2WEfSNKnYZV/lDefFYwptlsoV+fF3jiWQ+WmG7099FHkrpvsYhRfXgA6qSnbGzb\nJgamTidW+dChknNqtYpRmpcnUaWKCmEMh4P4IBtvmZ+lwhHJzTddxeKN4zGqRjHCrOarOBWD40X9\nl5aKH+loz3RGnIuBcVEjRgigdTrlQVpaRDfU1OBRainW9sOmTqTomjf5ckUkdSsV6P9+5CSY1lYJ\nZO83rXjiCTnSs9JjMCysuzV0wv6OmHV1AiTCw0XJe72y5ooKySOtrZX7o1ZDairu0eexUB3PUutQ\nxkSama1RsGhRN1669lpxdn/3nYju++47OniNjj7JcUVHocP94V6vTMcqLBQzceZMyYT/4QcRA+np\nMHWqkttWXI1yR18cF/2KW2VBpzGhe+ghaSBaUyO8uWCBLKi0VFKUD56Lnpwsr1GrZT97ON23oUH8\nQoWFgvXOPVfW5nTCRx8rmDPnYrTXTKH1g4UoH7oPU7sVld+DIixMwOg558iLfT5xilVWdgOpQFvt\nY4W5D25qdIpj5jZtkiyQoiJhs+nhJQRZwaQJQel14qjtoCMklJDqcrQ5OYd6n3v3ljSkxkYB4wc/\nz9tvy7MXFckBH15vEJj3pVT22Jms+sWN8k+L8MbGM2bTx4zwu3C7m/lAeQONqnga2uPIqhzA7/fY\nqf1oL/36JGJasgTF3Llox50rgurgZykvF+dkwPZ96SVRzkplN0/1IPXIp3Udt5f8kZSXl8eQIUPI\ny8vjzjvvZPPmzQdG/oSGhrJ48WJycnKYMmUK99577wl95jsfaqkJ+xPhtn388cp0lP94hbSWzah8\nLtydJlCGUTruRub+cj5mXTnRmSEs5FpGa5extSGe5jAlUSCMHxMjgu+glNEvvhDbVKuVe37wkPQe\np8hIYdYAig0KOmrb719+gXd3X81IpZ0U/15+Ul6Awx3Gde0VhE6ezM59E/BUKQntrGH6/2HvvMOj\nLLO//5mZTJJJMum9ESCU0Am996Kirv7kRcGCqKxdV1dZV12xoa4dde0NCyqshaICIkWkdwJJIAVC\nep30ZDLl/eNk0khCymSSsPO9rrkIk8wz93me+z69nFqOJrUCmCmDthuDRiMdKDoC/v6QmEj5uXzM\nahPxmmGElR1DbzDzq3Em683zSFGFMM1lH0l95uNX5EbbS/+th1WrRBibzbI1+vcXZamkRM7oDz+A\nT1ooE8tOUe5QgXdUT3ByItlnJO+fnc3ZokB6OKRRNn6WPEONRj7cbNGWFfHxx6Lp63Tg5kZu8BC+\nPj6FvEIVGRXhqAJGcOPtl5MSd5qoc4fJMAUTODJcPKFXX81/S85xtAoyDvbh7ydFd6vWycjJsQ0J\nlwSCg2u7yTo6CiNfvlyUqcsuqw1DTpsmjKasDBYtYudOUPbqSXZAT2L7w4mtmXyUPpAQZQaPXJ3K\nlIrNIszDw6moEB3NUgKaldW6CVJZWSKYlUrRB5pEaKgo6V5ecjBKS2u9xOvXy1gilUr4WHY2/OUv\nfKdcxGeHPfDX7eZKh585opnAoeil9Ax1pKxMLnMxKBQXN1Tff19k6O+/yzJb1BB6+HBJC8vMJKVy\nKI79h3H2lBu60jLSKnuxSjWfh3QfEDo4nOJyFflVbhTNuJZzZ80MOnCAuNWn+TB8BQ7e7rz4YqdM\naKhFWJjw2lOnwNOToohhuB5aD6YyfmYuz+X/C39fI4N6qNnfd0KNYVtZKUqko2P9iT01UCqlHvH2\n221DR2io5CI6OgpNTz0ljPeDDyTiaQn7+ftzwHE8v6XMYdK9Q5nodAD69WPzKneSksRP7ekJ7u4q\nUnNUeFUHmOLixNd3/rxcvpUqTOPw8ZH1VlWJor19uzDL4GDZ4BMmSNpnerpElvr2hWHDUP7yC4cU\n/0dWhZaKCqhSObFrj4ji0aMloFhWJtv0oYessM7mYDYLEzCZ5Ay//LJYG999J4ats7PQN3cuhSml\n5J40YvQPZst+D06eUlBSImfwL3+pjSieOiV67KFDtSm46ek2PCdhYcJrCwpqrc0vvhBDIS5OPNY9\ne4plotfLQSgqqvVMOTvzff403ojpgUYD5l1w4021o4nz8yV4WVBQO11o7VqJrNoCxcViDIaESB/K\n3FwJRB87JnKgtFQCgkol5LmGk2MMw0ufSkpVDwb5+IgD5kj1SJozZ2S/hobK+apbWrJ0qRi7qamS\n4nCxds6tREKC7PPUVDFsv/xSaFMq5bgYjYBCwUexE7hc2YNwkw5XhVEM2zvuEAfMa6/VppufPi37\ndeRI8QpVVl7YscuCq64SRmFpANcG/P67/BsfL1+1IbcPHoXeRBpSSVVHojUX0Ts7lhKVBjcPXxzr\nFss7OgqPO3tWDkldozAsTKLT7u6Nd8e/7jp5Fh4ejfa4aAt+/c2BkWEj8E85SI5/L05mOfI70exg\nOv9P+SOTHQ9j2r6b58qepyztWgZlxLLsBq04PBoT0u7uNSUMNTUT7u6SPREbK8/IimlNtum93AD7\n9u1j9mwpKp45cyZ79uxhZPWA9piYGMZVz5XTarU1qcl10VjzKI0GihSelPsOQ+0NAZdHk3v0IKUK\nJwLmT4ar5/Lxqr5kjjew5aCe4f2cuWqYiqO7pzEoVIf3zdXuWldX0m94CLf13+CuUNSkBGRlyd6r\n2xiwwzBihHjRLOMuQkIukAK5uXLwHXpF8EHG41yb/T4mtRO/ec1nwlIYOdeXv6Uo2bgRctUFaGIq\nCeylkYPTTD1TRYXIr5AQ63mCi4og13UwEX36UqlLwrGwhG1D/kV4TwdWbfQlxzkEnQ4OeIeR6jKP\n8bODL5qabytoNCKo1Opab/mgQRDsmMug+B8Jj/bjAc9F5DgGE6z5hJBwP+jTh8/UKygIc0LtpiNq\nWh9uXuYHPgjzyspqmsFaG+fPS8TD0RGuuIJ1lQv5c6uahPQC5iXsoEQxAm/vngRNjuT3xCfpPTUB\nrgmu8QpW9uhL2hlQKYVn3X67lLGEhNhOx70kMGWKOMzS00UIVVWJxurkJAfOgtBQ0Qz1evD2ZrwG\nEv9IZ1rWOnxj+rFu71RKvIwkKMNIGjGeHn3GE6LJRz10AKPNkmW1ZYtkOoX5V4JJ3WIvroODvMrL\nLxLpvesuEUYWhT07u3Y/p6bKYamslDTEUEWuAAAgAElEQVTX6lSw0w/kUVxYQLbLGA4wheAhQTy1\nXE1CguiVKhVCc3UH0rZCo6nN4mpxxE2jkfq6c+fwUfbB4UMnfGcNxBBfxvHtKn5RBuA+ahzL3wtF\nXabgyL+LCDn6K4OrdmLqE4KhsARfxyIyyt0pLe1kw9bbW5S75GSorESrUJN3MJlTpx1YU7WQAnUg\nRmdHevspGTEFYW4bNtAjN5e/XncN8bk+zJ1pAAM2G83QKObOFedyerpsRl/JgsFgkEyHzEy44Qb0\nfQby1vMRKJydiN/gwNC3rkSrFf/QL7+IrurgIPZM3UhXYSEE+pvADAMHKq3T8y4yUgyo4mJx/Bw7\nJu8NGCAKnJ+fGIw9esiZsRgH8+czvNCbHq87cSJWLlVd2sm334qo9vYWki3IypJb0aZmUc3BbJa9\nk5srPEqvly7PkyfXGu0ZGTBzJubUCnb94wxn6ck11ztxPlv0b41G7EZLg+vCQllreLgYf5MmdUJv\nnNDQ2mitySRduLy85EY/+KDwr9OnhfdY0sgVCgx5OtLKvCg5EU5AgDyDyEjZjjfdJL4MSzd1tVoS\n0/z8pIFTQYF8RUfDw0MSKLZvlzJoPz9h+YWFosNpNOJ3LCgAlZ83787+gYD0oygGRDHI21tqjKdN\nk4e3aZMYdwMGCP8uKpL27rNnS/qopdloB2D4cEnyOXNGjr2Xl8R0NBqx7SwyyeTjx3vjVxGV/ycL\np2bg6VCdimxh/Onp8nAs3cuaitLWhbOz0NgOTJ4sjeZUKjk+Of5hfDzpM7Rpsfj09MDR3ZH/23wX\nJR7BjDmwV6LjCxbU8llPz8bTiO+9VxwwoaGNp0m7uAi/tBKMRugfpeCHc3cTNTiH0HHJfP1QHnGe\nfdC5huKu+hVUnvTwLMRBX47b6IFkGnvA3Q5NG6c+PqL7ZmbWT2WIjOyQkrwWj/tpDsOHD+eIxePT\nArzwwgtER0czZ84ctm7dyu7du3my2r01ZcoUduzYAcBNN93EihUrCKvjNWqq9XNRkWRJhYRU37fi\nYuGuFRVyysvK+A93sSfWC41GWoj7+UFxejFu//k3yow0WLqU/cqxHH74K4ak/8rAKCMe/7gbJk4k\nI0P2YVCQZBA0K/OrqqQNYEaGeI8aNlRpho6WoqxM6st1+SYizu/g0fQHOW2MpHjkdMZ/dQ9qfXVN\na3k5LFqE+fdtKDb9Kgx75Ehx/TbQ/IxGuS/JyeI0evzx5nXiltBQWCj7uSDfzGMH/kLf5M0UuwWR\ne+9T9FSc41RZTz4qu4GEZAe8vEQxt/SzshWao6O0VISVv3+tM+ybb6Dy9XcYlLeDIZoE4iMv53Rl\nD+aceBlXX1f4+GPePxDNrl3ClJ99tv3pR22m48wZ2bj9+8Nf/sIbK5WsfjWVWzJfYpTqML6hLkTs\n/w6juxcVFeCmz5e0UgcHuPVWytXu7NkjitXQobW9RTqqZrA150KhaMkYn5a+Z+NxP5aGJmlptR7m\nxnDuHIYld6DQV1Aa1JdHlS9z4rwXPj4wILSIQQc/IyywiimfLq5p7Wo2g+KPndLoIyxMQj8tzElO\nSJDzP2IE+Pi0gf6MDInw+PgIXY6OEBdH1s1/57P4MfyhH8cg93NEjvHjhq+vxNWteiMdOiSRIl9f\nYWx1C1ZbgcJCCbyEhtba2q3ltZb9vXGjBAjLy+HZ5QbGfH4P7NmD3jeYQ1nBOBbloorshd+CGawu\nnsfQYYr6E4qOHpXarVGjJCrfzkPTKjqqqsTzmZICvr5kxBcxZ+3tpOv96NFDMk3CwxED7LXXRBsb\nO1bW+fLLwvgfeaRlDT3MZsnBPHJEhGMzUYMW05CcLEaig4M8zKeflve3bRPHj5sbPPggReGDmDUL\nFJkZLFF/wZJHfXG4ZRE4OdVkIkZESKZfXeiPnWLtQ7spMHux4J3J+Eb5XXxNLaUjJUXCdWlpYtF9\n+KGcvzffFH581VWieDs4yIGrntdT8cAyCl2DOX5c9l5+vuix06ZJFsLVV4tcjo+X1FOTSWzOsWNb\ntfSL0/D881KLWlkpyv6DD0p9nJOTWNSpqZTPv5nlO6aRni6T3R55ROyiZcvERpg1S/xfIJdZu1aS\nhhYsaLx3T3vQal0qNlZ4TGqqWNjDhomAv/lm0Y8WLxYF/J//5L2sa9izR9jRrFny77hx9X1vlZUi\nYouKJIM3K0vY34svti440F6dsK5c/vlniSJnZ0uLltJSOTJPPSUknj1exKi4VWg1Rsngi4uTc5WX\nJ/zq1ltl8XffLWdRqxVP0UUKua1BQ2ys6KEKheikZ87I+X3rnjh8fl9DaY8o9gReS4RzJpGf/FPO\nWVqaRBxGjxZ6SkupmY15440XDnm+CNpKx7FjcpxPHDczr+oHBipOUnbZdcyYYsDxi48oOxZPmD4Z\nx/AgWduDD4o+3gFoKw2ffipOEldXeO7xcryfuo8PY8aRlFDFyKB0JtzYi4DK8zB2LL8pZnFsfyVX\np/+HPuUnJNoxfrzYXatWyX665ZZ2dbPs0HE/1kRzXZGVdSypoqKimi7JF4O7e4OyH61WDuW+fRJi\ncnbmtkGrGfu3uwkMrM2icM9JhPPnxD20aRMJfcZS4ajFbDJRUqbEo7oIJCio0SkUjSMmRjrsODmJ\n8tqwYMkKcHGRlOhzWxLo9+V7uCnKiXZPhKuvBTXwxz4ptFOrwdcXxc03w64/xMKKjRWvVoN86vJy\n4WHVWcMtGp5+MeTkiKewhzodxfkUlC4aPPS5eJzZDFotg8oSeH3ZCM6oB6DX12+I0BXg6lo7U82C\nmBiI9PDEPfEsJn0Rg8oOMCj5O/CpbnloNLJ4sfBYf3/bGLVNok+fegVP/v5wvc9vzMnaTKAyF1ez\nJ5yOx2HsWKl3+u434c4mE/Tti+ayy5g+vf4lbdYIp9PhUG0810Kr9aKoKL/9l1arG58J0RCrV+NQ\nUQrp6bj7ePPM8nLOG73w9YW1t/1JVMl+yk+pMG35DeX1C4Dq5/Prr6KFnT0rh7qFLVPb7UANCrqQ\n333yCQHORdztvpoJBTvBJwLzySoK4kbhOrLam/7bb+IFysgQTWbUqDZ9vSV60R5YHvlll4ldp9FA\nZNUZqf3w8sJ0/Di4e2Hw8GVt6N954c5QGuXw778vz/m77yR60MHjferh5EnJjatOp3R++jGGFsBw\npfD1mqW4uoqWbjDIzdu/XwSBySTOhpYYthkZkn6u1QrNb7/d/vVrNHLvKirqh7169xa5qtHARx+h\ne+gNevWC2cb/Elkch8NOPQwTBTcsrFGfMgCOe3aysM9RUYCzfSFqSvvXXHftjo5yk4cNEx785puy\nx4uLJbI0ZowIu927xQlRWorz6eM4zw1m1izRDePiajPL6yIlRYwptVqOSlsN2yYxdKikfZw7J683\n3pD7lJcnax00CN26nWRVTCMgQAKdIP6MDz8Uw64uu3FyEh9Xl4Grq3hq3dxk3ycliU40bJh4DWJi\nambyxPS+Bh8fIX3o0Mb3k5NTLSu3pAVHRNi+sWJdUTV3rqzV2Vkc8RkZsraMDKGj16mdELNXPhQa\nKvzC3V0sySuvlPeKiyXjy5JjffJk7TioDqRhwAAJBpSWVpd6+VSrVR99ApoSXBMSmPlUtMg3JyeR\nbyEhcu4WLpSI1ccfy9pPn5Y1V4/i6WgMHSoBoZfvOcdVGT9RZHBjQvnHOJ/0A1M66E/XtluvW27Y\nhXDihLDcggLQlTjgrdVya4/fKcw5jTp6LO5xOySK7+LCLGBWQDy8erTGhmL8eHHq7twpfPDHH8UW\nsyGsYtiuWrWqVX8/ZMgQFi1axJtvvomzszMv1mmiM2TIEKKjo3F1dSUmJoYDBw4wrYXtt4uLRa6W\nlEg5QHAwssmr60KceodeeC579hTLIzcXrrmG6f3h/djLie8TyKBFzjC0DTnrllqbysqmJasV4OsL\nvpNdKfzRnVPm/hSHjWbYVfNxApGGjo6ioFi8JdOnSw1cr16Npme4uUn2yW+/Sffb9hq1IAx+0iRI\nOuaOpl8PzpxRUODdk4Fjp+N6YAdoNCh8fejbmcZfIzAaxeEXGyu8si5fXLAAviiZT6Q2i176HeDl\nIRGOM2dkL/XujZNTm0s1OhQzZsD6LX3QF/ZEXVkhi6y2ZBIS4Lf1IUw9raBPXwdUtlTEuyQMNIzi\nFhfb2KoPC5PURR8f+Pvf8R8WjD/i2R44KwjjZyp69wJlWP2I76le81j1ZgGRoeUsDg7vHA+mBT16\nQGoqWh8feqrDSYspwK23N8H96qRVTZokTSV8fZvMU9yyReTmjBkdM8e2IZTKOsHHkjDyPSNITjBB\n+Gzyr7idoxmBXHlHE5F2ELqra10brY3qAMTHS6B+oIcvNzg6oyovhx498PSUYOqOHZKmXpOs06+f\nhNmKikQBTEkRg1ihaLkyqNXWznOxUo0XgYHikMvIqJeeF5vuQf4JLf5OhfRaMJLQUFHiq0rC6O+3\nXwhrOJS2MViaInl6Nj7vpz3w8xPtNi2t9h6GhYniXVQkBoRljaNGiQPazY04xyF8/pjIzFtvbXqa\nysiRkpVQXt5BPbzmzpVw8dq1cn/69JHIvoeHKOK5uQRcO5VZxXIL6zaZDQlpPD36yBEJAg8eLPK0\nHdUG7Ud4uOytnByJ2q5fLwaSr68szM1NUuImTODGmRKbmDFD6MrPlywOg0Gi5X4NAv1arW3H0jfE\nqVMSKIuMlECZWi29kz76SDIZayqgAgJqmw4FBgrtn38ueqMl4KHVykV+/FHeb0hsB8BgkGWcPi1J\nDf/v/4mNGhUFXoYecHifPB9PTzEQH39c1n/6tPAyyxp79pSb4exs/RSBi6BfP5g0z4PkFW6EexXj\n0LsfjKk+tC4usrYxY0SI2aokrRVYuFCSriZPhh6RanjsMRQxsWTmf0/5IR1ho4MIqJvt2aOH7Kec\nHMlGAXkOjo7yQFvU6MK6aFEqcsMaV5Co66hRo3j11Vfp1cqCiddee40tW7ZQWlpKYmIiZ8+e5eGH\nH2blypWkpaUxaNAgoqKieOaZZ5jZgHM3F5besUOYjpOT9Gm47bbqX6SmirXbt2/jubVVVeKRsqby\nkZoquTdRUY1y8fambNTFm49loEsqIEndj4ceUdXqI0lJ4h3u1682h7SoSISTFeqnWkvDmv/kcGLD\nWc5rB7DoVidmhsUL0+nUkGbjdFg6/1v6Pf3734180GQSt7qLi3irYmOFUbUxjbK9aPHzMJvFCC8v\nl/VWpxe9+CKcTTbjmpXIbXeoGHBFB8wxvgi6WipyW9OTrXa+DQbZY15ejWuMycnihendu57L/okn\nQJetp6hcxT8fV7VJflqNhspKsbgCA0WpT0gQZ5tlxJEFxcWyFxspji0vF6evpYnpW2+1nF1bi46X\nH9dRcSqRc879uP8xN4YMucgHystF4QoNbZmxdRG0hI5nnpEsypISeGxxBlGBBcL/W2NJlJXJXmpN\nS+fcXDHk+vZt9nPtfRaPPw5VWXmosjO49fk+9B1cnRppMgn/1WpbPg/R0v2nDXNyWk2H0SiRwJwc\nse7qyryyMlAqWf6iM9nZ8uwefbTj+ws2S4Ol1tZkEkXc0ognLEzW28qRKH/7m1xKp5MM89Y0tbsY\n2rWnTCbhTe7utfz1zBlZ6IgRF+iLGzaIoatUioPIuhOv2s+nnnhCIm3FxfDYY82MFTKbJS3PZBLH\nhUIhH3J2rp+2azTK/akeddbRNMTHSya8u7u8Vqyo88u6cqRuGoNFr3Vzq+VzlnV7ebWsxtbKdDz2\nGJizslHlZnLL8/2ETxUXy/nX65u2RawIa9oYCQnw8pNFRJBMeUBPnnmjwflvzIa6mN3VQnRYKvID\nDzyAg4MDgwcPRqlUcuLECUpLSxk+fDhLlixh+/btrfrSffv28cUXX+Dr68v9999PXFxcTVfkkJAQ\noqOjMZlMfPzxx4wYMaLF6cjBwXIuDYYGA7Cbql+zQK1udQ7+RVG3WUEHI3RkEIfTg3BxaWAjNnQ4\nKBSd2tkkZJgfG/f7oVRCSA8gqq0T5Tsevr5yqwoLm8m+USrr505bPSesg6BQNBql6NsXYmMVEBiJ\nV8dmHNnRUjg4NK/hNqEh9u8Pm1Mc0brbxNHePJycqGcFNkVPM5aqk5MEEpKSatODbY2IYZ5sSB1x\nIZ9tChqNzVLgLOjfX/RVV1fwGRQE/q1X6tqUquPra5PISL9+sDXVB224D751/TxKZYvT7WtgyzRA\nlarpvVB9v6OiZH+7uVm94WzroVDU1x/qWkitnfNZ/fE//xT7yAo+HutBqbzQ+mumc2V4uLBks7mD\nJ2O0EVFRktWi1V5kDykUF9acNMZ/q8fO2Qp+frK9iou5sKFbQzliQWN6rY3X3RBRUbA13R9tuH8t\nn7JktnRD+PqCo687sYVDmdYYG2vMhrKR/dMYmo3YJicn8/rrr/P+++8zduxYgoODMZvNZGRksHfv\nXu688042b95MbGxsq750zpw5rF+/HkdHR5588klmz57NpEmTan5fUFCAl5cXq1ev5uDBg7z66qu1\nC1YoeOqpp2r+b+mKbEFmpjgOevSwUi1gYfUUbkvKspVgTW+KKfkcyUd0eIzqi2+Y7TS+i9KQkCCe\nzyFDwNERs1ky3dTqdtWSWx1N0aHTNRgrlpMjWmO/frZpd9hKNEpHQYF4Lnv3vqiFYzJZ5j7aPHun\nBvaIbTWys0XLbWMGgNEoz9Lb+8LAaEthTR4FSIQsJkYiI20QeuXlUjZlmUTRUliLDpNJHomXF/h4\nV3c50euFv3Ww9x1aRke9NTZlQJjNkgVQXi7Glg3zQtv7LIypGSTvzcJndG+8wjtPSWw1HYmJwour\nZWFjaNGzsyIuoOHMGdF3hg61uqPfYKjt32Ft33qrn4XZLGmqVVVtOrtpafKsrF1lZg0+ZQ2+X4P4\neIm4DR3a4gw/a9BQUCAJIL16XYQ16fXSD8Tbu0Ekq/1oN58yyln29a1WFU0mOH5cztWAATZpVGJt\n+a3LKCfnz9P0HO6JQ2/bpRdbPWK7bNky7rjjDvbu3cvdd9/N/Oq8i7Vr11JeXs4VV1zB559/3uTn\ns7KyuP766+u9FxgYiIeHB4WFhfj5+TXaIMry/2uuuYbPPvvsguvWHffTEFYtCzSbJQf1/HlRLl96\nqXNCBc0hMxPliufoXV4OGePgnns6e0WCpCTJI7HM6Vy0CIWiU9Lt2wxPzzo2RUWF5Mjk54tVvmKF\nTZTZdsFkkvzijAxh/i+91GzanVJpdflwycPd3Zvi4oJ672m17XR6WPZaQYEYgStWtFoQqlQd0kW/\nfXj/fanVc3UVmlqpvWs01i+HbA2Uyjr39MhR6SZsNksx2Jw5nbewOqi3xqYQEyOdj00muP56yans\nDigqQrXiWSKLiyG+v+QldwckJ8t51uulfrWJpnEtenYdhTNn5ExWVUnzoAULrHp5B4dmA6G2xeHD\n0hDLbJYC4VaOebH6iCUrwmp8Py5OdAeDAa69Vl42gpdXC+MG33wDmzeLsfjUU10qhK5SNdjvW7dK\n8bBCAQ880GGdkDsSnt9/gueePbCpeqxMJ5cQNodmDdvvvvsOgF69evHAAw9wT7XRNHbsWL7++mtC\nQkLYsGFDk58PCAhg27ZtF7z/+uuvs3XrVubPn8/Ro0fp36AArKioCHd3d3bt2kVkZ2pnJpO4jrRa\n8VxVVHQ9w7akRGoPNBqJ8nQVFBWJIFerJdLZ3aHXC01arRi3JlPXN2yNRlmrVlv7PNpQT2ZH0xCj\n1soNpiorJRdLq62dTN+ZM0WthexsMWorKoRvdamcxFZCp5PnolLJGetOKCqqXXtubmevpuUoK5OX\nm1v9oa5dHd1BFhYViVHblddoLRQW1srv7nZ2bYXCQtkPDg4ig7oicnJkv1ZVyf7tyrDsM5NJ7m13\nRHa22BkW/aS7GrYW9O7dm8cee4yzZ89iMBgA2L17NzfffDMTJ05s9ZeGh4ezePFili5dyttvv42D\ngwPHjh3j0KFDLFmyhNGjR5Oeno5arWbLli2tvn6TKCiQ2X6W/vMXq7FRqeC++6RoYezYLpl+Su/e\n0jouMVHaXmZkyAxdPz/xxjeR9tThGDSodj3z50uBzbZt0l5w3LjOWVN74O4uLaM/+ECaShgMXd/Y\nUKslgr91K0yceGF9x2+/yZDeK67omi2c/1fh4QF33CGjQGbPrt1ner14qbOzhX+1oSlGp2LpUpnr\nOmBA8w1+9uyRPTt9uowO6IoYN05Sy3bulJTe7sAPLBg5Ei6/XJSTmTOFp1VUSCSx3fmLHQg/P4nK\nHDgg8x+7A1JSZP6nn5/kVlqz25A1MXSodDTNyaldo9ksA3WPH4e//KXrzeJrK8aNk8Y2ljm9330n\nGWbXX9+lon42Q93nfM01UiA6fLhE7gsK5L2uiEWLZOxMYqK8Bg/umrMITSbZa2VlIs+6qkxrDunp\nIuPKy4U/dPHUvhZ1Rb722mvZsWMHZWVlAAQHBzN58mQ+/fTTNn2pTqfDxcWFGTNm8Mcff1zw++nT\np7N+/XpOnjzJqlWreLvOXLx25Y1/841MrjZWD6VuZQqKNWH1+jUL3npLeuvr9R06/BlaQUNpKdx7\nb23k+513ulTku8V0fPihGBt6vdDTxQz0Vu2pvDx4+GEx2Csq4L33ukQEurvV2Da9Bqx/vg8elBQ6\nR0cZgdLiwdptQ4fxqOZQXi7OGDc34RVvv93uuWMdRseLL9YO/H70UeuNumkCHULH1q3wySfixJ07\nV2Y9dCDaRUNiorR91mjEyfzCC9ZdXCvQYjqef15mSVdWylil1ja46kBclIa0NEn3dnUVJ+kbb9hu\nca1Au/ZUbKzsI2dnKd7/17+su7hWoFP4LYiR//jjwnMdHeH119t8KZvT8Pe/i8FYWiq8wUq1blal\n48wZGczr4iIOrmeftc51LwKr0vDGGzLgtrISHnqow+cZ10Vb6GiRJrtp0yZefvllioqKKCoq4skn\nnyQ1NbVNiwTw9PTEsYlIYllZGRqNBldXV0aPHs3Jkycv+Jvly5fXvFrVkTkgQLxTKlUXaBXaQQgO\nrk0p6iredycnud86Xe183e6IwEDxWjk6dp1721a4uEgBsU4nRUNd0dNpR314e8ve0+u7dqFXe+Do\nKDxCp6tuxdiFeUVIiBi1Tk5dM5unJfDxqW3z2tXnVltmr5WWduh8eKsiNLT77hGtVozaoqJLl994\necmzKS/v1C6unQqtVozaoqLudw/CwiTzxNW1Td26bYK6fKu73V8LgoNF7+gmum+LIraenp6cOnWK\n4DqtbIcOHcqxY8fa9eWTJk26IGKbnp7Oww8/zOrVqwGYPHkyO3furF1we7wQ5upOlmq1VNh3ojLf\nYZ4toxFOnpRD3sFpNa2iQaeTdJ/evTt15FBjaDEdJpN0U3RxuXCUUhdAq/dUXp6kyvXpI4KtC8BC\nw8qV7/Luu/Ub07m5OfP77+tr5mp3TsRWDRgavGejiC3AuXNSozNwYId3s+20CEJhoUTnevWyykzo\nDqOjqkr4gbe3TQytDqHDbJbu9VVVkoLYwTKx3TRkZEBWlqy1E/sFtJgOyx7x8elySm2LaMjOlsht\n//5dKsuqLtq9p9LSJAV7wIBOdaR1Gr8Fqz1nm9NQUSE6fXBwl51aAkgqb3a2TfeYVWmw2BUeHjbv\nAGv1rshXXnllzYX79OnD+PHjcXJyIj09nfT09ItevKmuyBajtTF4eHhQVKcQXGVN5U2huHTqRJqC\nStX4rK/OhqenTdMXOgRKZfMzRbsbfHy6bAOfP/88QFzcDODKmvecna9Cp9PVGLadAwMXGsQ2RHdq\nK95WeHh0D16hVtt8Tq3VoVB0oXa1LUBQUPeqLe/ue8TfvwsM1e1ghIRcuhHplqK7Pmdn5+7RHyQ4\nuGvNuGwtuqpd0QSaNWwffvhhABYtWsTKlSs5cOAAAAMHDqxX99oUmuqK/N577/HQQw+h1+u56667\nePfdd2t+9/LLL7Np0yY8PT1xc3Nj1KhRrSLIDjvsuFTQGxhb87+KCh3hzTUdssMOO+ywww477LDj\nfxbNGrZTp06t+blh5LU9sER/t2/fzrp161i8eDHOzs4cOnQIhUJBjx49CAgIQKPR8NZbb1nte+2w\nw47ujCo6NVpqhx122GGHHXbYYUeXRYuaR6nVarRabb2Xq6sr11xzDUlJSa3+0hkzZvDbb78xbtw4\nJk+ejL+/P0OHDmXJkiUA5OTkEBcXh1qtxvViI3nssMMOO+ywww477LDDDjvs+N+GuQXw9/c3v/fe\ne+bCwkJzYWGh+f333zf7+fmZV69ebZ4yZUpLLnEBfvrpJ7OLi4t58eLF9d7Pz8835+fnm8+cOWPu\n37+/+aGHHqr3eyRkY3/ZX/aX/WV/2V/2l/1lf9lf9pf9ZX9doq/WokVdkTUaDWlpaXhXt3nOz88n\nJCSE8vLyZrsjX6x51KRJkxg+fDhXXnkls2bNuuDzEydOxNXVlU2bNtW816md46yIS4GOS4EGsNPR\nlXAp0AAdR8eFnaA77n7Zn0XXwqVAx6VAA1wadFwKNICdjq6ES4EGuDTouBRogA7oimxBSEgIgwYN\nYsmSJZjNZj799FNCqrvIKZoZD9BU8yi9Xl8zx9bd3R29Xl/zu+LiYsxmM3q9noKCAoa2sKPgwYPw\n2WfQrx/89a9de/xhR2DDBti4EaZNg/nzu+5Y0qQkeOcdmZBx331dd/SYBTEx8MEH0oz2nnukCd//\nEuLi4L33pBHpvffKuLiujsRE2WO+vrLHOrWJsh02xYED8PnnMg1m6VJpSttWVFXBhx/KtJabboIx\nY6y3Tlvj11/hp59g0iS44YauKx+siT174KuvpJH97bfLuN6uDose07cv3Hln99Jj1q2DX36B6dPh\nuusurT0WHw/vvtu95GBjMJmEPx44IHritGmdvaLWY/9+WLXKOjzelli/Hn7+uevr6A2h14sOePo0\nLFnSPQYWtKjGdtOmTfTp04c33tJTCM0AACAASURBVHiDN998k759+/Lrr79SXl7eou7IDfHEE0/g\n4ODArl27eP3115k2bRoLFy7kk08+4Z577sHb25vAwEAMBgNPPPFEi665Zo10pD54UIyn/yVUVsLa\ntTIl4+efZQxkV8XPP0NJiYweO3Gis1dzcfz3vyIMjh0T4fa/hnXrhLHFxIiC3x2wcaPMQj91qnvs\nMTush+++EwNm/35ITm7ftc6dg337RHH67jvrrK8zYDDAN9+IE3HTJsjP7+wV2QbffiuG4Z49Mq67\nO2DtWtFjDh3qXnpMRQV8/73oIBs3QnFxZ6/Iuli/XvSs7iQHG0NmJuzYIYZ5M1M3uzTWrBGevG8f\nnD3b2atpGSorRZe0nI86E027PBIThR+pVHLvuwNaZNj27t2b5557jrfeeouSkhLWrFmDSqVCo9Ew\nceLEVn/pihUrMBgMmM1mFixYQHx8PF9//TVLlizB09OTP/74g8LCQoKDgwlq4cy66GjQ6cDLq3uN\nubMGHB1h4ECZXd+zJ7i5dfaKmsbgwWIoublBd5jcMny4GOIeHv+bo+6GDYOyMnleYWGdvZqWYcgQ\n2WOurt1jj9lhPQwfDgUFkhESGNi+a/n7y5jn/Pzu4aVuCiqVjFLNzJTMk66eJWMtDB8OeXng59d9\nRnQOH16rx7R3/9oSTk4SQcvIgN69u29EsykMGQLl5SIHQ0M7ezVth7e36MfZ2d2Xpw0bJjzZ1xcC\nAjp7NS2DoyMMGFB7Prqyjt4QQUHCj3S67jEyGKDZGtuXXnqJZcuWMWbMGLKzsykoKOCmm26itLSU\nX375hYyMjHYv4IYbbmDFihX07NkTgOnTp/P7778DcNVVV/HVV1+hrZNL2FS+tckEaWnyALrDprF2\n/ntVlRyagAARMrZAW2nIyJCUXi+vDlhUG9AcHWaz7Ct3966vEHZETYXZDOnpcqY8PKx66UZhDRrM\nZlHiNRrw9LTSwloJe41t56AxOdAeOkpLRYkKCQFli9zAHYf20GGRD/7+nVtOYcs9ZdkL3t7WN7Q6\nig5b6jGXgg4CttlTZrPQ5uracXLQVmejvBxycoSnqVTWvbYtaLDFGekIOmx9PqxJQ0mJGLYhIbZP\nobZ6je2AAQMASE9P55lnnmH58uWMGDECgC1btrRxmYJ169bx+OOPM3LkyBqjFsBoNNb87OHhgU6n\nq2fYAixfvrzm56lTpzJ16lSUyu4TUeoIqNXdJzrVnSLqCkX39tC2FwpF94tUKxTda4/ZYT1YWw64\nul4a0afuJB+she6oE3THNVtwKe8xhQKCgzt7FdaBRtO9n1N3PSPd+Xy4uXWPgKEFLeqKPHr0aPbv\n38/w4cM5cuQIpaWljBs3juPHj7d7Affff3+9rsjTpk2raTh19dVX89VXX+FW5452xyhCY7gU6LgU\naAA7HV0JlwINYI/YdiXY6eg6uBRogEuDjkuBBrDT0ZVwKdAAlwYdlwIN0DY6LppcZTabGTt2LFFR\nUcTFxdGvXz+CgoKoqKho80LrdkFu2BV5yJAh7N27l9LSUoqKiuoZtXbYYYcddthhhx122GGHHXbY\n0RAtaoD/wQcfsHTpUvLy8lAoFIwbN46xY8e2+Ut//fVXXnvtNcxmMz179mTu3Lncf//9rFy5kkcf\nfZSbb76Z8vJynnnmmTZ/hx122GGHHXbYYYcddthhhx3/G7ioYatQKHB1deXGG29k9OjRVvnSgIAA\nqqqqUCqVeHt7o1KpWLlyJQAffvgheXl5eHl5ceLECWbOnGmV77TDDjvssMMOO+ywww477LDj0kSz\nhm1+fj5msxmFQsHYsWMJDQ3FtbqThkKh4FQbB3pFRESwbds2HB0dufHGG4mJiWHQoEE113311VeZ\nMWNGm65thx122GGHHXbYYYcddthhx/8WmjVso6OjUSgUaDQaQkJCMJvNlJSUAJYmJm1DQJ3hU2q1\nGgeH+stYtmwZXl5evPLKKwwdOvSCz9friuznx1RfX5gxQwZb2SGoqoKtW2Wg5+zZnTvjwZYwGmH7\ndpmAPWtW92rl1hKcPg0HD8LYsdCrV2evpn0wGuH336WX/OzZ3aP9bFoa/PGHDKUbMqSzV9N9UFYG\nmzeDiwtMnw4OLaqC6TxY1qvRiGzp6uttKw4cgKQkmDat+wx7bQmKi2HLFpkJMmVK589qqovSUtlb\nWq3cd2vPXLElLrX9YzbDvn1w7pzwKT+/zl6RbRAbC0eOwIQJMuy6O8Fshl27ZMbfrFmdN+OvvUhM\nlL03ejRERnb2alqHpCTYuxdGjoS+fTt7Nc0btmfPnu3QLz9+/Dg5OTn079+/5r3777+fp556ioSE\nBJYsWcLOnTsv+FyNYZucDHV//sc/wGCQwZvVA/sKC+HsWbEBGkwNujRRUAAVFXDmDKxaJX3qjUa4\n5pomP5KWJh/r378L6W+FhWLwBAfXDM7Kzhbe1b+/DLxuFEeOwCefyM/FxXDzzbZZb3NosCctaBE9\ndVFeDq++Ktf74w9YuVJ6yNsAZrPwLqMR+vSpM8usPYM+Dx2Czz6Tn8vLYeFCay75ojDm6Ug4XoZr\nZBChYS101L3+OuTlidL873+Dj0/HLvJSwfr18jKbhRGPG0diomzlvn2r91NXGhq9fj2sWweVleIk\nnDfvgj8xmSA+XmzfiAjbL7HVsPAhPz9ZdGoq/Oc/JBb5YtiVQ9+V99p8RqFVUZe+b78VB6dCIYNs\nG3GQN0R+Ppw/L/zNxaUD1/nDD/Drr7LfTSYYPrzNBpTZLPqw2Sy6sE2f3/nzZK34iPwyZyJPnUH9\n9BM2/PIOQkoKvPee3NBjx+Chh2oCJsnJwg769bP9LM+2oqJCfOEhIU2IKrNZmNiLL4ryt2cPvPFG\nl3W25OTILNh+/apnwer1ogt98onoH1lZcO+9nb3MJlFeLqp5aKiwpRro9bBihei827eLbtcdglEl\nJZCdjfGlV4jL8cFjw1FCP1rewQz04mizGZOZmUlgYGCbvzg/P5/77ruPNWvW1Hvfy8sLgMiWeCxU\nKtnMVVW1Ftk778DhwxAeTtU/nuT55x3JyhL939dXZMj8+V3LgWs1nDsnh6OyEkaNqn2/+t7o9fD5\n58K7Fy+G3r1Ft3n6afnI5ZfD9dd3ztItKCuD1a9nMvinZxnYoxTX266HuXPJzxcfRkmJBCvvvruJ\nC6hUInXM5q5hpZvNNXvSHB7ODwOf5MAxR6ZPF/3movTUhUIh9FVUCOPoYOlad7+MGgX//a+Qc8cd\nMGkSsvinnxYLfepUuPXW1n2BRXiazbYXpGlpnF3yLFkJFeztezML3puOSgUffywC57bbmuDNarUo\no5Z9ZkfL4OAg902hAAcHjh4VH4HBIDOHNRq4J+QnAvf8IEbt8uWd5jQwm+HXEyHE7J3IjeUfEVT5\nviyyeoa7BVu2wFdfiSx57DFRtro03n8f9u8Xrepf/wKViqN5Yfzr0NUkGUK51ktue7eVjRb6QkKg\nZ095kNAobykvh08/FT34tttEN3jmGTFu+/WDxx/vwHVazkJhocgGHx8xoKrLsaA+773llqYDOAcO\nyCXMZrjrLhg3rgPX3QB5p7KI35YOBiMJZSFc+bS8v3mzJIvNmSNBz24Fy17JyYFTp2SDPPwwMaYB\nvPKKPLbFi8VP8tFHws7uuEMSA7oi3n4bjh8HDw9RDesGdzIyYOfD6xgcv4bI8hM4Du4vf9BF5ZpO\nJ/ypuFj0kfvuMYmjf/9+iV5FRbH7XAg/LZPA85VXdj1S3nxTguMeHvDCC3WS1EpLxW4pKpKIuUJB\nbCx8+aWc/Ztu6hrqbD0UFsoDycvj4DEn/pVzHRmVPtz/uQO33dm5977NIuy2225r85caDAZuvPFG\nXnnlFfwbpK8UFxcDkJubi8FgaP5C4eHw4INwww1w++1gMlGy+ygFToGYU1KozCkkJ0eYzp9/yt75\n+Wdx6tZDVhZs2yaaSnZ2m+nqLBiN4nQrOJYiRFrCf3feCdddJ66t5GTiTlSxc52OnNQKvvlG/iQv\nT+wkJyexizsS5opKkn49zfkYXZN/c2J3MeYff0KdlUpSlot4TRGmVloqmcXNJhIMHSpW4i23NBul\nbgny8iAuTvwmF4XRKH+cmVn/fZMJjh6FwEDKT5/n9x8KqagQB2NJCXhoqj2Ohw/XKmJNwdkZHn1U\nnumyZe3jdJZwU53DYHkrK0v+HxcHO3eKjP/+eyER6nwkJ0fOi4+PRMpbi+HD4bLL5N/qOdZtQWpq\nddQiO0ekxsX4BsD581TmlWJSOxOUc5zcHDN/vHMM5/07OLy7giZHdP/tb+IZe/TRBi5XO5rFvHmw\nZIlo3yNGkJUl+6mwULKvsrPMpHzwi2y+7OxGmLQ4vU6dknPTkSgqgm9TxuER5EKSohdGb1+IjcWY\nW0D8hjNkn68EJLqnUgl/yMlBfti1S0oFOml+oEUW1BNjRUWS8r99OwQEyIEpKICgILKuuJUzyr4Y\n3H3Yvh3Ona1OzUhO7pT1XwwGg/Cl3NwGvzCbhY9WVAgzmDFDsnXuuw8GDrzgOieOm9m9qYj0MyX8\n8IPIFp1OdIVz5zro8aWni8U3ZoxYRxMmiIar08Gff9Y8u5yc+rz322+bvmRmpjxzs/lC0WMVVFWJ\n8nTggAiI3Fw5hFVVlOWVo3LToPDywOTkBMjZ/PpreU5ffimPw3KZ2FhxHHRJZGfLszGbxUEbHCwW\nRVUVJCaSnS0/KhSiknz7LZw8CSdOyJHvKmh4Ps6elS1WXCyvuti4EZxij3C+xAudRw9x2k6f3ume\nrdxcoaGhGNfpZH9ptdW6akWFHJjevcHdHeOcy/g46wqqquCHtUaKNu2R9FiL4mJDXMCnTCbMsXGc\nPVWKh4ew5HpyrLBQ6Bg8WJTc/fv5ZpUenU5Mk4QEm5NwAfLy5AzX6MNZWfKmtzcKtQNnDeEYPP34\n6WfHi5/z06eFsMLCDllrmzXjjRs3tvlLX3jhBbZs2cLu3bvRarWsWbOGr7/+mpUrV3LPPfewbt06\nTCZTy8b9DB1ak2YUHw/rdQsZcXgNPUcEEpFzlltu9mXbdgVz59Y8g/op+BkZ4p79809JFR09Gl5+\nudMPd2vw3//Cph/Lic7N55YAN9y0rhJ+7dkTnnxSlBQXFwL8BuESP4iyM670mTIYcGHAALEpUlPF\nP9CR2PXwD3z0awgKpwIe+XwwAz1S5cSOHl2T7hO5/SPI3Yt7SRqOGj+4+mpAUv3mzRNmMX9+M1+i\nVML48e1ea0EBPPWUMKBJk8Qr2yy+/17SF52cxIsVEiLvq1RS47VmDaqZl+OY4ktevgR/IiLA/N2P\nzC77EV5TwiOPXDxlLiLCOnmPGzbA2rUizJ58EiIi+O9/hQRnZyHB31+ilmVloicWF4OqMJ/LFPsg\nNkJy9iZMEEl/442tX0NyMvz2m3DKtWth6dJWXyI+Hl56CQylFdxS9iUzvI5IvVdT0eO8PPHwBgQQ\nMnMAJbuy0cybx2B1LAH7XyUl2YBP+HkCApqgx9+/0bRUOy4CJyeo0+F+/HhJycrJEeXLGBtHUMp+\nSEiUs9NAqzGZ5DmfPSsBx6ef7jgPtosLBAUryc8MRevjiNLHC8aMYe3NP7Exvjca/zKWfz+Uq64S\nPuHhUR3M/fln0XgVCnGAjBzZMQtsBt9+K1muGo3co8BAJJJ59Kgc4FOnICqqJh1h/MKeDNsuz6Jf\nP/A+exg+Xyk03HffBVHqzsYXX4g+5OYGzz5bJ6hfViavuDipOwoPb7oHQVUV4eveZfBBM6ech9N7\nSi98fUNZsEBYQ4dEevR6CdHodKKEvPKK8PpHHpGbr1bzQ/p4knelUuobwf89EVXDe5tLXpsyRZR8\nk0nYntWxebOkJSgUYox//bWEkadPJ/iueyn4aTClqTqGPiFy2tlZjm9qqogpi4/9ww/FxvDwgOee\nk3+7DEwm+Oc/xaETECCbS6eTsH50NIwdyxgXkTVnzggdFqPEzw/Cwjp3+XXx1Vdin7u5yfm/4w74\n8UdpYREUVP9ve/aErWH/x/SED3HRpcOu47B7t3jsrrtO7oWNkZcnySQlJReK8R49RB2MianWAV1c\nJHjx4ovg5ITy0EEmOvcm+0QpA7V63D79ChwUoldMmWJTOix8SquVTBCfHT+i+OEHHkxxYX/ZZfgt\nnIO/v6b2A2Fh8pC2bhWh8u67TPPJ5pPi/8PNrfPbBzWqD/fsKbr74cOE+xiISD+Pf1U+Ex0rcTON\nA5ooJ8rMFGFeWSkMd9kyq6+31apBXl4ePu1MEVu6dCnLli2r6Yrs5uZWM+7H09OTX375hSFDhjBv\n3jwefPDBFl83MxMO+8zCszSVsOQt8OCDTA0JYeqiRVSpXUgr8cBz1ijKyhQUF1cf9JwcYWAKhXiA\nyso6zdveViQkwLjM7xmQvBG9Wgl/v0s2ncEAf/6JITWDqsAw/M+l8MKQE+QavYicGgSEo1bbrgw1\nJa4MhZOaqgojuUdTYd+/ReDv2QO33II5/jSq/Cz6DXdBaR6I9pV/Qm9RTpTKBgZtZaXkYCUkSLQ+\nOtqqa83PFz3Q3b1xb1lurizBYr+SlCRSvaJC9pTlFyUlIgl9fXFKTeKppyAjw0zvY9+j/qK6BtrN\nGcwKuaCtkJwsWkdFhXirIyJITBSFuKwMsjNNDKvcx0uzy8jpO4HeA51RKsH49DtUvrENY24aqvvu\nlXqWtmqBer0oFQ4O8qVtQGam3DanqgrO5mkhzA2SkigrE4diaGiDMuS335YH6uiIx4svMvpFP0YD\nHDlCSKAJr9JMRma+iOOqRHF4dbn8n+4Nk0n0Jk9PuDd8HZzYSOH4aeQ7JROSlAMGpeyFlSvFEKgu\nd9Hr5XM+PlKGW1HRMX3hzObqMq3Zp3GN/Ry3AaDo3x/c3EjIdMPFRUFZfgU5OdI77JGQr0WLKZxe\nW2duMtWGqmyMxMRaZ1Rurty+yoJS9HpHXJ01KFVKcUTNmwdTpqAdP55Vb08gMcedgADw2HautvYz\nPb3zDVu9XpzOajWMG0dCggqtVnhzbm61YbtundR1FBdLSYSDQw1PqrvfaoyprVsJ/O0r7nfQkRcw\nhJCo+1EoQrnsMkkgaTdMJklDKC8Xx5+Tk0SNKiuFwVpS+MrL5f5W98HwXvcpQUXZVCQ6os5bwXPP\nBVJQIIGcpuDhIf6HdkGnExkcFlYvHRqo1Y30eqk93b5dhGJeHqp772XIt0/W+3MHB7ERU1LEELHE\nBxIT5WPp6fK7wYPbuebWoLhYDLaAABg27MLfFxbWGhRqtewhf38J3z/7LACuSLLJhg3wzTdiaIwZ\nI8coPLz2UpmZcrtsbRNWVEiM5vRp4YslJWIk1on7XIDp0yEiYjAah1dxmzlA6DcYJFKyc6fI9vHj\nbVomZHF2+vtfqHcpFHDttfKqwdVXi0PR2RnFjh3cUriesoAIHLW+qPLy5UHZmBeXl0uCg4uLbL28\nPPBJToayMvqn7KK/SwqUFoPiJiH2jTfkvj/wgAiVlStBqWTSyHKCRhkJTN6NxwkDTJxos54qDZGX\nV6sPx8eL+hgUpMb53nshJobAl17ip8mvUnEsHleHSNRfnhLnrgXr10uaYr9+4iAzGkX/bKPedzE0\nq7X9/vvvLF26FF9fX1auXMlNN91Ukx78zTffMKpuHWcr0FxX5JiYGMZVF4potVqKi4vRNuj6VK8r\n8tSpTJ06FRAZMXYsBOcXEZRymnPnSzmYOIwhe18nYmwQEY4qkp2X8eyPgzGb4Z57YOTQKAlZengI\nJ54/v8sWzjeF66+HnZv1VOiVFBWCV5UBBZD07QF2nRzOgDIjIRlJKPr3JzBzP9533w3hoTZf56zH\nRpLyfAbOEUFET/eEPWLUmAuL+O2+dRxPciXCZCbLawrm8HD8Xk/lusgNKBdeX7/jotkMv/wiQjYi\nQqKlVjZsIyLEgRYbe2EkOylJdO6qKvFcTZgALFggRVGhodIxt3qZW34x4rTVgLu6ir69UvFIPYnH\nF19IhFKlEk7xl7+IwLUyDc3i2mvF/ebvX9Pdd8EC+Ozf2YSUHWbg7nOw5Wc8Kyspn5XJM/9dREQE\n9PtDj+vREvSqIHpuOoDP9blt7xzZv78Uj2RkSIZBGzBihCgYxYXuXOHlCdm+VM6/kWXLJLs7Olo8\n1598IoLxniI9zpYat7opSkOGoLhxEa533in///RTuXBMjESmr7yyi2ZxONTrUK/VelFU1FXz/URn\neu89KCuoZLlpFykVfZl6dAN9BjuDqwuUlYrwy8mptcwQn9FNN0kAadGijmt2/s478MEHMMbNwKMm\nM/kOSoJik9Hkf871U7V8fsCbHlNDiYpCJP0zz4jSn5gIP/0ke0Sjkb3TCbjhBukZ2KOH3MaSEnjg\n6F8JPLGJQUNU3OC2Sfa0jw+sXg0xMajj4+l3w0KOvLiNjScMTA8MJ3igV3UhfSdj0yZ49105vI89\nxo03TuSrr+T2RkYixuL334uXOi8PBg8mb/RlfPiCCde4g0Qrj/J15f+h8PNl+fLqyEdVFYSEoCqr\nIt51BAfTR3FFlRV1xiNHxIFWWSkG7tKlcr8feECcnCqVZKpoNMKDBgwAJyd6GLI4uc6A2lhM6pYY\ndM6BbNggdbOXX96BNWsffCCFmGq1hFNrvLWIpV9YKI3+MjJEW6+qErnx+uuicM2Zg8msYNMmObbz\n5klSgAVmsxh///mPfPyDD+TY2Kwu9bPP5L47OEjYqbFIvrOzPA+lUujXaoXRxMaKUj5sGMyaxcSJ\nCuLi5LHNnCkZ/sHB8vOJE1JDCaLTNzTeTSbhf8eOiZrZgn5mF6C0tLaMackSMaANBtFHzp6Vbebt\nLeejVy/J3sjOlmdSr3Jmzx4UP/1E76goySyJjJQLFRfLPTh6VB6YQiEGlQ2wZo1sv6oqqT299165\n/bt2yTYbPBiRCUlJ0nHQyUm8DJZ0frUapcYZt7QzYCyWZ9qjhzgqbISqKqFh715Q5WZx89QU/twU\nRU7EIiYkJNQ6TCorhbd9841EUby9xZlw3XXCxEtKUM2bR78jf8JX78nFKyqs5HlrPQKdCuiVe4at\nB3uDjw8pKaK+/WviVhwO7oO+fXHOycE5KhicVSIT696Ujz8WT8WxY3K+br9d/j97doest1nD9pFH\nHuGHH36gpKSE2bNns379eiZNmsThw4d54IEH+OOPP9r15Y11RTbWUTY9PDzQ6XTNGrZ14eYG998P\nVFQS/3UvUkp1eJbEketkxCHbkQJNKOkna3tNnT4NI0eqhUMsWdIuWjoTvXrBu/2vw+ii5UCVBwt9\nhxFqhtdeMWIsG0pg6QnCnfSYM9NhxnCRkkplrRe5QZecpCRhoAMGWNfG9585hMdm1hmRUs25Et2H\n8cXPOgryzQQ5B7HL4UpGFGWjPBzP6BEpRKi+FQvS2ZnSUohffYSw9RvwO31aaGhHvXdTUKlErjWG\nlBRxNGk0wngnTEAs4aeeqvd38fHw7seOqEpu4ZGS5aQp3en7wAPCxMrKQK3G7B9A3JS/ovT3o68K\nbFZvHxYmKch10DPCzNPGJ8BPCd+fJu10KTlmH8qy/iRzzCKSkmBj5T0MUnuSo3cnsjyAB9uTU6ZQ\ntKu2FuqceZTAdcB16LKk3M5oFME+YEBNqTbbp9/LXKdtIhgbNr+bMkWETmKiMIjVq8HJicx958hg\nOFFzwrtgo0IDUJthUlzcxbplNMD+/RJxNRkdeeH8NfRxOseR3FBejNxOQtRCwqJS8StJFib92We1\n3TqR1LQOSbeshsEgmZZmM2xMisLTbyHh7vn4H8hjwfAz9C4p4ZkNN9aG/spMUF6OOS+fM44DMGT7\nErXg+k5tmhEZKUaDBbGxsON0EO5+i/kx2cx1fwtH5xDE+UQ9/Rx3y1z6khKKHl5O2U9JaJ2C+SD0\nKpa/M0duhNHYuY7eo0eFCIDjx4m6eyLPPVfn90pH0XiPHxcv1+LFrP+vlvg9WehPVqGgmCC/XRwz\n/YXMzGrDdtYsMJnY/YeKVWmzqVrniF9YNR+3BgwGsWIszYdycmQfDxwor+RkiZCWlYkFUv3FsW8m\nEPvjKtLVYWR8rKYqxkh4hIo1a0Sx77Beanq9nDGz+cLCRicnuf/Z2aIYjB4tvPPcOaHtm29g0CBO\n5IXy9dfC0ktLJbppQXa22PcqlUSzdDr5qM0MW71evtyynxvCywv++lfpBlVeLnnUy5aJ5n7//XJP\nTp6EQYPwDA7m73+Xj73+usgVo1H82fHxYnep1SJCGhq2qakS8fXwEOPUYgS3BgcPytZxcpJA5a23\nipF77pwYuQkJooYMGSJH4ssvRdUrLpZADiAP6M035Q/WrpVfDBggF+jVS4hwc5OH2ZJ+FVaAySS+\nZEsT+sBAuU9PVzck27cPVr5cicvzz4sDKyREjKItW2TvTp4setXhw3Jz1GpR0KKjq9sn2waWag9l\naTHX697FYV0F7jFufDjkCSKefYeQ09vEkB08WHiCXi9h6tGja8eSXHll7QUt99+SNWFjVFRAbIwR\nXniLiccSCCnx41/ZLwJqApQ5GBO/xMHLVQ7BO+/I5kxOrt81zsFBBNPx4+IwUqvFWdKBDpNmDVuT\nycTg6tMZFBTEpGoPbnR0dM0827aiqa7IyjpRkaKiopouyReFXi8eEKMRU2Awmb6D0ai3EmRMR6Fy\n5APFnaQZeuCcFMhQtwTcy7KYFj0Q9sRK1GzAADlVer24W/z8xEvX1dqqNYTBAAcOEJZvZEfJCDwH\nhODprYTyctx8nSnKdkddaeac11D6BJRjuP1OHMLCZMe+9JJswgULajxBidvP8+2/z3JOO5grFnly\n1VUduPboaIiOxmHzaVQaJ9SuZlJ8RtK/lwKzwZneiiT8Mk7AzyfFC/7AA6z8eSixm3zwyJjPC/3L\ncRvcs/H0og7E8OGinxQVSefHujAahbl5eID25F7ujX2PdJ2aAgdP/Nw1kJMoQrZXL7jySv50ms4H\nKwAfI/fer2L0aJuSUovsbLIojgAAIABJREFUbCnQ270bDAYyI8ay3Ph/lJmciTSVUHbqLBqtilHX\nBfNx1p2MV+6hR7RGLJXBg7tU0ZS/vzyfgweFn4aHy5FWKMB3cBD6IQupOJeF+9NPy7qvu0680xkZ\nEmqorBQ3fEAA+WeLeCbmWoq/9GPkWXjgLr1ELyw8owP5g7u7N8XFBR12fZsjOZklpi0c0s+kp0Mq\nOd5OFCtDCHPJ562s+cQX+OMR4MwLqQtwU1fKPa7b8b6jYDbDnj2Yz5wlut9VbNvvxi2Oq5mTs440\n42Cc+oVJ1MrHp/4IBg8PGD+eI0eVvJmzENPLKm6nkXKuhATR5IcPt80YBL1etFkHB/qqEhntUkas\nLoxx0z2p6D+MZ896oatQ02/MvTw+5xCMGIH68eepVGvRVmTTRxFP2bsZOB3ei6pPL2mUptFc/Hvb\ngpQU0cqHDGmch/TuLcqQ0Sj3PytLzl///sJDFQoxPhITJRS4YAFDR97ONofpOKpMnDH3YX9mNCqn\nOoklzs5w9dXozFD1nVyiIXkWVeCiIwLLykQ2+ftLZgeIgb1woRi0kZFC48aNYsD6+0uZ0Lx5Etr5\nxz8kmtG3L1GzwvhwxWXoyhwpMASiPKcgXye3pkMzEJculQyoysra1EBLCrheX5s5odGIMfHbb7Kn\nfXwkIubmhlNJrR3kWqWDrzZSEtwX9fhRaLUSTSwqEgMmOrr59GqrY/FiWbOlIZSFvsOHxYAbOFD+\nJiZG9tbBg/Js3nxTPnPypGwENzcMBig9n4/73s24pkVTpe+D2lGBs7PQd/asiPfQRhLiPD2Fpel0\nbS+/DwiozWy3pEB7eIgt9N13soZXXxVff2BgbXO7uhkuFSZHTOXgkpsrRv2ZMzB3rqQib9sm4dJe\nvYRX2WieqkIhxyY9XQz1+Hjp4qxWC+v19ARVsU6cLO7ucrZUKjESnZyE2PnzMb75FlXrf8XJRYXi\nmmvqG4k2gJeXHO13j+r5xTATk1LN7NRdOASk4mTykmYlIERpNGLslZRAURGl+eWotv6Jc99w8cA5\nO4vxV1Eh+7WhsmkDvP8+HNwHjkcmMseYjbs+l7DQCrTlBSz2/BHH4irZdJGR8ixSUmDzZsy7/qT4\nrkdwCfTA4fQpqZcYOVIYgA16lFzUsLXghRdeqPnZbDZT1aJWsY2jua7IQ4YMYe/evQwePJiioiLc\nWppztnMnrF6NCSVvaR7lkNNl3N0rCa3ZiIufKwV+fdF4+RB3rIKZzpu5Lng3ypfUtd7KCRMk58FS\naBgcLBEti7Dqqti4Ed57j7/GJjEjfDpBA8ajXXGS/dtKCIu8Ab9J/Riw2Y3cDCMv5t+B+pfRPBYN\nLump4oH195f8vuqUI9c3n2fyqRJyPSPJyFje8esvLibiu3/zSEUOOyqHsrd0Du5+Plw7oYigtM0U\n51XikpuFIikJTp3ivP8a3PsEUKyvoMTsgtuZM5KH8/zzNhsQ7+EhdUQNYTTCa6+JfJw8qozbjnyI\ns/d5IvMzUWIiJEkHET2k6Kt/f/DzI3vVHkqTzGS6wB9/+HWOYWswSD77iRNyFgYNQjdnASnnBqDP\nLSQvz5+VrsvxdHLGb8IdXJN7EPUfW/H58TgkRImm0iD6e/y46HuTJ4seZ0soFJLueuiQHOM+fcRe\nVShE8PzzwVLyvtnN4tI/meJ+RFzpOTki0C3KjocHVf94kh/eyOXU+SD6eDqTmop4uDdsEIn7z392\n6IwXMWob1vt3cUdbXRgM4vhQKkVpvvlmonQ6NqpcyQiKJsYYyIfejzHNfw8b0kbhrsymuKwXpWH9\ncSs8Lbl6HWVQ1UVKChXvfsqLJy5HZ07m9tsGcfeXb5FfqCSq6AxF13/I57GTGDLFi+ENvf9/+xu5\nV76FobgM1Z7dZJ6fDdQZSp2WVjuCbexYKxREXgQnT4pC7uYGDz/8/9l77/Co66zv/zV9JpOZyaT3\n3iihSJMiHRRF2iJ2XbGsZXXtupa1r66urrq21XXFroBrBUUREKX3FgghvfeZyWR6ef44hKAUAYH7\ndz/P71xXrsAk+X4/9ZzzPhX9S3/nXwOUVLtiyXrqHpz3/g3Hun6EFBq+dwxj9r0XUZAHETddRVHi\nShzVNvJbNtHx6E5q04YzIFiOrrb21MhBm034dleXeAH/8pdDfyc9XRQ8t1uMbmvXisfGYJAij2az\n3MVgUOJCPR4GNDzOgy+PQvvG9zy/ciADB4Tpij60hMF55/WA3bIyUarPPlt0zieekO/XXSfbdkSa\nN08AoF4v7qXU1B6vS3KyhLEWF4uGuGqVjFmhkGiQbdvkjvzud7BjBzm9dfxjcSFL5ttZtjcOg0lJ\nKCRies4cEXMDB56sxT+I4uNl/VasEI/Lgw/CDz8IE21qEqV1+HApxrFwoSiyzc0y51mzICqKAovU\nwerogKz/vsnjb2WyullD7tmd3PdXEwUFIgeUSomEOq2pgjExYrwHMWJt3y4xwSUlkud3xx1ST6Hb\ni240CmjavFnu6+7dkJqKR2vmyceganED50c0c1nK0xRM+QuxZ6STnS2p3oMHi2H7m2/kWI8e3WP7\nNJvliDQ2njheLCyUiAyPp+cZCoUcIaNR0v27K2SPHg133il7EhkpmVI5OfDRB0q8xdfzQLyDDGWt\n8KiPPxYZGBsrexwOS3h/R4e4prXaow/sN5JCIeL0wgtFhzIaZR3vukuOYGEh6JYugVCI2mIHy8be\nwbj5K0jr6pL91GoJVtXy8XO1ZDhVxFgCFM5WnfZ+qgqFGBWio6OZ91QORnsd7kACf9Y8S+y3vcUw\nVFoqsm3OHHHGud00frudbd88xaK4udyX9g8S07WCSW644YTTtE4G1dRApEWFKzqeXo46OpOSeWpu\nNUO2vE5koAuU+4tzpaTIOPftA72emrzxfHnLBpr80fw540MMsUbhfb8Iedu0SfTl8eNPbhG2owLb\nRx99lK6uLoxGIzNmzDjweXl5OVf8hopDb7zxBt999x1Llixh9OjRPPnkkweqIqtUKiZNmoRSqeSS\nSy459odqNKBQ0OnVsbklhn6Fnbi3+4mJcqBKSOCmAav4y5opaMNeivco2OXR0dxpIDHcSVaWl4jl\nywXk7tlD2GAAtQbFaQrDOCrV1MjcjtQz2G6Hmhp0LbX0iVoDzjSaPljKyrbzcO5ZR038jczpFcvf\n7BegUitorBE+lpeWKpKmokJMwsuWQW4uPocHe9CIOdTBiN/WLednFAr9IkWxrU2sqDExVHTF80lr\nb2JcVVzqf4Hd26ezrzmKiEY3TYFYFOFWEoweqKnhRvUTfBFzB4MfLiBhRTw0h2Xf3O6TN9hjnI9C\nsV9olZfDCy/gbXbQWH4VOVFK1j5QT0qSkckdxcSEO0W4BlWikHWHf3d0MCF+D6+XjiUcCLJli+zN\nwSlOp4K6a6O5XFKt0lbt4trqICk6nUiR0lLyHBsJxY5D4Q5g7CgnsrqYeEsMaNSkmuyQqISa/Ylp\nv6jtbrOJbq1QiPH7xRdPQ+CD3w/ffUfI50d5ztmYwj7G7nwHNnkhJ4fkmGQ+WJHC7uIgFevbSHXU\n8UNoBGNcq3rCYyorRRndr0yvKzaxtNREWCtG1bvuAr639yjSXV2neFL/y2nZMtGmQBSjUIgKVxzq\ngJdqp5doRTmmiCaqO8zckPUNX7aPYPCVGuI3REFo0Olrqq1W01HVQVHVV0Rnn8Xe8iJ06Ykk7dxJ\nOErPP/9rptGUxcp/2ni6ZAExZw8Gq5XQmnUo9VoGKrfxZmg6bXYNvWu/BQ6ySLvdclZ0uuNvbdDS\nIlVI8vOPXRNeuVIYbVOTxCH+9BMmn48+0dHgvArdtu+5ILSHR/x/JhUbzz2Xyosvgm7MGOLHjCH+\n1VfZ8morxsgENLZmdrkGsfCVVIbnVTM1cxeKM4ednDZXbrcYVOvrexTow5HVKrKvu69KMChaeneV\n4cxMuOwyQmkZKDUacLtRxMeRGy6FUCXXnWXgP8VRtBrS+OKzMNdcpzygW2k0ojsuXCjp0aGQsAK9\nXsST2dyT33dE6uiQvfX7f14IZc8eAX8FBYI2QMDS/PnyorIykQNqtfDP/SHf2YOsnG2xsOROBT67\n4OStW3um+8EHPVHDcBL5qt0udzQQEA/tq6+KxgmChsaNEwPmwoXC1HU6sFgIbdmGsqAARVoaRUUi\n4K+6dQLf7MlArQiirVezb590ZVy0SPqPnmhJhpNCpaWiYG/cKGfQaBQX5969srBqtRwCnU7mazQS\nio1HuXEjHfYISrcPp6rNyguVk5iStpMxIwOwP2X3wgtlGzduFMy8d68c7fz8ntdHR//263MkADBq\nlDjMfD5xDM6bJ2OYNasnXXbhgjB9A9vo517B+ojhZPQuPtBbnOxs8dh6vXJGGxsF1N93n+TbT5t2\nSgW5wSC1y267TexB06bJ9V66VIZ1baSG9Ph4Fu4bjGLdXsrrNhPjrSDC64Ddu2k357DGP5QMdQmd\nTgWhL75E2doqhprTWAQyGITWVgVeaxKF2X7+VP4A0c022OyR+9Ndbfu66yA7G9eGnWz3F+IKa9nR\nkUxpQE3isCQxCl98sfDITz+VyMSpU09LFGkoBMrtW7kk08WDXw7BrIskpk8yRe4yaP8E3C09NWKG\nDJFY8ZqaA3ywodpPdC8voS3raUiJJburVYxJlZUSIVdQQEuLRC8rFMLe//73kzf+o+729P2tVn5J\nOTk53H333Sf80rlz53LxxRczc+ZMvv/+e5RKJWfulx4Wi4XPPvuMCd0u+2OlUaPY8eleGr/biS4z\nTOwX/8HqbuCDzrNobc9gdv27TKvZwL5gFiPd39K1z0drVBHpjnrawkYibp4JH3+MMzqNPZ2prPde\nwe+shZz+gucH0Zo1YulVKiUc7KBc5O4IqBRVDpnNzYQNEXzVcibFjVcyx/s5w91L8YW1fDU/icdm\nPEJHVBcucxKZVh/K0irCiSkoHnxQLOCvvAKbN2Of+DuearuOxMBWduvP5j+/FoZ1DOTzCbApLpZo\nn9GjRSjvvnseXWu2k5UVpsaZwUw+RaOwY3Z3UrBzF86dEXh8KtoMhXSkFRAd1Y6mvZm+KR30nbkb\n8jWw3gBmM56JU9lUk06M+2dLdMg45s8XXfHii49sJzgWWrtW0nFycoQJ6994g8DibwhUtnBHYAmd\nChONugz2tfSnsdcokhu2gMdDeOxYdhTMJtLbRmaeFmWfXlR78wmt12FQetD6nJSXR1JVJWE5pyI1\npLpaGIhGIyGTGzaAv1PDDy2FnOMpwarVomhpIfzav3jWtAVvfROdKhNhtZpPVbPoH9mP7CsSICoK\nmzGZtzb2pV03lvPWSrqYQiH8TqORM3q68qjCP/1ExWPv0dikIPATjB6jhHXrCJeW4qxoxmXz00+V\nQVZcDh+2T6ZZkcBMxSciYG6/HY/CwIfvB+ncU8clgXeJjQqhrStHqcwmJUWMq/k5QVpKz8C+20/s\n4AyiTqT6x/9DVF2rpKq5gKLAFqKsbkhKQlnXjBsdqf4y7FiYWfkchj7ZFMU1UfTqAMhIgUuekwcc\ndAH8fsFpFRXiODqpEXIGA/HWIOnJfmLsK1HmXc6tza8w2foyZ4S3cvbWJ/k0PANnXSfqfa/h+TGf\nH+qyiajajTZCwzeG24mhHYs5zIriTLpT67ZuhZ9+zOHc4ZeSraw8/hCs554TS5dOB08//au/7nLB\nh03n4d5u5tKk5VhfeglaWggFQ2xpS+fTQYuJUU3jcsUrDFNtxBY9Ea9X7HKFhfv1pTlzMFVrWbw+\nlvb+4yhvMhLn8fDJP6oZNeBTrJs3wQMPHO8KH0oLFoi3wucTj+GRalz07i2IwemUyAqvV1CDTgft\n7QSHDOPN5Xl82TWeol7/5bySZ+mTqiTKaIS0NApr95BSMIHRxQ9h2NpMWeLN9JkjfW1/+EGcwBER\nosiBPDYvT/Tgn37qKXJ/RDA2d65o4ZmZPV7t5mYBT90h4QUFYu0zGiUxcv16wg0NhBQqXOEIVhmm\nY7ztE4oemMHHLzZS99GPzDFWs7TgZnr1iuT772VccXGyR92Pb2oSAOPxSBTRjBmHOESw2eQI5eQc\n+rOf0aWXCqDrLsJVXd2Tj6rVyhy2bZPxezz4Qio2b9Wh2LKG7A++wRWXzvNNl+AYPIGtgT4YLD5a\nnXpiUlQUFooj8GB2GQ7L+hcXCwv2+SQi+HB5xD6fOIISEk5CnrHP1xPv2t4uwmrlyv2l9XWipF97\nrbju9Xo2/m0pxuefINFXhVJv4ZYOCx9GzOVLzQxGb36OKxdFctNNss1JSeL8feklUd3UanFur1wp\ny3dwpWSvV+aUnPzrMjIcPuAIo7VVeOEZZxyK1SIjezrmLV0qxuVQSLasuVm28+zcci5peJgk21Ys\nnV2QMkzmqlDIg7uToLsLGu3aJWDkm2+E6R6mJ/RvpXBY7A0REWLIKSqSIXz3nWTLbdgga7QqfTbX\nJekZG36bmOLdBP1BVAobqKT0eczViRScm8ObP97J44oHUVY1Q9k+2dNTHP7abVBQqyXQ4ZNPwOcL\n4/W78HZVUOUOYt39BVq/C6clmUjlbvQZGXDDDfjOaaPy9Q72VBhI9VfSe3IqtLYIkI2Kkgrq3ZXH\nzjjjlHs+/vEPeOcND8M99UxL24qmI4HtvgyeqpvMn7V/J37vO6gsJvHQpqVJj6mRIyEzk5YdDThV\nEeisBjJ3f02RxU+a2gAzLpDxG42SYP63v6FWy/XzeE5+YNZRge3cuXO54YYbjlj9eN26dbz22mu8\n9dZbx/VSnU6H7iha+z333IPVauXvf/87/Q+jPD788MOEw8Jn9fqx3HvvWFJMXZTOW4MnrGNk+WPY\n0/tQ3JbDkvA4NI4goY2tXK6cx0+KkVhUNlymZDRdduotvchP9oipaOZMtjy+gi0lEWxNnELmZsX/\nZBSAcLPupPHu8NX99M47UiAnwx3NQ9EJNHZZWOidRkRrJKuipjC++XUaSODcprd47JsRZI3OIycx\nzIAlT9Hw1R70IxJJefOxnpgghYKQL8BPoREQNwKl7zB1A4JBkUTdORjHQFVVYo2Ji5N+aqNHi1z5\n/GsNvTqDtDUE6JO3i32xvehXvxijUUGbO4BRE0Dl9zI4tB5VVZivrXOZcn8mbq+CVzdP4qynH2Jg\ntg2D0sf7xQNYtkWBVivGucMNbft24c0ajXz98Y8nuCdIyJHJJEb58nLonZqKyxHEH1AAYSLCXWjD\nXrwhLZED8yDaBxoNe7Km8OjKMexttHCz9T0uS3qRl7dcSYaqlipXApMDa/n3vy/C7xeecSKtYX+N\nfvpJHI3BoBhk9XrY9K2L2X4P29UDGcUqFOEgTluAjKZlKBUhtKowX5nv4Puk31P8kYL770+E2bNZ\n+PZnLG47k9LPzaxvCvPoYwqGDZO1ueceEVanK03d5VXT1AjGiDBLt2gYOi0GvUKBv82O1+YmGFQT\n46+lzpFDlroWbbiNxbqZ9PljX+JMJjatgoVfqKktT6XTn869E9YzuP5v3HLTy3j8aoYPB99b71H+\n92U4wibmBS7jkUtV/O+qn376yG6HJ1aPpcuZSW5tCg8P+xry8/Hs9BLhbsGCg0oyMeDm9eopjOj1\nEdHdjRYPIxu6+7kbjeK1OlzU6glTRASq+FiKfK2scfXj9X8rcXuSUTWk4Tc0kapuYJZhAcnK7Zgq\nK9nXFGK3L40shYZQi58WqwVrRC2Jic3kzhAFyu0WBVejUbDVP5mXXvoVYHE46taUQqEe5HUUWrsW\nlpWmo8qcg7XNz6VtH0AwSDCkpLPNzzZSSVOraMPCH9Rvsq6yhqUJD/DUUxFce+3+Wh4xMeQ+eTXX\n76+38+STULoNkvU2jIbQrxcwCYeFMSqV4qo60uXvBn1xcWLBP5I8cTgEFfzhD5JD29oqwGt/m7Km\nChef1sZRooVydwTn6VqoCBoY+Prr0kbD62XAa8WoVlXS6jXR/tw3ODP6UFAgHq3ISNmra64RxXro\nUAEFe/aI+G1tlTN3xEI/SUmH9t+urxc0HBUlP58xQxhuZaVYO3Q6Ql0uQqhQBgNE2OtQffEpn+n7\n8OO3IVzePPSdLaRn7qWr6wxGjRJQ2N2wYetWkavbtsmeR0aKahAf//OaLS6XhL62tYl6c1RfhN8v\ncbS9e4uQSE+XzzIzpbhQSopYARoaCPt8tHksBHxtpCtqiWhq5su4M9ndZaS6001ClhGlRkPkfjl2\nODBaXy/rr1BI1FDfvgLynnrq0CPz73/LPM1mSX2NijrKPA5HjY099RN695YquU6naNPdSZwKhRgm\nbr+9ZxG7utC//CyJnaWovF1onG4ClgzGeL7nP50XUtOq44EHZNn2N/IAxIBfWCjzfvddOQoxMWKb\n6o7offVVcUxERUnY+9Ey7pYuled0dMgwTSbRDY5WIHfRItn3lpaez9RqaG0MkJfoQOv2ofSFBbg6\nHMKc0tJkz//wB9nrqCg5bN3tv9RqQXDr10sYw+ESiU+Aulsld7eKio8X7NPaKgYCr1fCktvbNWir\nCnkjVUe03UlYEQRPEK9Si2bMWJQ7tnPTWC2+4I/o1jWBMyyX91hc5N3o2mA47pjY4mLZ21BI7qfd\nLvdTp4Owz0qdOoGIQBsaTwBFKJImdwyNlumc849/wLp1RCankqNRYdF1MdLyLjGDroTLH5SNVirl\nLm7fLhfgcEn/oZAISJPpN4Pejg5hs47mMF86BtIrVMwuu4UU9wYm+OehUFXQpQdzYrxYH/btE4XS\n6cS/4DO2nnkPnrCWyNJ6MjJVZPSNRDX1HBEu33wj926/ccRqhXtucFC+oY0zzk0ETh66PSqwve22\n23jmmWdYu3YtBQUFJCUlEQ6HaWxspKSkhBEjRnBnd4m4k0S33HILDz30EPv27WPu3LmsXLnykN95\n+OGH2bdP5ITFIpfi6ks0+DRG9G4brSSx68zrMO1Zh0aVgL+hFX3nDugMk+StZJ1yGP6EPNKuOYd+\ndW8TlW6W5BWTCesNF7P9edAoQxR2rIElDhg7lvYuHV9/LZduwgRQBnxiBktIOHUJI5MmiYTtrrhw\nENntcnFq/Zk0jL8MddU+mjYkEFhWQ7DocvLLl6AI+NlDAaoIPWZHLca0OBLsJagDblTbNwvnGDRI\nXCCdnVgmn8NFbcK3hg8/DLNdvFjcnmq1FL04BkpOFu9oU5PkNIEw908ir6S/Lx2b0sqd6s8p0GxD\nm5GIyqhhbWkhhqCLBKsTVbADW3QO5oYSOvtdytpdJnaVG8hyWUmpqCejVwR2jw6NRoD4kSKSrVZ5\nr893aKPy46Xhw8X4FBsrfGR53nVUjUnH+dUKCn070WpCVBedT1nMBPTb/gS1FZCWRseyLbSXFNGl\nUKGzl9BoNpOqqGevP5WCyHoyUkME23tk7amg/v1h2SftBFqc2DOszJplYuuWaFbUnsdQ53IKJqQQ\nVbyKqkYThnAHseE2nMoolg++G6dX0+Mp83pJ1Nvw+RQolQrUmp9H5mZlnd7cWsOEEVScE6aqLIB/\n2Fl8WKpksC+fHP0ealRWfCHo1MdgKMxgc/lw1No23GE9zUErcU4n1qCH+ioz3oCSkMdDZ4OTqIJE\nhp2plILLgG/PHpxKE5EBB4q2VkKh6P9tncFOG3m94AuqiUiNwVaixrahlMWxl1OTNYGI4o0MZxWV\nZLKeYRiUHuyTLyC6u1BNUtIh2m1srACPrq5TUHimqQk8Hla35PJhxMUEggoc9hDfKyZSFCrFH5fG\nhNQ9WDvrCXpB52ynISqbJnci9qRs2r1GeqXUMmagnT4zRTir1cI/29pk7Cd0Tm69Vdw9R3Jl/YJi\nYvYXfw0qSaBZlInNm9mbOom7dt7FpmA/zghspVMRQQa1pLuK0XZ1YNR7qK7er/yVl8PWrWgHD4b0\ndO68E6qqjKQ0JKKtH/9z5HQ4WrVKNCMQ6+GRigbMmSPCOzr6QLuxQygYFGRdXy+L2B1hNH++HIS0\nNBrzp1BTm0rA7cXsbyXU2UaCswbS8uUQmkycdVkmjWst+Dc72ZE2hB/eFU+QzSYRwWeeKZG23Ueu\nsrIn3DcYPE7DXFubRFl1W4V//3uZY3y8AIhVq8BioevS6/E22XB4dYQ6nKg8TtLj3CgDCiICDs4Y\nECLupgxefF9k2qJFkkcJgr80GlEL4uNFViiVh8rrzk5RVKOjRf8Mh48wl8ZG8Qp5veLdmjFDck53\n7JD/d+95Zibk5BCqrKYkUMS2QB6RPhuGRAO5gRLUwYkYtEGuuEKc2Onp8n3sWIlUdDhEB+gO99Zq\nZQ+USsEfDsfhx9jdA7d7PscFbNvbBd13doqh5bbbJKekXz9Z2IQEOVdlZbIORuOBYnJs3UpknJ5W\nVwqRGhs15r5EeTrwZ6TBPhWEBAdWVclrnE6ZX2SktP/xeuWz/YXHCQR6gO2+fXL87Xb5Ohqwrarq\nqSgNshYOx9GnnZsrbLS9Xd7Z1SXrXKHJp2bO7eR98Q8BQ8GgKGhbt8qhT0kRYHv99cKLm5okDHbK\nFDls06ZJCEBysuiDZvNxbMbhqfu+eb3yurQ00ddaWnqi/LsLvJWqCmkdPYs0axc166pRqKzg9xNT\nVY9h2vkoQiF0W9bKZPv0ER56sNXhSNRtPVCpjlm37aaGBhnj/mxI/H5ZFq1WgVFv4WXPvRQoN1Ok\n24srrKcueShuRW/O+ep2sNtxbK8hoBzKBMUK8GoOLaR3000SpZKScvj1XrRIImA0Grm3x+h0OhwZ\nDGKvWFujJ9YcQVdSDnm5kWRvqaDTbqY+soBIswLzkD4waRLr7lzA7qYkJm15j0Snm4aCMZg3LqdC\n35tVCVO45twAibNGyYMfekjuWLeDzuMh9/1HyG1thbYC+POfT5oX5KjAtqioiHfeeQev18uWLVuo\nqqpCoVCQkZFB//790Z+C3hfdVZBzfyXWLDa2hzGMHQu5RQY233sfFavKiDurF31UeqY8MEbCQbaU\nkf65g7UfD+IjZpBjMIAlAAAgAElEQVQQamaqZgvDLppFuftRuswKUhv2wrvv0nfwYJ59dijKdesw\nzfunvMzj4f3q6WzYIDwvOSFIny+fEcbQt69k6J8Kt1R3jEp9PSxYQOi666mrE8Z+xRVi3WrbVkdJ\nmoKKynwiNV5cQZiuXc7j+fNIcleQMjqXD3xPYt61FpJG8XnuaNI3/JeoJJ8kg0ybdqDamhK4+2Y3\nnd+uwTw4H4XiFxa5xkbhQD7fIXmVRyKjUYodOFZsJnb7Mtg0jrhBg3hq1no+/Y8PV8jAv/aOo8Q3\nl+GaTdw2fhsTnKupTD+LrHgXrcnTSXrndSLMSqw3XczgpH584HiELzP+yIBxP0EvNZcXqvh8ifDa\ng/vnHUw5OSK/HI5De9AfM7W1wccfM9VsYfhfLyAyWktFBbz1ngaFcxiJqX76RGuIHNWXis2JtGyu\n4R/ecfwpoRl9SwtDXZ/xsLqKv2ifZGe/S5nmf5hbo+ZRkjqI9MmFMGgQw4pDaHVKZs8+wTH+CkW4\nWtEWb6O4NY1w7TZ2LYriqesjWPR6EobIImK6vqApfyRaajGW1xJSqijLn8KDT0Zgr+8iJ8YGLVr4\n618ZbbZjH5dLizVMzgAPI0eewhAZp1MKXICEJv5CE1BqVMz552h275boQK/dTe+WwbwY9SU5GUHK\ntfk4tKkMT6rEqF7E5xV9uJg36TVfC/9V0lur5RlTDq9Yb6YqZjbhq4tgRK+fJYZrr7qMPm3vsisw\niIvvykajDMLuvT15gP8/HaD4ePjDJQ7q31nO4D7f8s+mO/lg1wiCviB/YAel9EKrUZAX48B6/1jS\nZ3okxNVmE4VEoZDwjv3AKCFB+Eh7+ymoY9TSAuEw0WlGArU+zs3ajTa2BW+LjbfariY5IY7x/wDb\nE49R/UM5aU0beKT5BvwJaTSMvJxFq62kqRt41zOX2w+ydd53n4iIgoKDbJ+VlVKBtm/fX+8Tm5Z2\n5J5jh6F+/WQJfT4VvVuGwdetOOfeTOSZU0n4vZOon7qoDmewIHwBF6v/S1ij5/bWP2MtqyI6cyLe\nEdew9573SFY3E7NsGTz/PHq9moJEO/j1MHSGKCj19aJgHU4bb27u8S43Nx95sGazuCCPRoFAj+dz\n9WqRPw4HJCQQjDRjLxxGftNuJpjXs7E1i99r32eAqgRjVyv4s+Cjj7BdcC01rQkkPvsU3//NQ40r\nhqG9YM82L6nOCpS6JDIzLT8T3+efL6+KixMsdFy2e4dDXKUZGbION9wge37ppXKAp0yB1lZ0zz5J\nzRvLqF9fS5S6E19IxZBvHifZ1olXH0FV5nW8/GE0ZWWiOCcmSsbQ44+LwfDVV8XmUV0tr0pJObQv\nany85FeuXy+vP6KKYrMJqggEJCd+/Xq5e1aruIV37IDp0wWRxsejio0lqkLLhNZ1pHXVo+9/JsMN\nah7uWMyH7QHWrZ1AQoKSlhYxRm3YIM6H7uCzK64QI8z990t0ud8vXq+JEw/fKvyqq8SWcdZZMtfj\nou79aG+XhzQ3i4I9fbqcrcpKDgw0OVniYMvLDxgnMhJ9uAYORTtlEpZ3P0C1sZxeiWoeifmS5/bN\nJDNTrsH774tuuGyZbPvo0eJVveUW2adRo35ex+jqq8U4PnasvPZoNHWqDLF/f1k3heLX6wkNHCiZ\nDHFxorKNGyfAOCVFgWXWJJj/pDAlvV5yqb1e+d5d9Ky70uK8eQJwGxtFBre1iVLX3i7n5iQA22nT\n5BVWq4zb4xEwrtVKxFdbmww1P6WTkcp19N/6DiTE4chNoGF7MwXe7SjtNjlAn38uB6q7AGxurjDh\no0WPQI/1wOc7Ot86DA0dKo5vl0tsQi+8IHuVnQ0dHXrafFPY2NSHnIYXcPnURFQUM8f2BoRqwWxG\nY9JjdtioN+XhmnEhsTExPaHgIHM5WuePqipZIK9XDspvALZ6vUREvfGGgpYWC2PmzGSCGj5+9iwW\nfJ1Igs7JrKdGoVeUoN1Zwmuuy4l0l5Pj2EzKI3/h3Nwz+Tb3fFakXUt0pgXjDMQR29Ul/CUxUYxI\n+fk958lqlRyjI1rejp+OKaN60aJFnHfeeQfyYE8mhburIOynzs5OTCYTra2tBI5SvCkqSuREa6sw\nepUKLrkjCe7Y745rbBTur1YT/MONlL2p4JvAJCw4qCGVcO0PfHnlAr5QzkCTncYDvnfJimyBjRux\nPJsHhoPeHQ4f6KWuVoM26JbL0l0K/lQEiYMc7ro6OQybNvHJwjCLFiuwWODGG4WBFqW08XHFMEbH\n7ETbFUFEp41sqnjb8Efas/uQOftsVLcvBqORsq82MS/yT+jI4zLFei74xdoTDqO+9iqs69cLB/3y\ny58r7NOny2GMijqu8oy6oIu4j18Szv7qq/Dgg0zc8zKjTKXc0fpnSsjHRhQ2Uyrfu42M0ZUTvX4J\nVapoPFlBCvplYemsA6eTNY3ZeFWgjtCj2boRNu0jru9Wrrnrrl8dx2/2IH76KaxbhyIQIDY3B5LP\nRKfb3+YgCFlRHYzLqYEYCx/Vm1B3uljr78dA2x4m963Ho4gkb085N1/p4MzrzyDqrX6wcSODVryO\nc6OR+6yvYMu00G9q5inrWbhkuZZASI3Lr6W5RUmG3s6AVfOYNFmLu6yWjduSeT/iav5k+BsJMUFC\n/hAjhoNSbyfhnYeho4MyfW+ca+287b+ENncECYZybvJ+gWbAXKkYHBEhB/S4Y8aOQsuXyxeItD5M\nHyq1WgIcfD7ocitp0ySiidCgzk7EXxqmoHoRvhY1I7VrGcn7oFTibs2jo9pJIDmDjHgn2s4wnbp4\nfgzHMe2Xe9CnD4lvPcWBGzF/vsxXpxOPx6mu+nVMpEZxkHAwmaw4HMdmhDqp1NzMma/dAFu20KBM\nYbH9TGp8SUSG7dSQxjW696jXZKBM7KQg9wdoShN+ZzKJljhqlBQu6dv3gEYYH3+KCp8XFcGYMQxo\nauLvg1ZR9fEaNK0NLAjPIt9sxB2ysHnOc3xdPYCW0ATyGcZ9Ec8SsrVRuqKWfbohbMq4GEO09Wd5\nb4cd70svibK9bl2PW+UkkUJxcKGaMdTlj+H5+1sY8dSjnK3OoEw7Bp2vkypFFo2GLAoj6kiKMaGz\nVcO6ZTxfM5nN2yZjUTl54qxvMIMoS48/Lspebq6Ecn75pdzthx46NEFwwgRBYirVYfoeHSfpdBLm\n++23Io/MZli0iFBcAjucWbyhuJwLGp7H5o1gdHwJq1qHc4H/PZTBAOzejcen5LENF7KnzozPZ+T2\n243k5orjseWB15hTtokudRROwxNAT4hfUtJvCHXPzBQ02d17t7tY1LvvSgug/UUndEolfV64m4Ln\nXuSBBeNp8MSQuqGe+00vQG0zj797Pb6ccuzkkJkpYvhgYGQ2/3raoEIhbPJXW/bl5QmgWbZMdJri\nYvl3YqKAl+HDRQ+56ab9RRCDDIgG1yc7CPmDNK+rIPa84USGNbTWm7DqQK0V/FNSIg4ws1k8QQf7\nQjIyeoDq2LFHHl7fvr/BGJ2RIa7ul14ScGC3C5qurpbKNevXyxx9PomKi4iQs6tQQEkJilAIo80G\ntgY0LgdEaMHZSa9efoZYRe3z+WSLt23rMYi0t4sN40hjHzjw2FWoxERxZh0L7dghWHTJkp7QZb1e\nxvnHP8oSRLfXCRjy+eQXtFoBGIGAoLIzzpA937NHvLJqtQCTa64RQ82nn4oueJLK2CYliZGjrU1C\nkOv2D89kEs+20ymgPNdRQrnah99XiS4ygl6KeuKCNVj0neic+6tYd7dV27ZNDt/MmcLfL7/86LHb\nU6cKmDCbJYrxOMhkksCMDz6QXrwdHXKlkpJk3Lu2+qAJFrpHYFB6uS38D5JDDQdy2E1KF0MMO+nq\nOwRTx1L42w/itXviiWMzHMycKef6l4nsJ0hxcT1dP/btEwPM7u0+yilgg91A6V+DZDpcXK/+DpX7\nAiKUHswKCdeLDbdwUZ+dDL/OSXSRRSKn7XbRj+rrZXESE0VOXHGFGDfXrBHeeDir1gnSMQHbL774\ngltvvZUxY8Zw4YUXcs4556D+DVXGampq6NOnD52dnZxzzjk88cQTvPfee7z44ovcdNNNfPHFF4RC\nIR49uNP8YSgq6ii684oVwry6umh+Zh4txS1k6E2s6eqHQq0kqIug1JmIJtCM1+2jNdBCVlaraCIa\njRySqVPlBePHc0lIDCGxsZDb1ygms++/FxPNqWpJkZAgZsr162HOHLauUGA2y9nweCTUp9o3kKGF\ne7nwvEIK2wzo6xspXLMPRcterEl6+GaRKCSlpZRbxlFqSyRaB8tbXFxQXixKltksDKGioieWv71d\nuMvBwDY+XkJ5jpc0GlGAmpt7mGhUFPrsZO7tu4ZlA0fw3SethLHQ9/wo2l60EIruRXz1RlyNMdQ2\ndWEZKlbEam9fzFYz3mY7LY0dZA00iwXodFBcXI91IzISSkrINpm4c5aHlk9XMqx/LQyZAZmZ9P3v\nGj5WFqGJ1rFp7B1MvqaFXXcvpCR3OsuqBjDQi5yd+fMhHMbh0+OwQ1RLGRU/KOAP0cfQRPH4qd8o\nM+tWFTEgupnp/uX0TWolLkEDM2bQ+Oi7fGacgWLYMDa3XUF+YD9KPGOghOpUVuJJzGDvj004Tf3Z\nXWkmPzdMiz0KjyuEZtEiYV5er0QDTJx48gZutfZY846UMxMOUxhRQ1FWNK1JRm4914A1735KTQNZ\n/Hg5k13PkdK6kxizU/awsBDntjo2J0xD0+EklNoHVZwVfchO9edlkK3t8R4ejsrLe1qRtLT8fwTY\nBji4RVBn52luDxQOi9Fv61bhKVot7cSRlGekxutD7+xihHIdxco+pIQb2eVMJO/Dj1C++IJoXaWl\noog4HHLfTkdfEJ1OCsYA5kefwO4zYImKJ6BKwh1fiLGpktimbbRzFtFGD1Wp4/Hb3qSsM4mfFGMI\n+YJcqZ9P1oBMYqInc9SWTFFRov1GRJya6nAHUU0NpFT8SKKrnKzISlp6x7G5IoqYoA+DLsQXSdcx\nqW0xvYJBqK6mwqvAMqwAR7UNx9xbMXdXv2ltlTtXUSFywesV2drQcCiwtVgEAB0rBYNSKbS0VKpg\nHxyp1doqPPDee0XWvv02GAwEPT7aQlZiU7Qs9N9Aryw7uzv7kRu3CVO1GhKzwOfDZU2hdUcDlQ4z\n4TB89BH8859ypJJcZaiGRhHusGNNWAd7UsW1fiIeA7dbgKvDIcra9OlimFmxoifGNj5e5OqSJbL/\nBgOsXo13+hyafjJgddXR0JlFJ0bckTmkKlr4sTIHVY7YEqZPP/Hep79KNpuAvdxcOZOlpXL3mptl\n/N0Kf0IC/OlPcq8VChQLviSk1qLzOKiech1Jvmqirb1otys57zzZsvp6WZ7YWJnDEeqRnjrqRvfZ\n2WJU7+gQYKZQiMKtUolCbTbLZ6tXC6i77TYx3ITDgha7m8IOHgyjR1PnPRfrNrkKcXGy7X/9q1yP\npiYBNae7tXs4LPi9Gz+YTPudH/ur2UVE7BedlQ6ZT0uL/DAmRgqHeL2y37t3C9j44Qf5zO/vqVx2\n882nrGXZV1+Jd99mk//rdJImUF0tGNWgDdHuMtLVdwi6AXkoQyHi01ugrg0siaKjWCzCY7sNYQ0N\nAtirqo7+8sTE4w5BBmQN33mH5ft685NtIi6vBo9H1IIxY4QNNNcAbgcd3mg0uk6akoeDfYEYkZxO\nGDQI9bp1WFRuMETKxCsq5B4eC8hOSRHLwMmm9nYWP1JGezgJd1sXvoCBUFgJKvB1+vAbgtwb/x8q\np91M7rpEaNxfIPLMoWTtXgyrO8SgYLf39Buur5fwybIyOU/nndeTo3gS6ZjQ6bx58/D5fHz99dd8\n+OGH3HjjjUyaNIk333zzhF4aHx9PdXU1M2fOZMmSJSiVSobuDzmLiori66+/pl+/fkydOpVbb731\nhN5Bbq7Enu/ahcXmJqyOISsjiJIO9nUmoHN6md30Mi9o76ZQuZd+BS5IyxSGtm6dCFG1Wiou6PVE\ncHB6kULCIbt7ox2OamrkhvbqdeKlxpVKiVm5+moAZseKRWjwYHns/fdDc7OWti1mnG88z1CzD+X0\n6ZB9CRTvOlCogrffhj17SPblkvCgBndDJEPjKqWJVF6e3MBHHxXA6fMJZx416rgtV0ek7ri8N98U\n5nPttRAdjb3PCCon38m46E6m7XmGgNFCXLGb8lljaftgCW3GDNLtO+hKyJLFv/FGZtWB8582Ysu+\npL9iO1QaxBp0OmjqVLEmRESINXPhQsIuFwZXEkZVArq1C6CyN9xzDxf9axzuf/nYFurHxOs0MATW\nz53E+vUQYdhviMvuK+Utb7+dJJudmdrlbK7LYmbn8/BkkUjKk0wjRkDOMyoMDzyDubMe3H6oiaP0\n7jeojcgnOtyC19FO3/umw8vfiPl0wQIZcH09Kp2RXX3/xHbtEBIKwBzlYJrjC0zDhoi76O23hat3\nd48/WTRyZI+mcDgTeDgM771H0Sef8Lw+lbpLb6EzPoeuHxeTWbKAWNPlLDRcwR/z50HbJnEfxMSw\n5er7+LhmLFqtyLWx85tonfcVszyvwz69WLCPFAZ00UVSxS01VbTP30hmc/T+3rX/i6m7br/ffyAc\ns2BYDnP3fckA7PTTb6JFl065pxf9A5vp716DMn+GaGG33y7PaG8XoZ6be5obXoLm8ktILnmHtQ3p\nDLzmPG75/E70JUuxdJYzx5zCmr5/4Oz0elq/TaBNEYcjLotsRTWT4rfD+tVwXoF47UBi0/bulfMR\nGyuf3XyzrFFa2slpm3MU6tsXdvXPQdWqJDsbHr4vhbpGFT+uHcTTq2cTVbWFwbFJolxZLFwTeI1P\nkl5i/KxMUobtf4jVKvmwK1fKfFasEGD2S29NS4vwioKC4zP0lpWJnI6IEN7x2GPyeVubuE2dTjHu\nXnONyGWnE3WnE+/5f6Hly1rOVnzHuSMVNP3uRhJqDKg+mwodHbgdPoodKZw1MkzZ/sJDMTE9tgTF\n1XNJ+OQTUETBB/NE1t5++9FD/o5EmzYJCNBqBSD87ncCihwOceVkZ4uGXlMjJVP37pW9V6kwarVc\nUTSaZcWJ9ElqZfclH+D46kdGd9TTZokiECMOtJNpIzyEliwRXSEQgCuvlEX65BNR9s84Q0Lny8rk\nLr7wgqCme+9FERdDR5uaDRlzGDu2H5akQTw+W9Se5GTRXysqZO1zc6VkyCm25RyZ+vYVUP7EEwJy\nNm0S1JedLTHDzz0n89y0SX6nXz/RK956S7yVRiMdl93MztixZGbC+VpolxRuBg0Skbdvn2Dn2Fhx\nRJ1m1gXIuttsYkdJT5e0nN275bgdONqpqXIeGxpEr5ozRzxoK1fKHz77rPBftVomERNzynkViN0k\nFBL2MWaM2BeiowWsp6dDjKaAqbqlWC++SQ7XvfcKOEpIkEkvWiT3ODdXDl1pqfCjoqJTZ1FZtAh2\n7CC2zkEoPBCXOpELLhCslqhoIljbQOWcQtb8mEmEx0xegoPhFfWwJSh6dv/+wk+tVjlE3bHMfr9U\nTcvNPf0WEsBl97Plpg/I21nJOQ2rOC8yh6bIFCqyxxPocGK1lnOGtYGIvtnk3tQLzr+/p6eUStXD\nDz/9VHj3wIGiM19wgehqx5FicyJ0zIhLq9UyZcoUlEolLpeLzz777ISB7dGqIu/cuZPh+5O9TSbT\ngdDk46bBgyU55oEHiEhNZUBskF1/fIwh379DyvIXYeNG/qO7C7s/koouLQGlFt24cWL9+PZbbE4V\n9RUetH/9mJwBJhSTJ8smuVxikT5aRbjqailY4PMJGDoaAD4OOiR8JRik/fX/UvPxGvyeDgL9o0mq\nqhImlZsrYdJr1kj4yFNP0Sc3iXcywLWqkj7frZYDmJAghRWamiAUwq6IYlnGleTt2kjeewvQXXHh\nyQkR0Gikfntp6YFKly+u6EdJcwRGBTxVWkpcVy2cfTbZaX4yRujYtTuDbxuH0b9IR6iuASWyPX++\nvA7ql4E2U+Z5sgD4r5FK1bMBX38Nzc34dpbi6GpnvmYwjZpRTI/0werVaG++mRmPgvI/rShf+YjA\nmCiuO6OAOes+xNTSRMQj0TB3Lh1Dz0b90VeY3C1Mf+01pq9+VZ5faz2pOQcHU8K2b2HTCpmPzUaD\npZAXyi9ih2Eo12R9z72xj0PlOPnlrCwxo0ZHQ14emjvu4PdpA6msFJlhMpkJhy+jqVkMpbq8PGFo\nJztmVKHoMT0fjjZuFK2iqYnI1C6W/KeObRFpDK2J45ZJyWSv3oAnPp9QXA5MyBGFc+FCJq59muG1\n9xKYeC4a1yXMHtSG9eu3oKEVXNFHzyXPzDyp5XkF1B6cHnCava0ngzo6RChXVsqe9e6NcvtWJq5/\ni7N8YSr1vVkRnEyn1syVpq9IGiNJjDaH8oDjhOho6R31P0FZWRS8/xAFgLOhE/8LJUQZ/aCOZ8oD\noyg6Zzgbx99NsS2ZRG0b9yv/RqzBCTV6YU7//S9UVFA88lo6X3uPwobvseQnS3i12SxKyqhRp2Uq\nkZFw9eU+fBvLwGlBmZJElSuBRWWgpItxsbs4M7ESyqR/Z1FEOUWPKqGrDf76mmiZ111HqbY3i0P9\n6Fv+LuNjylG4XGLE6q5m09kp8s7hkDt6DGkhB8hqFVDrcv3cGNZdjcdkksgIEAUwPR2Fy8W5F1k4\nd/t9suYLl5E6/335/cJCeOYZ5r0XyU9rVOjaovnXMzai3v4n0aEudC1/hNRUmpIGMD9+APF7f+J3\n/Bt10H/grrvd8qjY2GNkv7GxHKhemJoqd6CzU/bb45Ek0SuvlPw/j0f4htcr4ZIZGYw7sxbl7Fm8\n/n4EK1ZHcN29fRkzBgbXiLM0J0ccwk6nqBLR0fJvr/cktL8BQUPhsMwhMVGs5medJfpLWZnMq65O\nioJNnChevTVrcGUV8ajhdlqzR/Lu9Wquvx7OOUd+DCKWP/9cIpuTk08MG3UXPzpacaVjJqu1J0c8\nMlKQXkqK6BAejyxoXZ307ElMlIT1+++HN98kbDTy/PoRlNXIkbzrLjm2FovgP6VS8mlnzRJHd3dX\nnHBYbD5m8wlURT9OUihk6Nu3S0ivxyNe0IEDZXyBAAJeV68WsL5tm+hja9ZIG4PLLhNg3+3U8flk\nvcaPlwN3ivSRbpo8Wc7JK6/IEHfskGrDTz8tHtuyO94jq+17+KFKeFM4LHqGyyVf3ZER3SECycni\nrT///JN0gA5DKSkQCjEiqZKV0QpWlwmmG9u/g+C/H6GmuJM80piWaCMyy4Jq9Q9o95XIOAMBwSh7\n94rRzueTc1dUJP92uWSf/geA7VtvBlm9fhBGVR+e1H1D/FlRBJcvpq1+DxnBSnSpVtixE7wdYjnx\neuUPw2FsXRoUYTOWgFP2oLFRLCwnIR/7WOmYgO3ixYuZP38+y5cvZ+zYsVx77bUsWLDglAwo2N07\nDelpa7PZDgG2Dx/koRs7dixjD5egEQ6Ld9Dng5ISyq99kfseVBHpmsKLdf8mPSuL3hU/srnPFNym\neHwTz8U4aZL87bnn8uMbjagVTqJ+3EOSLwLjjh2isGm1EmNz5ZVHnkR7u7xXp5MQn1NEjuUbcb35\nAT6HCZc+TKc1naTZsylzJ7MpNJNR4TaS1E0o2tvFknz77RLplTMAht8v3K5batrt0NjIMsscTHs3\nUx2djPX9b0iZPObXqxscibrLSqrVwhhjYuT7fg92VVQ/yvaFiWqvx2/e39Dqhx9g1y585Q0YbQYs\nfh+3rX+IK8+0clX3cwsLxQJXVSXWxtNF4bAwI41GrPLLl+OJTsStSsCcGIPDdCZ4vxOE19DAolfc\nbP14L8XtJoxVqyhM/kb6Im9bC5EjaXxpAX8J9mH69v8wOqsaU26iKBThsFTzO1lCxO+XNT/oecHk\nVKrLgxSHhuGr8TOO5awMTCC9ZhUs2i2M9o47RLEZN07OcUICFBURq+5xQIHklnz7reh0DzyQesoi\n8486p+ZmOaceD96EdPaph6DX67C5cqnZtpqPOmZjKMzkNf0Ixg43s++pncxobSBj1U+YTCYC77zE\n9s+2Um3pR8Z5tzCwdKG4t09BXYH/q2noUFGOKirAbqftkxVUOqJQKTPJpozNqsF0ZfYj0O7C3X8k\nPHYL20t0PP+8XKt77wmTpawSYX66miAjsnfhwp7uLC377BTPeQhdm4U4Yz75FxTC5ZfjrlGwPvsC\nxrY/S6smmSJVDcQmy4X4/e/hlVcIR1l56alO7qn7Hoffg9FXjLq4+NSfJY9HlPaUlAOuMdvj/8Sz\nqwlfsJkvr97I3pzz8PnAHG8gNrMIpakFivqKh/SGG0T7XrJENEmFAh57jLalnfTRRrNAfRF9U8tI\n6GuWSJ+CAnlvZ6fwdbNZjLrHQ3Fx4hlrael5Hogn7eyzZRwXXyxjuekm+PBD4ZHJyWLA/eQTUapq\naoQn+P2waxe2RUG07bH4Qnksf99GeFM6s3O3YVi6FH7/ez7+WNqt+LuGkJddxxn5XXDmmTgcPS1y\nZs06hvxUEHn08MOiUBcUiIzIz5cx/f73gk6XLhVDYijUk5Rpt0vBngcewNkZe6DbhdMp39PSRGQ+\n/rioHFlZAqYmT5bPutsUjRhxfEt+CI0ZIwdfqZSXJCSINy8yUtDoLbfI+iuVEqGiVkNHB5rqdtKT\nGthc4kZpjuSjjxT07t2TNxsOS+egnTuPcR1/QevXi4Nbp5OAr9+c0tl91urqhEfV1krUzVtv9ZS/\n1ulknjabGEvXrxcAqNYQqRmCMXY4Ho/Yr3bulOOWm9tT/NtgkD8pKREV4euvxR8SEyNO/FOt20dG\nirM5HJYt3L1bQGK/fpDm3svZnz9KJZlsXR9ksNFKSkspirQ0EeL9+8tZHj9eIjNUKhl4efnh+zCd\nZFIqBdN1V8n2eOSq2O1yja4r3ovHW0xA34LG76E1tpAFHecRnRHJrIHforFGymbk58sfbdokyH7j\nRrnUpwLcTs3HsJIAACAASURBVJwIqako9HpMixKI7pCj5G1x0FHbRWmVltSmRTSarOTaNmHXWjEr\nQui6usR7OXw4FBXR2QkL9vZHsW0gc66wYFz6uRheTmINhuMhm1uPrlc2nvpmXBf/ifDGTdgCCdR7\nU9DZa8lo3B/hUV0t+R0ffAANDSzZlcJDH04m2ngRz99dT759g1RttVhkD06TTD8mYPvuu+9y4YUX\n8tprr52SSsgHk/Ig76DD4ThQJflgOhjYHpGCQeE8AwZAUxMvfpVDbU2YdFsjLX4DGdom8nqn0CfP\nx6CmN7AuK4NEncQQJCSwY+qfadxYy4UNt6JZtRxf//585xuDUenhrLzCo/ev7NNHhHJd3W/z1gYC\nom11M+CDvcQeD/5/v0125w5iA3q+ZjbDrhgH6em8dhe4Uy+jq9XLDD4jKj6ONcqRtHwuRRoslv1V\nRlpahIFv336gJn2iqYPSlCFk+fagjI878QJADoeY2pqaRGEaOFAsglu2SAuBzZuJ6ABNRS2RLaV0\n1tURH9EJvXvT1ugDjwJ3SIdNEUN0/wzW7NP1AFuVqqf3wemiUEhCQ1atkiIEF10Eb7yB8a130Vda\nyB44kWnnBuCJdaIYvvEG8c4x7KubjFqZwRfNUGhcKIzAYKDJYeC1rnNx6VyYbDW0qRMwNTfLO05m\nD5n33xfUOWqUaEEKBUyaRPWaRlbY/KxtziQ9vIMkRR0Z4Qr6WOu7m8ZJ37Gnn4boaLq6pHaTebU8\n6mAn/urVogvV1gq+PO7KlcdLX38tFZL79ZPQTo1GylBWVcGYMZgvu5w5myIpK4Opk8/A8NdPMRQ3\n07W8megh8Xz8SQw6Zxpt1RN5lA8IdXRg81tYrBvPCMdWyiMuYuAHs048heD/ZTIY4PrrqS/touOL\nH1nqGUitIoH+gU2U6/PxqwwMbllCzhArWR/8DfQ6trwt58ntBtu8T6Hqc1FCHnroFFWLOpQ+/FDY\nYCAAuZpKgh8uQNNUiyc+lc5YDfz9GQByU9xca16AP1NJYude2FUm3umrrhJPV0wMirY2EnOMbPGf\nTf/aRTSb8jBGZ3FK7e7BoPSwKS8X0HnffaBUUmXuR1JgJRt8Q/l8ayax5hAJZg/DGz5lUvN6ms+/\nhZ8acsjNhX7dEf6ZmcIn3G7w+VBEJ6JrbCdheAwRt98FLz0pXoYFC2TeSUnSi3bLFilkcryUmHho\nVXGV6tBwNa9Xon7mzxfZ9cc/ihJ+zz0S5hYMHohlvCrtM77QDSMcHeCn2kFo7Nm4S/Xc/SdhTvHx\n4gxpbdVRedGFDJwpU64t7uk7unbtcQCy7vBzEL5ZXCyHuhswGQyClhMTRcG78Ub5WUwMpKczLr6n\nxdu4cT2P+uknwVXdrU80GikOVFEhfHbjxpMAbLvDOZ9+umddD65WZLNJZIrPJ3qCywVqNZGBFv5Q\n9yDJyo18nXYfen30z7BDXZ2IH71egmn+/vefvzYcFhBYXy9z/qWqsXmzzNfplPmelFpF3efs/fd7\nKkHX14uxZM8eMfR3dMjhKCkRw25ZGQqjkbmzl/Bxr+EMHCh/0t0h52CH2qefigM0EBAbwdq1Yhvo\njtQ3m+UY/PCD7N+xBpt1dyBqaZG1OhpAjowUG9Cf/iRq1+7d4HP6iPn8Tdi4kX+7J2PXxWP3xnKe\n3kVsQ4PEiYPs71tvyf2ePbund82JhOj/gqqqJPhrwICfp9IfTAqFZAN+952sTXS0XCWV302Uuw6T\nvw2FwgNaNQttE1gXzifgMZH9xFkMmVv0c8Wk2znQ2ioLdxKA7c6dcixGjtx/lBSKA604LrpIznpC\nAhRMSqd55UDsq3YQFYzA4mxDGfBiCrbgN0ejO/984dOBAMTFsTT3epZtg/AKSEgp4NyjNp0+ORQM\nwo8/ylEfP/7nGSRz58KXcQlkZiaQSiNtm1bRHFQRrGukLSqeDE2DMCzf/obnej1cey0vT4MOB7R2\nqFlZn0t+xVtyQWy2npDr00DHpLl9+OGHR/358OHDWbNmzQkN4JdVkfv168fatWspKirC4XAQeTyH\ncft2uf2jR8thu+QSiYWZMoXsfXq27Q5ibGpHN2og7Cwltm8SN9Y/BkEf7G4XTnruubB8Obcb97Ln\n/KEkb6pCq1Uxv2IAn2ddBVoNRk0EQ442Do1GQNxvpeJisTh11+A++LDb7VjUXezIGg5lZYzIbsLw\n5kuQYCa+1MH22mjW6UYz/ekJ7A1G89qbCYT3GylvugmxZr38shzKKVPkxsbHMyytAeOVFxCRfgGJ\nI39RivF4aO9eAXEWiwC9M86QsOypUw9USCuo+Y52ZyYGpZ1IAxARSWvaQB7RXEeUfxPWrh0UJTRQ\nqNrL6FlHCUM9HWSzCahNSxNgNWsWxMejvucOBgGDun/H6ZRzWFVF/sThxFbY8cUmk9o/FspbBTAW\nFfF8/BPsbYtm924FxXnTGBy5DC665OSCWq9XQG1ammhIF1wggurzz3Hn9GXF91EEI90UBL5hcHQ5\n0333EhPhB7tPLIlut2hRKSl80jmDJcvFC2Qy/TwkftYs0RMGDTpN9ZO++EKkyrZtYpZOT5dB3Xgj\nIAG8E8eHmNj5OTz+FZSU8GDsXuoDSmJJ4q9Nt+Fu9xA3KB3yJ9BhU1K8I8SurixCQbht01/hxQEi\nYU+xlfr/RgobInhWcw/W3KF4tu+lmjQqVdlcrP4vc7Xv/x/2rjsu6vr/P2/AsTeyp6gIKu6caIoj\nZ9sss7Q91Mrqa79230orbVDf1KZZljmyNDMzM7e4NURAZIgM2eu4gxuf3x9PjmPLOO6Oi+fjcQ8R\njuP9+rzf79cekCrkwEk74EAvYPJkjB9PduTmBvSqukAFpLycgtBIhq1neSpUx4pgLRXgpNgEVwcV\nDkg84VBVBbfHa3h5WRlEX3+NkLzjQJA7cLQmpVGhoIWRkVE7k+hpZ3/s2RmOtV/dikonb/Tc5YUl\nvVteQ4egUFD779GDWrOrK3D77fC5dQRSft+PZMkAOFXlQ1zuhxkDr2Bq9e+AxA7vvFmMDA/qgytW\nUClDVBQ1z3PnACcnDOqnQta40XjsiWA4liTqB3Lq0vRFIj1vNxTOnaPcGDGC8vzoUeYoXrtGLX/1\nasp3f39m7+zbRw2togI4eBDeg33xcGk8rswaj+NfO6Eqahg8RymAEVSsbruNSnYNO0RUFG2a0FD6\npS9d6oBPuqyMD1SppPF/6RK/7teP4da4OFqpuuZF5eWwCyY5DaFLXOjXj483NZWiOiuLSQKTJ7f7\nCddHUhKVA0dHWhXV1dQ9lEr+kfvv535kZtY6SEW7d8Nbew33i77BwFtuh++tI+qlRtvbU3WRy5ue\nQHL5MrdUq+XVadhOJSaGtAYEdKArMsA/sGcPrdGZMymfCwq4B8eP04DbtYsegqoqve4il/NBq9WA\nRAL38nSdiKk1XB0d648f8/DQJ6k5OfFofvEF16+byvDZZzQ2xWKyi9a0o0hKYvRaELgk3Tqaw+DB\n9EV8/z39v3NiyhD1/gVAJkMP+TWka3vhUL9HcZNzOWBbrk8lBUjAxo3kKVIpZa21Nc/H778zK2HM\nmDbJRrWa7UTkciYvvP9+86plr171n2loKDB/yAUMO3sCEnsZpPZi4Kuv4PnqeajjtZBqSuD06VdA\n2TDupe6B3nUXH8CIERQwR47QU9XOppwFBcAHH/DxnDzJEdt14eHBq0GI4HNjBMb88QdQJMC1PB95\n2kA4qosgs5HwwF+7Ru/I2LFw87oTKC6HuKAAruUyAJ0dHaC58/nn/Lq8nI9LBx8f4OGxF8m/9u6F\nu1gMqegqXDz8EapNYcWUuzsdera2LHuMikJUFK+PnV3N+OChd1CHHD68EwbQNw+DhCSUSmWb3q9W\nqxEaGoqcnByEhIRgy5YttV2RJRIJJk2aBLFYjLub4vTNQS4HYmMpKE6fZsX5pEm1nqjFFcDEGCn8\nErXwP6kErAaReffqRSHq6sodSUkB1q+HjVSKgepjgI8EKBZDa20DODkAIonxdF0XFzJfpbKxxdCj\nB6QzbsIgpwMQUAFR8R4gxw946y08bmWL+GsV8BsZCLe/XJA/R18HWLv2+Hj+R6mkBNq0Cdi6FWJb\nWwy4ZXDHuzyEhPDgl5TQvVUXvr5AUhIWVq3BsP5T4X3xL3hZlQB9IoAbb0TlFheU59tBLfHCJPtt\niLnnRoimmtiwdXamdIqP541tqjOEiwtp27kTsLJC75Mb8XqvTJS490RUXwfgVE2rQpEIkErh6CjG\nyJHAbStuhZ3nrYZfs7U1axXj4ijdnJyYNnLmDPqq9+OFMcNRmX4NAyouQ1pSAAhywC+Ue+dW05X5\nxAng1CmIvPsAGNjk2Z84kR4/o92L6GgqWcHBNZp4E0hIIA9ISwOsreEXaAc/TyvAU46XKz5FrrMn\n+msvA/feC82W/finahgkvhMQkvsNHPv4kSfoSg+60WbYoApjszdB7S7B9PI/4eagQh/FWcDRCSjO\npzBcvhwYOhRBQW746CP+nijxdjaZ69OnfmpqZ6KqCndeegvhVeVwrSpGyJVSoFcvzJzFkQsitxov\n886dvA/V1eSbQ4bQ0vDyokGZkMBcOgcHOAIYMNwGv+weCo0G6HSR7uBAD9OmTXrNq7gYPVJT4emW\njBFZfyPR9hCqpr2GAdMDgCvOusGWQFWDu6vVkq6wMCAnB9YrlyPE05M/842ggywnhznbnQGNhk5X\na2taAF5etAbUan1+oq8vaX3sMWrx/ftTeR04kEZJbCzg5IRAAC/6AoWFNoiK0mebWVnRJtaNrNTR\nb2PDAHCHyglnzuQaT59moeBff+kj4MOGkYadO/mcIyMZKWymf8Dw4eyRo9HwLStW6Od7vvmmwSau\n0Hpwc6NRHhlJizMujobNtWuMeFVVUSH38WGKw7hxwJUrsHJ1xbBpnkADFcXVlVmIV6+2bJg296zD\nwiiugA7KlosXge++oyVZVsZza29P/j5kiN5rsGIFHcC6mm4bG6Yve3ry7NUZXyWV8tg1hK6/pL29\nfnTqDTc0v/620tWWczlpEp0DfL8HoF0CPPQQHrLbgBE2yfAOiEQPGwBV1vWzAf/5h3qOTEadYeFC\nfn/1ajobDx2i7DXY4WsZNjbAw/MUEI67Q5SbA4y7EZgyBbNjP0Ww1W44akvRu1oFXHRgffDLL/MX\nR4zg69AhnmexmK+5c42yblhZwdumFPARA7fNg/+WLUCFBKKwQDrgCgrIE377DWMX+sJVth+iQBH6\n/ZUD3PqxUbuPNTpTajXw4Ye1bapFcjlcbG3gIlwGbKyZbqBU8ozY2tZGYpctY9Krn5/ueAzk5xgZ\nJsm1O3/+PKZOnYrPPvsMjz/+OMRiMWJjYwGwrvbnn3/GxIkT2/ahEgkfcEkJGVGDhkcODjX9SG6I\nAe6LYbpJaio3aMUKSjhvb77RyooHLjycXoYrVzD78dlwypHA3r5phtYpCAxkOl5Rkb4bgQ4iEV0s\nd90F0fvv06NtZwdYW8O+qAg3OCcBVjLAOxy9e9PDl5dXZ17chAn0XNrakrk7OTGtzFBwd6fiWlXV\nuPj9/vuBqCjYfvYZhlfnAJ4hgCQMEIvh4WOFZxarkJR3EaPzfgY8PSEaO9Zw62ovJBJ2zSwpqT96\npiEGDCC9ggBERyMMAIR0YPwjQKAPFZpx4/DUbAccjqPurtMZDQ6RCHj0UYYeXFx4J5ydAZUKIisr\nhD8ZQ+aUH82Qa0EB3xMdzRTfY8dqXXq3TSqDm4bHpKlRaUYNbN51F1P9HR2bZ/41dwFaLWl/9tna\n+x24dSsCz5/n70+YAI+bb8WAw0BwqYAb812Bo6cZ0uk2atsFkQh44ikrVKbYwUNcBJdqBfdg6pvk\naUuWMJ1Rx2tR5/z07ds4Z7GzIZXC2ssVQ60P8/wPGQcsWABRYCDgVid1ysmJ9zosjNH88HAaeF98\nQcujAZ/q2ZPZMTk5Lc/pNBhmzSL/0TUudHcHCgsh8vCASKVCxCB7YJwTEOjH8IlKhSeVTjh8mCTV\n+ojEYvYu2LaNcqJuQb1Y3L6CybZALOZiMjLIa3X3XKXivSwq4oHRyZWwMIazfv6ZkYOYmHpRmdDQ\npiOGCxbw+76+jWecd4ifOTvTGHB1Zf8Ka2sqgP7+9AI6OvKPbtx43WZiIlF9o/CRR5g+aHC7wtOT\nelBVFZ//L7/QetNqeU/9/bkYXdMlsZjn7McfqT/UTcWuAz+/5rN4WnM/DCJXbGwov6uruf6gIHb+\n1WjqR++8vPRdXcPDeQciImgsBQS0KoTflMHbkIZHHmEPp8DA1u9hnz5N6HCtQL2/PWkSEBsL2+ef\nx3D7bGDMNGD64431SxcXvaCfPFlfQOzoyLILW9s2Bz50A0ZOnuTHtjkRsH9/iGbPov61eDEgFkM6\nIAJDbJIBtT15nVLZuKQB4HrFYp5lXWezdsDDgyqgLhX5unBxIWPRaoHoaIgeeYTOAWtrZoaeP08d\nSyKB2NMdA3wLmMXh0MOgM12bw5AhHBMul9cvfwCgH4Gl64wdFkbnrY0Np7Ts3Mm7NGkS71NNlNze\n3jzakoiEhrnA7cCgQYNw5syZVr9/9erV8PT0xO23346ffvoJWVlZWFQzG+v111/Hjh074OrqipUr\nVyKqgRYtEokapS/XIjubpy4ysm0pbEVFzIsJC6MwSktjvkdUVKfMEgWuQ0dbUVFBb7WPDy9TUpKe\nc/Tr12k99jtMQ24u07R69aKXXSTibROLmfKkay/YyXXdBt0LrZbpG+XlzC1LS+P3IyI63fprFR1V\nVTwrrq61tSG1s0erqnhedExVo+F7Ae6LIdOkm4FB9yIhgQ6f3r2ZZqZbf2Ulf+bn12nNGdpDh0gk\nQuOuyA0/43rvafz/9j7PDu9FTg4zYPr21RtHgkBhfvEijaZmFGJDolV0lJTwrFRXUzI3lQmgVjMK\nJ5PRgDRymnqr9yMpiU6qwYN51hMTyY98fRn2M2F6fatpKCsjHcHBNLrS0/kaMIByo7SUPMlEzqdW\n0aFSMeKRlUVH+sSJRk3Hux5apOHKFUbtrK35zGUyKuJ1lFhzQav2IiGBd2LYsObHUVVXMzVUN85q\n4ECj3hWDyr6WUJc/NPcsUlN5x/r31/eaKCsj/wsIaPYcG40GgDRcvEi9XaViVkFT+q4gsP6/qorT\nUloRCTUIHYLAO6PL7mnYs0OjYXTcoabpVXvtl2bQYRoKC3kfdB3SsrMpxw0w2rAtaJcuZQrDdvny\n5Rg8eDCmTJmCvXv34siRI3i5Jn2guLgYrq6uSElJwcKFC3HgwIH6CxaJ8Oqrr9b+v9muyC0hO5tt\n7QIDmTtS1zuSnk5DsW/fTlXkDXJxMjMpMCMi2tboRhCYHhUfT/rbKWw7RINWyxqeK1eYQtdU52Wl\nkkqZj0/zKacGgFGYcXU1IyClpawDqTv7oLiY565Xrw41OGgzHSoV70FJCRmvnR091UbwFjaHTtsL\nlYrPv7iYz9/dnXuRmsqwjYFb6v8rDFutlgqjra2+8O/WW5v2mpsQBjtTSiWb+eXnU0EeOrTzZ3jU\nQafdjaoqdheuqKAi6+3dOIRpIBichiNHWCc5eXJ9hauigk7ToKBOmcHZIToKC+n8dHNjemt2Np1v\nHYgmtQetokGp5NlQKpmC7uRkMHllKHRoLyoreac1GtLXEj0ZGTTuIiI6RTc0qlEoCNStrKyo/zU0\n4LVaRuUyMtgQrpXNMzqNhupqGrGenk3risePkxdMnNjyWMBWwiB0FBQwD7937+ZD1ILA+u/ERGbC\nGNDR22EaBIGGtljMu97wjCQksIfL8OEG6GDXPNpDh0FSkdevX9+m9zs7O6OsrAwAUFpaCpc67fB0\nXZDDmmubhlZ2RW4J69ezhu7XX2kw6WYmpqRwOLdaTeW3s4Y6GwJ1Z+VOn87DlZfHKPP15q1kZzNF\nSibj56xaZZw110VSEgWKbhTQsmX6n127xgj6/v28PI6O3Bcjjv8wOE6fZtMj3dA7XZeBqirgv//V\nd+1bsICeVGN05NWtqaKC6VY9ewLz5/MsXbhAJtveUU/mhjNn9Ol1IhFTBZcvp+ARiXj+Gqb7d6Nl\nbN/O2kelknfUzY2K4rPPmnplHUNpadPn/8gRprv+8w8dQrffzrTqroyMDOC339h8qbCQfKB3bxaa\nhoebenWNIQh8/mo1jdYvvqBzITFRX0cnCEy1TkvTl8QY0QFRC10E0Nm5fr34li3MDqiqorNNZ1y8\n8or5Nas7coTnA2Akc/p0npHCQjo/XnvN/NbcFvz9N5VzgPqFbqbtoEH1jdfUVOog1dU09G7thJ4Y\nxsT+/Rx2KxIxvd/LixFqXbRT1/Xcyor88MUXTbveb7/lmm1sqC95ejIaCvAcrl3LtScksD7fiPWp\nTUIuZ2ewrCyudeXKpp0mGRksA5PJeL/eftv4a20Ohw9TvotE7JQ+eDD1KBsbBv5iY8lvz5/n/81I\nP2+V9txwjixA43TYsGFYtWoV+rfRQzJy5EisXbsWd9xxB/bu3YsFdWo7y8vL4ejoiIKCAqjV6jZ9\nbj2Ul/PAaDTsUFw3IuPgwBRLrZbvGT6cm6ebP2ttzQNpzigqomC0saEStmcP/z96NBtq1IVGQ2Ga\nkcH6REdHfbvCTvLMN4mEBCqGUVH6FJeGU+aVSgqQ4mIav0OGcJ2lpWZ1cRpBEKjoJyRQ4a3b1g/g\nM5dKqZDVpVehIK0aDdsFlpaytsdQjVlSUrj3ffrQUVM3GqtbU2UlhbhYTKfH++9TkDs6coRIJ6Xj\ndxrOnqW3efhw/RgDHa0aDQ0wlYqOoPx8PqPly6mkteBQ60YD/PEH72h1NfmIgwOf8apVFOZ33dU1\n65SbO/9OTpQZKhVLPk6fpiISFcWaKXNU8LVaGuEpKawRrMvvCwrYgSgri85EKyvuYVUVDRdzxJo1\nVGK9vFhrZ2/PjJOAAP3z12pJk4sLeatCYXzDVqulc2DfPmaEvPOOXia4uVEOAHzWnp50sHWoY5UB\nUZd/6vpJZGRQNvzzD9ccEMBnrGsB3NWQmEinQl3jtaCA0WmtlmVE06frf6bTt7qCbtga5Oby35IS\nGoIeHizetbPTz1+ystKfT1MjM5MBG52+lJREo0sQ6KS2taVOb2fHnxupm36zkMupXyQm0vBbs4YO\n3+PHqauPHcteJvb2NGorK+v3MjAH5Oby+Wq1pGXXLjaNKy4mTysv1/dt6aRyx/aiVRxpyZIlCAgI\nwNyabmIbN27E5cuXMWjQICxcuBCrV69Geno6xGIxgoKCEH4dT++gQYNgY2OD6OhoDBo0CEOHDsXi\nxYsRGxuL5557DvHx8dBqtXjnnXfaT9mBA+yGJhIxtaru3NNbbmFXVScnvYABqKDExOins5szIiOB\nqVPJhG64gZ1EZTL9CIa6SEykoJLJ6Pl68UXgpZeu367Q0Fi7ls87OZnewZdeomFRt45apWIE0dGR\nERMfH9b4dPpw1A4iPZ0KpJ0dGy69+279n0dEMCool9efCefiAtx7LxuJ9OxJJaG42HDr+vJLft7F\ni3zOdbuo9O3LeYUFBXqFZdo0/TBzhYLf60qGrW4UiLU1W/0PGkSBoaO1ooLPXypl1Pytt/TRlIoK\n0669q6FvXwpqiYQdUXr1YoQnPp73uG9fpux2JQgC+b/u/Oui0QCdbK+/TgdURQX5WFaWnp8ZZdZV\nG5GSQoebrS3HLrz+uv5nlZX6DsN+fjR8z54lTzJah8Q2oKyMjlGFghk9FRWUZWlpPGs6o1AiYdO8\nXbvozDOFQzQ9nXdBoaASXpe33HwzZZujIxX2uDjyXROWgNRCq63PP999l3Jr40Yat1otnYWFhdQ/\nuqJRC+gzTeRyZin1qBkkvG8f96GhDB4wgHTn5dFx3dUxeTKdWQUF5BEyGfXEa9f4tVjMu9VQPzMV\n7ruPZzA0lHImJYW8GuA+TplCPuzuzkxMXSdnU8HTk3c6KYmZL7qg2dq1+lnBgwbxfS+9RD3eACnU\nBkVMDPtkSCQ0wn/5hTw2OZnyxMaGs8YHDmz/WNBOQqu40vbt23FeF/YH8PDDD6Nv375QKBQ4evQo\nHn30Ufj6+kIQBOTk5ODq1auYMWMGnn76aQQ3kzMuqhFCun91XZFfeeUVzJs3D1VVVaiurm4/ZXU7\nIzf03vj5Uck9eZIXXCcQZTLDdgbuTNSdlavVUnBmZDQd6XN11Y8N0qXW+fvXb/FuDPj704BycqJQ\n9/Nr3K7S0ZFKydGjbANoTMO7I3B25uXW1Wc3RJ1B3o0wYQI7Y27bRi+YIcdo+PvTgWFv33iqu0ik\nTzes25lz8WLOqxsyxPy8iK2Bnx8Fn6trfYbb0OE2ahSV/Z9+Io8wsmBxcnJDebkBnRhNQlrLYwHA\n0dEVZWVNOL/ag3vvpYBzdKSzUDfr8NQp8qdOqG3sdIhE+vM/eHD9aIVIxDOiOyfvvadv/mEGtYZN\nwtmZCkhlZWPDOyCAe5iYyF4LwcFUZswVMhmdUJWVpGvqVP7bVE330KF8mQrOzuT3iYmUYXV5i5WV\n3uETHq7PKjEHiETUES5fJv+0t+f6n36afNLVlc4CU6d6dhT+/kyrdHJiZNrFhU7cnBwauzNn1n+/\ntTWNK0uBmxvLKDQaGoI5Obwvq1fTANPpZk21EzcFQkKos+tw4436IM748dR9fX1JTyc1hGwTRCLy\nVl9fPX+VSplpcvUq5YouyhkYaHYN2QDwTtQ09QVAGnTOXhsbOhHGjbt+6aMJ0KrmUSNGjMDTTz+N\nO+64AwCwZcsWPPbYY9i4cSOeffZZnDt3rt77VSoV9u3bhy+++AKbNm1q9HmnT5/GmjVrasf9LFy4\nEENrhNDixYsxd+5cDBgwADNmzMC+ffvqL7i1hcS6Tq9yOQ+WREKGbIpamybQIh1KJb3sajXXbIim\nElev0jsXGWkwodTmom5dh04/P0YQL10CbrrJ+AZ2Axis4UFuLgVE375NnzNBYJ1IJ9HdJB1KJQX4\nmTNk6d0StwAAIABJREFURGZ0B5qCQfaiooLpP/HxVFxmzzY6820NHddvFmWY5lHtbSbVLA1XrtDw\n69uXDpG66ZMaDUsjnJyM0vG4NejwmcrMZPQvPJwpZDp6dfzM398oqW9tkn3791P+6VKk8/OZNWLi\n1PAO70VREdPEr1xhVG3mTJOkHbaKjpwcyoS68qCoiJEPDw/ujRE6zTeHZmnQZSMEBrbs2Lx4kefs\nhhsYfTIR2nWmFAreXV/f5htTFhQAO3bw51OndnpE3WjNo3T8rE8fRuLq8m/dvYqMbFc03mg05OVx\nb/z8GJwSi+mMUSjI5zq4VwajQ6GgLi8IbA6lVtPpHhLS6ZkkBqMhJ4cZn8HBbM4ll5M/BAXVL6vr\nJHRa86gNGzZgyZIleOKJJwDQ0I2Li4Ofnx/+97//NXq/lZUVJk+ejMmTJzf5eXFxcbU/i4mJwdGj\nR2sN2/j4eIwcORIAa3t1Nbd1Ubd5VLNdkUUiXtyff2bzA0GgB2LKlPrvO3eO6RcjR5pPyuXBg1y3\nSkXme8899ZtPtAemiNDWhVbLNDddauu6dRTqV66wGYAlwNu7fvSgrIyjTXx96fW+coUpKFKp8ei2\nsaFS+9dfTB+Ty02fptPZcHAgrVu28NzZ2XX+7M1/Ez79lErfkSPkUSoVR+Q4O/NODxhg6hUaDiUl\nwHPPUSE5coQKiW74pJ2deabsZmbq+UxmJvmMjw/Txisr2YfBzGqiGkGp5PN2cGB0U6d8u7lRXv/8\nM89aURH3xxwgCMwCKy9nNoiPT+Po0aZNzEbSaCiPTWgQNgsHh/rnuqiIY4uCg/V6iFoNfPQRvz5x\ngl+ba9ZCU7C1rf/sVSrui1hMXVAiYT3hyZOUIf7+lsPXVq+mYXjkCCOyAQF0RmZlkY+bY/SwIVau\n1DvrAwNpzJrRKK1a/P03DVuADiN/f6bumnO/mIb48ksa45s20elx223mKffqoFWGbc+ePfHrr782\n+bNly5Zh3LhxGDt2LEaPHt1ko6mGKCkpQWhNioOzszMuXLhQ+zONRlP7tbOzM0pKSlo0bK8LBwd9\nLn7DyGdaGvDBB2Rqycns/GUOsLOjIE9K4kHKyuLwdHMo4m8vjh9nkwJB0NfmKBQGH7NiVvjqKwpG\nKyvWttnYkG6l0rh029vTQSKXM53s5pu7ZppoW3D5Mu80oG+l3w3DwNmZBpMgsJ5cKmWE3FwMDENi\nzRry4bIyKn1mnO1QCxsb8hyFQl9+cPo08PHH/LqkxPx7SPz8MxVCsZhNV+r2JbC15ferqsxLfsTH\n08ATBEY57rmn8XscHWkUSqVmmcLXJP73P94BmYxN9nr0oH7i4EAng4tL16211WHvXk7LEIloyEZH\nkz6VinfJzGoIOwQnJ6bu2tmRV2RmsqxCreYZfuYZU6+wZVy9yv452dnUj835HulsDrWaPM3dnU0X\nV640j5r61sDJibZSZibr7v396fwxY7SKG2VmZmLx4sU4dOgQACA6OhofffQR/P39sX79ehw8eBBb\nt27Fs88+CxsbG4wZMwYffvhhs5/X0rgfcZ3NLisrqx3/027ceCM3Rixu7GVQqcjEdN15zQUjR5Lh\nfPyxvitZRzpEmwOqq0mLWEyG+sILZEx1FRZLQ1UVPb+6TqqBgcD//Z/x6R4/nt7p0tL6HTktGeHh\n+pra5mqbjYyysjJcvnzZ1MvoOJ54gtkXAL25IpF58U9DQqlkNKCwkN3mu4JzsUcP8tesLH1USqXS\n89+O9K4wFqqr9aN7GvKr4GA2NCooYB8Ac0HdZ9zcfbj9dq6/4Qggc0ZVFY07jUa/FxIJuz4nJLCZ\nT1dw+LSE6mryMUHgPgLA3LkcfaUbA2QpePxx8m9/f/KztDTSbW56cHNQq5k54+zM/THmZI+2YswY\nfe+V9eu7Dv+tiwceoGM3Lo5OBN39MGO0qsY2JiYG99xzD+bVNCvasGEDNmzYgD179gAAsrOzceDA\nARw4cAD79u1DYGAgdu/e3eznnTlzBmvXrsWaNWvwxBNPYMGCBbWpyEuWLMHcuXPRv3//jtXYtgaC\nwLTfq1eZomyEfHEdWkVHdjY9iX36sMGBmaFNe6FS0VNVVcWIrRl5QDutLiQ/nzQHBTH9r5NHObRI\nx9Wr7PgYEWFeymADGGwvqqtZB6rV8rwZWfFqio6lS/+D//3vW8hkrOkqKzuLLlljq4MgMH0vLY0N\ncEw9YqEZdOhM5eaSB/fsyYitCdEhOtRqjpmQy1nfb4i+De1Aq2koL2cdoLMzG1qZsBa1KTRJh0bD\ns1JczGfcsFmfmaHVe5GTQ7p69WI9rZnBIDJDqeR5k0qpC5qgFt1o9akNIQhMS05PZ71qB5x3RqHB\nCHKnU+iIj2fmzNixRjHGDUpDZSX1KWtr3g8jNo9rDx2tMmyjoqIaNYjSfa9nz57w8PDA3XffjTFj\nxmDQoEH1oq5Noby8HFFRUSgsLMSIESOwe/fu2nE/WVlZ6NevHxQKBaRSKXbs2IEbb7yxQ0SaIyyB\nDkugAeimw5xgCTQATdOxaNFSfPKJL4ClunfB1IZtw87MdbsmW/JedEVYAh2WQANgGXRYAg1ANx3m\nBEugAbAMOiyBBqB9dLQqydvd3R3ffvstNBoN1Go1vvvuO3jUdMtbvHgxAgIC8MMPPyA2Nhbr1q1D\nSkpKi5/3+eef46233kJxcTGUSiVUKlXtuB8/Pz8MGDAAc+bMweDBg+sZtd3oRje60Q3DgUatUPvq\n/PFD3ehGN7rRjW50oxudBKEVSEtLE2bMmCF4eHgIHh4ewqxZs4SMjIx67ykvLxdiY2OFgIAAQSwW\nt/h5d955p5Cfny8IgiAsWrRIOH/+fL2f9+7dW4iKihI8PDyEoqKiej9DXS2s+9X96n51v7pf3a/u\nV/er+9X96n51v7pfFvdqK1rVPCo4OBg7duxo8mdLly7FwYMHUVFRgVGjRuG///0vxowZ0+LnlZSU\nwKmm/kTX+VgHlUqFiIgIbNu2DeHh4XjzzTexatWqer8v/EvD6+YGS6AB6KbDnGAJNACWQYcl0AB0\n02FOsAQaAMugwxJoALrpMCdYAg2AZdBhCTQApKOtaJVhO3/+fMTGxtZ2Ly4uLsbSpUvx1VdfYcSI\nEXj++efh1cSQ62vXruGuu+6q9z1vb284OzujtLQUnp6ejToff/vtt7j//vsBMAU6Pj6+zUR1oxvd\n6EY3utGNbnSjG93oRjf+PWhV86iBAwfirG68QxPf++WXX3DgwAGIRCKMGzcOM2fObPHzPvjgA/j4\n+OCOO+7AhAkTsHfvXkhr5qAtW7YMJ0+ehJWVFQ4fPoyBAwfiwIED+gW34IWQy9n81MwaKDYJQ3tT\nBIH029t3evPdWrSXBoWCzQeN2FitRVyPjspKNoMz91F9neWhMyb9hqLB1Gesq3pLtVrut709IBZ3\nTRoaoiN7odGwYaqJmgjXQ0fo0MkHOzvTjk809r3oLJ2gM+kwlh5jCToIYLwz1dkyxVh01OXxht4n\nY9HQ2XekM+gw9v0wJA2mlIOd1jxKEAQUFRXV/r+oqAgajQYADdHY2FhERkaib9++iI2NxQsvvNDi\n5z344IPYsGEDoqOj8cADD0AqleLcuXP46quvsGLFCpSWlkIul0MikeDHH39sFSF79nC84muv8dL+\nmyAIwFdfkf6PPybjMlecOQM8+STw/POchmPuOHCAz/WllzjK69+GuDju17JlnGLRFXD6dNc6Y+aC\n6mpg+XKe923bTL0a00OhAN54g8/jt99MvZqOYf160vHRR1RS/g3YsYM0v/kmlbKugK6qxwgC8MUX\nXPunn5q3DtIexMWRthdeAOqowl0OKhXw7rukZfNmU6+mfdi1i+t/4w3y6K6Aujr6J590rfshl5Mf\nPfkk+VNXQKtiMEuXLsXIkSNx5513QhAEbN68GS+++CIAYOfOnTh79iwkNa6T+++/HwMHDsTy5cub\n/TxHR8dGNbtRUVGIiooCAJw4caLNhPz5J8fQXrnCV3h4mz+iy6K6mgZYYCBw6hQNsJqscbPDoUOM\n/hUUAMnJHRqZZhTs28dxhDk5HJtWc0T/Nfj7b3rp8vKAlBRg2DBTr+j6OHgQkMl4xi5dMv8zZi7I\nzeWd9PHpuABraYxQV8HVq0BGBs/Pn38C06aZekXtg1pNPhYQAJw9SwdVzVADi8aff3LEZWoqR8KH\nhpp6RddHV9VjlErK9sBA4PhxYN48jiC2FOzfz2wHnRwcPtzUK2of8vKAixcBPz/y+DvvNPWK2o4/\n/yT/ysgAMjOB3r1NvaLro6pKr6OfPGneOnpD6HiRuzvHWU+aZOoVXR+titjOnz8fP/30E7y8vODt\n7Y1t27Zh/vz5ABgmrtv8qaSkpF3Fvh1FTAw9acHBPDz/JlhbA+PG8fANH27ec+HHjqXXsEePrsGQ\nJkwAysspCIwwU9vscOONjBx4ewNhYaZeTesQHU1nT1c5Y+YCb28q0rm5nMHeEVjCGCF/f975/Hxg\n8mRTr6b9kEqBiROpBA4eDNRpaWHRmDSJinxYGODra+rVtA46PSYoqGvpMTY25LtXrgA33GDeOkh7\nMH48o4NeXkCvXqZeTfvRowcQGQlkZXVdnjZpEp3WwcF01nUFyGRdR0dviMBAvoqLu4ZRC7SyxhYA\nDh48iJSUFCxYsAD5+fmoqKhASEgIfvjhByxbtgzjx48HAOzfvx8rVqxo1DTKYAtuId+6spIH6N9a\nY1tZSa+iudfYKpVUtsylZvV6dCgUdB6Y+7nqrPoWhYJ1RV2pxtbUZ6wr19gqFLo6oPbTQOdm3d81\n3fPoaI1tVRX5qqnR0RpbY8uHpmDse1FZSaPL0HXFnUmHsfQYS9BBAOPW2HamHDRmja2OxxsaxqKh\ns+9IZ9XYGvN+GLrG1lRysD10tMqwfe2113Dq1CkkJSUhOTkZWVlZuPPOO3H48GEAQHZ2Nk6cOAGR\nSIThw4fD29u7fRTU4MKFC3j44YchkUgQGRmJ1atX6xfcRRXGhrAEOiyBBqCbDnOCJdAAWAYd3Yat\necES6LAEGgDLoMMSaAC66TAnWAINgGXQYQk0AJ1o2EZFReHMmTMYMmQIzpw5AwDo1atXvcZOuo/R\npSEPHjy4TQupC7VaXdsleeHChVi0aBEGDRpU+/n/1s0yN1gCDUA3HeYES6ABsAw6DGvYWgFQ13uP\nsepuLWEvAMugwxJoACyDDkugAeimw5xgCTQAlkGHJdAAtI+OViVVyGQyiOvk8sjlcuTk5GDp0qXN\n/s6+ffvatJB6i6qT66FQKGrn5+rw2muv1X49fvz42jTobnSjG93ohjlCjfqGLlBebsKc2G50oxvd\n6EY3umFxuG7EVhAE/Pe//0VWVhb++OMPvPDCC/jqq69w9913Y/HixZ22sO3bt+PFF1/E0KFD8fXX\nX+sX/C/2QpgbLIEGoJsOc4Il0ABYBh2GTkVuaNgaKz3ZEvYCsAw6LIEGwDLosAQagG46zAmWQANg\nGXRYAg1AJ6UiC4KA/v3744MPPsDu3bsBAFOmTMGkFtpj5ebmdrjOVofFixdj5syZtX/v37xZ5gZL\noAHopsOcYAk0AJZBR7dha16wBDosgQbAMuiwBBqAbjrMCZZAA2AZdFgCDUAnpSKLRCIMGTIEzs7O\nWLlyZas+9IEHHsDOnTvbtJC6qK6uhrW1NQDAyckJ1dXVrfq9ixeB118HHBw4UNjfv91L6FJITOTw\n54AA4KGH2AVSB42Gs6cqKjjCozM64bUWOTnA6tVc3+OPNz/HKyEBOHMGGD2aLd1NAbUaWLeOZ2re\nPKCmxLtZqFScC6dS8TnX3YOugqQk4MsveW8eflhPgyBwRmF2NkcEmNO4kLIy4NNPeb4ffbTpO3/2\nLM9UdLTl8ARBAI4e5fiAmJjGc0nPnwfWr+eokwceYDfPbrQO2dmc3xwezvE4OiQm8n4EBZHPymQm\nW2KzuHiRawwJAR58kGtUKoHdu3kGYmLY4b2r4vx54JtvOMZr4UL9uRYEzonUjarqKjMi8/KAv/7i\nfjk6Uo6HhPB8daV9SkkB4uI4yqSpcTgnTgA//AD07w/Mn2/+EwYaQqslT0hP51xkKyvgscc4Psec\nEB9PvaUh309PBw4fph4TEWHKFbYMlQr4+mvqInPn8j4LAvUOc+S3zeHcOcrfoCCO0XNx4ci1rnbu\nAerCf/wB/PorO4IvWHB9fdjUaFWN7bFjx/Ddd98hKCgI9jWWkUgkwvnz55t8f0eMWgD4/fff8f77\n70MQBISEhOCmm25q1e+9+ipw6hQPz5YtwFNPdWgZXQZbt1KxP36cc2IHDtT/7NQpKgIiEVu833OP\n6db555+cpahSUdA1FfQvLwfef1+vuMfGGn5UQ2uQng4cPEiG9P3317/Ihw4B333H5ywIwM03G2WZ\nBsXWrXz+J07wHOloTkoCPv+cX+fmAkuWmG6NDXH6NPDPPzTCf/+dynxdFBQAH3/MPTl9Gmilb87s\nkZYGrF3LrzMygP/8p/7Pf/yR7fmPHOH8vL59jb/GroqPP+Y537MHWLGCsysBYPNmQC7X89moKNOu\nsyls3kw+HxdHR07//qRj0ybeAZmMClZXxQ8/cEb14cM81+Hh/L7OoBcEzh1+8knTrrO1WLsWuHyZ\nX7u58c7GxZG2fv1Mu7bWoqqKfFWtpnPho48aO3a//5578/ffnAnb1WbCx8fT4MrMJL19+gD79gFz\n5ph6ZfWxcWNjvq/Vcn8UCq75gw/oRDFHpKbybjs5AatW6XU/sRiYPt20a2sLNm4kn9q0iffa0ZH/\nDh1q6pW1HSdOMCAVH89z3xp92NRolWGrS0G+HgoLC+Hu7t6hBQHArFmzMGvWrDb/npub/iJ05SHa\nbUVEBJCczMvj41P/ZzoPkVZr+qhNr16MHstkzQ+fF4u5ZqXStOv19KRRW1ICTJhw/ffXjRx0JU97\nXURG0oh1cKh/jqRSGuwajenPUEMEBAC2tlSq+vRp/HOJhGeqqsr81t4RXG9PIiMZpXN21htm3Wgd\nrKz4XBvOro6MZGSq4f0wJ0RE0FBydGSkAOBZ0WVymcvs8PaiXz9GDxqeax1dWm3X4r+6syaV0kg/\nfJh715XurEjE9SsUlO1NOaL79aOj2NW1cXZJV4BEwjtkb09ZIxIxKmpuiIykg9fJqf4ZsrKi09rW\n1jSBgtaiRw+uvawMCA1lgEEQuh7fioykQ9HBgXdCJOqa0VqAZ8fGhnxVqewaDrdWjftpCn/99Rce\nfvhheHh4IDY2Fvfeey/Uao5z2LhxI4YNG2bQherQUr51Xh6FXmAgPeqmHER/PRgy/10QGLVxcqJx\nXxdaLXDsGAdDjxlj2BTZ9tBw9SovSkuCOzWVqaNDhhhHgWyOjrIyRvyCgq7PlDQaKiVqNc+eKYyo\njp6p5s6RIDA1PC+P6eGd6e1tDw15eTRc/f2bvvOXLtFgHz7ceKljxqhvOX8eyMoCRo2iol8XWi33\n0tW1/WmZ/9Ya24ICRs3Cwuo7S3TP1MXFNOn4raGjqTWqVMwoEYspA0ypYHX0Xujoc3Orf+Z1GRn5\n+aTRwcEAi20BhrrfxcXMTAoMpFPCmOfLkDwqM5PplwMGNO201mhIm4cH5YshYQxeKwiMXJWUkC/Y\n2AC+vob9G4agozm+n5PD7L3IyM6NlhuChtJSoLCQ8vzoUdI0ZoxxdaqO0qE77/b2zCiztwduuMG4\nTgVD3QudDZGfT3nYq5dxZUinzbFtCkOGDMG6detQUVGBm266CTt27MDYsWNx+vRpLFmyBAcPHmzP\nx14X/+aCaHODJdAAdNNhTrAEGgDLoOPfatiaKyyBDkugAbAMOiyBBqCbDnOCJdAAWAYdlkAD0Ilz\nbJuCVqtF//79AQA+Pj4YO3YsAGDw4MGoqKho78cCAOLi4vDMM89ALBZj2LBheP/99zv0ed3oRje6\n0Y1udKMb3ehGN7rRDctFhwxbHZYvX177tSAIUKlUHVpUcHAw9u3bB2tra8ybNw/x8fHo19bEbqUS\n2L+frclGjWIb3mvX2EJVrQaeeaZrFnvUhUrF3Bh3d30h4ZUrbK3YowfwyCPMmdm4kXkod9wBjBih\n//2sLLYA7dePxRediV9/ZYHtlCnA1Kn8nlbLfZJKmX/i4dF0LmlyMnOp+/dnDkR+PqvZJRK2wjVA\nXXercOUKu324uvLvtpTvptGwA012Nt9/4ACr7+fMYU6KqSEI7LB29CgwezY7TWi1zJuxtma+8dat\nXP/ChfVzMlsqpuosFBRwzwG2o+zI3a2s5L0Qi/kcCgp4/kpLmd/49dc8Uw8/3Pk5jc1Bty5nZ33R\nYGUl8Nln5GMPP1w/p6yoiPzuwAG2Er//fsDOzrIKi42J8nLgwgXWQgQF1f+Zju8WFgL//S/v+fz5\nwL33mraATaPhmtzdm88V02i4fl1NSkkJ79Xp0+RT8+ax65RCoaffz894NDREXh6wZg3peeghdmNJ\nTiZPqtslESB/zsujnLheC9Xqasqazrwff/zBTitlZWxH/eCD+rtcUMDnGxRUv/W/KXhrc9Bquf6f\nfuKa5s9n56dTp/TtXktKmpfbXQHV1dSXLl/mHh0+zP2aM4e6kkikv+9dmU4dFAq+HBwo5y5f5r6e\nOQOcPMmuQCNHsu24udGqVgMbNnCtM2eyC97Jk/p22/feyzObmEg+p9MXTQFBYAfHEyeoXyUmUrea\nM4cdpHT8V6mkXujlxYYh5opPPuE9GTKEHV2bsxfUatYkyGTMezfRGWq3YfvGG29ALpfD3t4eN9dp\nAZuamor58+d3aFFedQowraysIG1QOf7aa6/Vfj1+/HiMHz9e/0OtlgbU99+zetvenm0sx4zhwfr9\ndwqVggIKTHMQIO2BSgUsX07GNHYsL8v//scL5O/Popf4eColf/zBoqT16/WGbUEB8MYbbPM5bFjn\ntrqtqKAR5enJyx4dTYVi1SquUakko506FbjrLv6OQsHv5+QA77xDRnXnncCsWWytePky9/rIETI5\nY2DnThoVGRm8vKNHN/0+QSAj2LKFtGu1fN6RkaTJHAzbggLS4+HBczF2LO/Ld9+xEFrXXnTkSCqT\nL7/M3/vtN7Ze7dkTeO45Mq7ycp6vzmRiBw6wWFb39a23tu9zduygwd67N51d33/PVpEpKezeIhaT\naWdksIh11CjD0dAWbNoE7NrFQq6XXqKRGh9PQW5vD/z8M/D003yvSgW8/TYN26oqKsoHDvB3n3+e\n9Dg7dxu5bcGKFcAvv/DZrlyp5zFVVXzW6ek890lJvN9bt7LNu6EL71oLrRb48EOe2UGDyM8b3seS\nEuCVV6i4P/ooZcGJEzRUzp7lnfjmG8rKzz/nz+zsgLfeMp0TuC6vX72a/MnamvJB16odoJx4/XU6\npyZOpPOrOaSmAu+9R6X3+eeb72TYESiV5C2XLtHZIJORx/bvT8P8oYfoWI6MpHwLD+d937SJXXOe\ne870M+OyssjvExO5/h9/pJP84EGeh9Gj6UiIjqYTvSvi0iUWoKelkT43N56h+Hi2mh88mG2eMzJ4\nrjqo25oU+fl0xJWX05F9+DD1rk8+oZ6SnU0j0dmZgZ+W7pCxodWSJ3/9Ne9rSQnv07ff8q7t3cs2\n9R99RLp69aJ8nzHDNOvNzaWt4e5OvVwu573/8Ud2I/3Pf8inv/qKOqytLXmznV3n61Jtxb59nJ8K\nkJcdP87zA1AeVlRwzZWVbEd/4AB52CuvcI9MgHYbtrNnz27y+z179sTzzz/f7gXVxfnz55Gfn49w\nXU//GtQ1bBvhyy9psFpZ8TIoFIw+aTTQFpVAnJ5OppyXx8Pm6MiN2bmTHYumTTMPw+N6KCykwPfz\n48WQy+l9TEvja+hQetszM6m0KJWM2GZl8RBWVPB79vZUCupAEPgymM1va0sPb1qavntPbi5nNDg4\n6L1ahw5x3V98QcPRy4v/z87mWmvmImiDQyEWi7nAhtGUzkTv3qyit7VtrMAKAo1eBwcqTKdPUxnI\nyiIT1mqpQE6bpn9/YSGwZQuE02eAwYMhum9+50fOdXBy4tnPzqbwFotp7IpEpCM4GEJxMYTz8RDH\nxOh/b/duOiguXeJ+fP89DeFp0+h4aAvUav5+ZiYjRS3tZWio3vvaXPcLuZxKu7d384Jh926eq7Nn\nqfwfPcpuIFlZZMwODvx8V9d6e6zVGtkHduQIn3NWFu9KaCjXo9Uy0lN3GKFaDRQXQ+vlA1HiRYhK\nSnjH9++ngubrS0fE//2f6ZXlrgBB0GeJFBXRqRMSwnMSH0/epFbz/trbAyUlEPz8gWoVRKtWUTmZ\nP9+4Q8Plchq1AQGMaCgUXAdA43vTJv781CnA3h7ad1dC/NEHPBv29vpz0bcvOxqlpfH3lUoqwqYy\nbEND+a9Syeeu0VCZaniOy8p4l69do9PhgQdqo6ON7m5cHGWlXE4luDMMWysr8rPTp/V7cfkynZ3W\n1pS/ajXX8vzzPGO7d/M5p6RAuJoFIbSn8XiORsNzv3cv5dW0afo5JSUllGU+PtST7Oz4nM+d489O\nnmQk5zqzTIzOQ+siP5+OWx8fRp118sHLi3uVns7MMV33LrmcDi0PD+5f7948K9cxbLVafrSp7BJd\nKWKTfz89nfvl5ETnjqMjeYNSyTufk8Mz2aMHgyGPPEJekpAA3HijUYfANzorcjnX6uPDzIxx47hf\nubnUHz09qctkZpJfJSczupuWBtx3n+E7ll0PLi4QPDyBvDyIBg3i2ZPLuUGVlXTYDRrEe2RjQ33q\nwQd59pyceN7uu497YXCFvG3QnjoNsZsbz4e7uz7DpKICePNNfj84mDzk8mXep5wcyse60NEB0BGc\nmEibpIF9Zwi027BduHAhHnvssWa7H8fFxWHNmjX4+uuv2/X5RUVFWLRoETZv3tz6X9JqyXwGDKBX\ncfx4Mi4fH+x8Zi82n+mJO2xnYKoQB8ltt1GJLSgAXnyRDD0ykkr6kCHm31/c0xMYMQKK/cdRMPYF\nJhLgAAAgAElEQVQW+Az3h/SPP8isIiPZAjYggFFZpZIMbe1aCqYbb+T377iDh6tO9Ku4mPy8uJhz\ngHv3NsBaJRJg2TIOUEtIYATgP//hhycl0ZFw4AA9hS+9xChJcjLg7g7FxVRoChWwk6ohLizErl3A\n5s1DMCTsfTw6XwFJgBEjJBMmULm1tW3cXnf3bnqzHR2ppEydCmzbxn2KiyPzsrWl8VdRAaxcCWH3\nbuReEyE93x7WfxYiyLc/PGYZKUJ45AiVdpGI5wCgMlNWBgQGQr13Pw6WDsKPpXOwIMERta6eiROZ\nmhYaSkabmQmNhxdKfjkIUcydjbpyt4iEBDJ8W1t6ipcta/69Awfy3ABNR8VKS+lVLC5mdO2225r+\nnJgY7otOeenVi+uwtoYmNw8qX1vILqVAdM/dQEAAVCrONY2P12fiGQWzZ0O97jsUeA2ArVMAnAEq\nFq6uVD7OnqWy5ukJ2Nri7PglWP2JFr59VVgqjYXDwV00ANLTKYwyMujM6wwl3tIgEgHPPIPqBQ8D\nMiWsAgIgOn6cZzQ9nYdBLKYwHzYM145n4L3MJxH10H7c4vwPHKyraSAa7bCAsmziROCvv4DJk2sd\nZIIAlH64DqKyEjidOgXBxg7Jl8RYW3AbYqbEYvqoYvKk//s/8unychpa5eWkb+bM+qmyxoYu/fPi\nRd5VmYyOuOeeq/8+d3fefTs7KlR5eYC/P/76i0HeAQOAJ56oSVoYNoyRk8RE7uOoUfWcavn5VAt6\n9WqnGlBQwIhwUhLXHxhI/vXLL5RxOTmM3B4/zv8nJAAvvMB9OHIEpT7hWPllEPKLgUWLKM4bIitL\nz746bEQdPAisW8czU1ion7d33318Vjk51K0GDaJj9/x5LqpvX0al+vQhLS0Ytr/+Sl12+HBWUbQm\nQ1QQmEhja9tBm+r4cToxFQo6BL299YO9PTyYgXHqFPUONzfK6sJCOiDEYr7n2rXrDq2Nj6es8PYG\nli6lfaJWU5Xx9OSrM5GbS92tuhp49lmqvikpFJeuruA+BQfzjbffTv3w1Vd5gLZuJb26FP2KCl6Y\n4mI6vs6f55k2Anbu5HKGDdOflbxKB6giJ8NHsxviW27h2hQKrjkoiHx51y4ajRoN9+vIEb4nJMTo\nkdsCuS3e1byJSkGBZ26xR6izM8rf+ghWmlLIJFKIoqP5xoULuWmVlZTRvr5kQGo1s8umTeNzV6t5\nqIwZyAGDtX8evgl3uiWi3xAFJC8u068hK4u8QaPhwXd2hmBnB6W9O6oG3QCXugPTS0tJZ14ecPPN\npE2XDv/OOwZfd7utt6effhrvvfcejh07hj59+sDHxweCICA3NxdJSUkYNWoUnn322XZ9tlqtxrx5\n87By5Ur0aO18jsJChvwrK8mMFi1iupVMBuGDD7ExfRBc5AlYXTUXQv/+mHHvvfy9rCwKcUdHHqxB\ng7rGwCmJBNdufQyvnXkY6kMKPHpoNYYEBfFiSCSMgAI8hAcOANXVECQSFBRLcO6wDYalFsJ5xoxG\nF/7CBTrE7O1pqxnEsAX06Z2+vnQelJXRkJHLqTAePw6EhECbeRUFMl9Yi5whqxJhXdYURJYWw8NZ\nhQhXV/z0Exn28WRX3Cx2hVGrv0Si5hnL6dO8qKWlpG/uXCoqV69SqGZkAPPnI6HIGznfn8PIC6mo\nUtriZJYL7LQVqFTKUHzVAzFNf7rhcfYsJW9FBQVdUBClX036UVLFZ/j6vCucxeX45lsRwstfhbOv\nA38+YQL3U6sFBgxA0qZ4bHe8G1mv0vZstXPU3Z1KhFLZOoOrpTTP7GzyADc3RhCaM2xvvpnGbXEx\nsGABhcjtt6PsZBIqT1yAKLUQpeHDERZ/AeL8fFyRe+PcOfoxtm0zoq0yYQJWHRuHhEQxPJaL8Oab\nNbaKqyvvjlSq17qLi/Hb+gJYC7a4fM0FyT5hGFwThStVSiFPLofznNGwN1WarLlDrWamT1ISvRcD\nB+IvxUiscfsN96neQ4SgRUjfvoyA+/pyI6Ki+PzT03HKbRLyTxYhN8wHeblaOIRZd74W2xAiEdd+\nzz315Fdy7O9Qb4uDCFpoQ/tA5myL43nBsLUXYVvuSExzOIjKP49id9V09OwJRKVspqJiZ0eDz1Sp\nfDrs2UPDLzeXMjo6Gnj33cbzrRwd6SCNj6fQqhniu20b7ZIzZ8iKQ0IAhIVBmBiDI9XDUJhtgwkX\nM+FQw9fz85lBJ5fT/7tgQTvWfOEC9QqJhPzV25sMxMuLimDPnkz1fO89lnVIpWSagYHA3Xfj4jlb\npK+RQKGgLvjhh/XJTU0ln1WpWLmjSwJqN3bsoKMvOZnnSDd8E3xWcHHRl2gEBNCotbGhMW5nRxrr\nZPWk/nIepz8/haFj7RD87O0QxBL89BMfw7FjZMGtGeP355/MNJVI+KfarYv8+qs+ylxe3thb4e0N\n3HIL6bexoXEXEcGItIcHnSheXvp7dfEiqj9bh31VIyGeMQ3jJ1nDyopZ21ZW3J/ERBrx335L48De\nnlnAnZn4cPIkz69USl9Ffj7PvYsLA2uOTk5M16+JzCvWrsfJyv7omRcHb1s7iCHwoE2ZQvlYXMyA\niG6QqREgCLyzXl76syKVAq++JoJcfi9iJt2N+Qsk+jdPmcIgTUQEkJeHYo0jqkWecJUVwVospiFl\ngqHQZ88COQUy2NjIsO8QIE+W4X37LyGSVuHBiS4YNWQwje6ffuJz7tGDF1qjqY1+ljn5I/6TU+id\nXAgPLymDdkY2bH/+GbAOi8AHjmvxyqsihPas8aLt2sV7JQh8xjY2kIsdcKR6NL4MXQUbtT2WpNCc\nAsALkZFBPn3iBHlMRUWnDcVtt2Hbv39/rF+/HlVVVThz5gwyMjIgEokQFBSEqKgo2HTgImzevBkn\nT56sTWlevnw5RtRtetQUjhyBJjkFGis7WM+YQk9zjStTdMNw+CsTcQyRUFq54k/foZgBUMhs28YH\n3L8/hfj06eaT356XR4XLxoapVQ0shsJCQK6UoJ/yH1hdPgeMsKNr+vHH9RPFH3qI3uJ9+1B+6ByO\nJfvgJ5fbcXGvHxb1b/wnQ0P5ZxQKeswMijvvpKd89GhKNomESuWhQzRyTpxA5l3PYcPRMPSz2g0n\ntTcSZAORN8QfThXZiHjoBozayiyO4GAz6/01axYbk0VEQOgTjtISwMlJAvHGjTS6ABT7ReL9D8WQ\nlfjAKtUVvrZaJIVG41BRP7j08cWLk4KNt95p0yiBe/em9/rXX8k4p08H+veH1z2T4LTlHDKKAmCr\nkmH9sT5Y1PO3+nWnEgnwzDP4LF0LDSQoK9NnOrUKfn4UtEVFHU9HCQ3lOU9OpnLfEMXFvEtaLfDg\ng6i4nAs7Ty+IQ0MBDw9cmnYTvs+uhF/uKYRnXYbD6DD4urvDB2Xw9bJH9jVJxxXINkAQgJQ0Cdzc\nec8rKmoM26eeYnShZ09UJGXB9ueVkGhVGK52xobiaLh6lCPQJg8YPBjXSmV4L/9+5EdOQITECv+R\nmglfMzekpvLsu7gAGzeisvdAxMYC17IkSJF7wM7aGSF+fqw3P30amhdfhkLqBPuoMIh+3Ijw0/Gw\n8RuOJP++UM8OAPrLOndYZEuo65Q9cwZe7z+PNLE/NGIJTsz7AOMXhCD1+RJkxZdjXMBBaAqLsVUV\ng72/AGKRFm8vHAgfz+M0ZK4nc40Be3vyBzc3Mv1585j54+PDBmk6A0wmY9QxNZWRKakUqKrCyMEC\n/thvA3//WlsXAPBPz5uxJjUHWitrFFwKw8KafoaFhTRqbWzIStqFnj3JBK2sGFkKCKDMu+kmpkaG\nhDDC8euv/FosJg8eMgSws0OIZzkgOOHsWRFCQ9kCYdEi/cfr5nbLZAxUtQSNhrzDyakFtWb0aOpB\nffuS/2s0eh4/bhyftZUVw6YnTzKkNn68vrZfLK49d0ol8O7L5ahSR2BfSjk+nJ0Oq/CeGDWKxlZo\naOt7PWZk8GOrqpjhGBrazgj6qFH8AFdXOpnDwur/XCRilkJKCg/Jhg3c/E8+4ZlbvZoP8MEHafht\n3oy9lwLw7YUeQLocYpk1Jk6kX+XiRf4ZXZJDaqpehy8s1OssgkD/pK5y6XqQy0l7Sz3R+vbludVo\n6Hdbs4bL1fVFdHSsoTUvD3jhBSSVheJb5URUDr8HT/3fZQz9/U3qA7Nn85ddXJiOXF3Ns9mJqKjg\nEZPJyGYPHODVcHfnM5TLyQpS0mr02t9/55tiYujo+u03aMVSrDg7ByE4i8GSUxg4wBbWD9x33RR5\nQ0Cp5HPXVZ/06sWvVSoad8X5fTCjYB3K7bxwxWopRgHUpY4d0w+uXrqUPPfaNUChwJrt4ci9kIaZ\nyTYY6qCFY1RUp9Ohg1bL8zliBB+1r58Y3j7gZfz8c7508uHjj6FdvRbf/OKNnc7zkJxoj8GD6dur\nNWxDQkhneTkDI717k866TUkNiA7n2+7cuRPTp0+/vuHZBsydOxdz585t0+/Ie4Qg4bwUSoUAuZ0V\nyj/5HPGJYpxQD4ZbPz84TYiAW0IBiqvtcesDrrrF670IDz1kskLnZrFnD6MIajUN75j68bzevZl9\nVnTWD/5Se3x9YSguFE/CXSNEGBr/Nc6vPYyfUwdgiEsqRqy8A1/YvILPsm0hrrCGf53098uXqTtE\nRTEg8e67PL9tSittDSZO5KsuHB2h7uGLHRfCcM57BETSGLjkfgEneS4C/tyNpyTf4Q3XD+A8cxLS\na+yfG28EfD2qYf3F5xRGCxbQoG8BlZXMxM7La9xQ1iDo1w/49FOkH8rE50+WILnCDsOGAcMPieGa\nYodQx3xIr2UBVzMhT8nACbuBuNf7GJRFtiiw9sUU50SEuTkBMPRDbwZ9+lC5Arj5W7eSub74Iqp9\nAnEyJwI5vR6CkJEDuNtB0FxBvKInFAXBOPNMAgqOXkbMdGtsV0yGxFoCawkQHVWCgG8+AeztqAS0\nxsL19TVMwx2ZjFGQGiQlMTO8d2/gzimlkGzeBJw9C6GqGsc3puLX4jGItnWDQ6A7PG8YAZ+bxmHf\nD4BKHIUXbGOhdmOdkd3mzXitRwBKX1sGz2Dj1UyKRHyEO3ZQDni4aYENPzAidddd2JkUhp0PbEGl\negSWhP0KkcQGDwTuwcmiUHx1tC/u7yeH9vGHcO2X0SgsBIqKjbb0rocePQAXFyRk2CE1bDIG1DSj\njpD/Cm9FOgYlXgQmfQq4u0P9+dd4b3sfJCYCIwuAy2fnQrh4EUvuSYTv4+FwcTN8vVBrUVJCfVSh\nYLKSz/ffw97NGsFJZ5HaYziGxTjD2kaM/xt7ECWFfwOREXgh+V3sPOcJzx4CkJWNVccv4a7pQ3Et\n+k74ZIswyMvEft7oaMrlqiqmxsbF0VF4+TI9r4MHU/PSldjccgu14DfeAHbuxNzQnoh58AU49/GG\nLLeCFodIBMHPHymu/khJAa79AsxZSJ2rsJB26ObNtONSU/Vlvq2Gvz+jsSoVlTkdZDIK2dRU9hbQ\n9fmIjQUuXEBB7AYs/mUCirOVmDs+B9VDZgEQ4cIF+rIGD+ZeREXRFi0qoj/1n3+o6/fvX3+vdH3P\nEhPZ12zevGbWO2sWP9DRsbHlJBJRVpSXA++/TwdQWBj34eabkaH2Q97tjyFgTBCWfhCAzHwbuEl9\n4ViRhSvwwtE0b4ztw4zLWbMoYlrbw27GDEYd09KYTn70KCO3bW5DMWUKz0rdWvKGSEtj47TQUDbA\n0XWvfvxxYNMmCFIprpS74qLbGKhLRyM+6xriCsOgPOMIv995TMeN0w+Y0JW3z5vHrR41qr49vWkT\nI7xhYazK0v25pnD2LG1sW1tWDDQX7e7Zk8dOq6XDo7iYv+vjwxiOvz+Nr4trDsItsQSuihMYZueH\nA+IJcL90lG+cPZuG4KpVtLiNMBXg9GkmW9rbk77776cRf/o0YwUFBfSBW1tTBT65txRR326EVVY6\nDaxRoygsT53GwGt78Jt0OuKGPorY/znA2t/5en++w7h6lX1cq6t5Zg8f5l68/TYdHdu3A9MvHUev\nXgAU6ZBXX0bOTjF83ljMjbKxgXJ4NI5d8IRDWREGzwxmOe0OIN8xFD8OW4nQZQIcIzu/TlgQqArG\nxvKqzJnDM+XszOPw24oL8N98DEFVMjhv304d77XXoJo0Awev3QNpmRpR2hQMCPSAXO6C+PiaoOy5\nc3xA0dHkNSJR43I+A6LDhu327dvx1FNPYdy4cZgzZw6mTp3aqItxZyEzkxe2Xz8g3aEfvg1/G452\nGpz9LQ/qygAklPhADSv4HM9Hv+xMvGz/GbbmjkD2bYk4EROCISNtINZJs0OHKBnqCiJTIyiIJ00q\nBXx8kJrKrN2wMJZISKWU9bgvEGkn38bfK2Rw8bXHL6uSod71PY6VRcANSdhSNQFHXizAYXdnOGjy\ncaPVKUy6nApsdEPGoJvx1htAtVKLSbPscN+kbNjn5sI+KgpAA1diZiYZiYsLrcP2oqwMuHIFQkgo\nRFZSFBVq4XH1HPw0csSnlSKyIg7OlQko0lgjUxKIF5zfwDuZW/Hyyy4QBNpBD4xMQa+4OIidnSkl\nrmPY/vMPlQM7OzIagzaBvnIF+O03KDILcHXdWUwrLEKI2yhsSnoS58pH42H7M0h18kNUziU8lbUL\ne1xmYErBj8g6IsLJYneIbUqwZn84pC+n4YFP3IzbI6CiAkhPhyCVQjhyFCUpBbiWJoOv4ipurkxD\niCIB+WXhsH79Rbzz9+0oWm0N2bl09HBzwarPxXAcq4QStnj0UWBM6nYg9TKEqmrsUk7AUcVAzJzJ\nlCxj45tvqOiXnUzEzLfvR3V5FeSVYlhLVNhS/CDStA44IbsT1t4D4XbQAVPtKYxU2VlIcR6Ku678\nhopsZ6y7MhOV/6ixYHYWRB4+jFh4eDD1qbNKFmoaLNxwg4h97MrLgbc+QPHmPUi2joT3iY+QmDEE\nZXkuGC/swsliCbb1uhewtYVTQTpsyvLwW0ov3L/3O4SEjEZGBoVvZqZ5TxQwGVxckLf4Tax8AShI\ncoBkCbe2wCEY3nYHkJYpxv7q2eiZkYops2bD3+1xuPeJgvy1IxCV2uGiqD/2fnQKi4IrmS1Qx7oQ\nBEAkaCnU25rFpNHQ7V1TR309nDxJv4eVFbBnaynuLq1A5ZUCWInV6NtXBNsLh4E8D0hefgGnym7A\nrr+ckeSthbasHPnX5HDWlqEyzB2vfOsF94wqiG1t8OqrNYadXE6DTBDoLWqOlvx8ehDFYlrXzXlH\nBYHCWyajxZKVxSyrhk6uixdJ+7hxVIQSEoCsLBSUW+P3d64idJIMo/Z9S813+3Y6Ts+fZ3iwoAAi\nGxv0OLYd+DEDlcVVuDJyDvwfngY/P5JkZ8fg3KJF+nrErCwuLzWV07VWrLjOgy8v19f3zZrFdZw9\nS4Nq8mQ+C92ZuHaN/TzKyvQlGAoFkJiI7QnDcSlRAzdtGVJ+iccTXw/E2l1BiIujevLyy1Q0bW31\nDWsPH9ZPQXvkkfq++YICPr6AAJZeNziaepSUMGKZl8cMmiFD+MsaDTXalBQykPh4Xoy0NKCsDLnF\nUiTkK2F7bjl2+YxEdunNKPCKgtYzCFdV3qhQWuHDz6Vw8mEyTVN6rCA07zjx9qYhu2QJVY6MDPo0\neva8zn7UhUZDq7jGIYiiIm7siBEMB3p7U5H6/HP+rKCADhJdYfOJE0BlJSrUMpS9uxrV4j9R4hmG\nX5yXQetiDU21FElJPJbZ2fqJOWfOUH27+24+0obYt492ZEoKj0RLfPnoUS6xpIRntaU0bl110XPP\nUa3NyuL/772Xtn3fPlr4b7iIaLka7qIizFZtQoy1PYKSkwB/P3qDAwJ4cM6dYwQgKopWsUjEaPb5\n8/qxNQbAkSM0WouL2UPJxobPx82NBpavL7fxyy+Bj97XIPD0nxAuZ6KHJg92GhvY/RUH+wsXoFJo\nscd5LSpLRXDMyoZ9nhXgXzMSrMWuWh1AWRlKPtqG8H/skNBrNr74whpBQbyXY8cCWzZrUHXkFDIv\n/YOxYdm4Ig3Aj787ofriZbyrKoNDWRkEhRJvHxmLtB3xGOeWAPvKW9F37kA8+CCrXwICHBHURHZl\nZ6CoiP3tCgsBmbga53fl4b75figr1uDHp4/C6u89CKtKQaYgg3OIHw/YP/9g65m+qArXIjr5c9zh\ndxgpP0rw9Z/PYHdEON5eIYb3999Tju3fT+eJmxsEgazy1Cm2+Wk4va0j6LAFum7dOlRXV2PXrl34\n4Ycf8Pjjj2PSpEn48ssvDbG+ZqHrXF5ZyQv74AMCxqn+hNOBgzgsfR6F1YAIWoighZO2BNFFP8Oq\n8DLcKzzhKKTj2qaruHSiGiHKREilgHj7dl7Y556DJmowADMotR09mrfaygoICMA3r5IJJiWR1+iy\nN5UHjuPKO3uRFD8ftvm2WKreipIyMSKQgG24GdVqEbQaDbytCnBv1bsYXnQafY5eATSDUfb/7J13\neJRl1v8/z/TMJJn03oCEEAKhV6VLESzoioqgruy6u7rW1d21rG131VVf+9rfXdeCva0NBUEpgoKB\nkAQSEiCk9zbJJDOTmXl+f5wMQychCbq/fc915Uqfue/nvk8/53v2BtC1NQqD2kWjJRD1mWvwNDSh\nPe8clCceP3w9n37qj5bv3NnjbaiqJJ31esDlwn3f/dzx4XjWNehZdrmGX1UU0WHzkta1jQRdIV4P\n5HuGEU4Dk92b8daYWG57lleC7qCtTSKdrSUx3O2xEq/YepRpj4sTI8bp7J++4dZW+Wy1gvPvL+HY\nU8r6z+0EuFsZQQHmmhYi2kq4P/R/uK/j9wwbpOWmvNf40DaL9MrPsGiKiVCcjGE7/9s5hshAJ+tL\nkplbNvBYLR6PfNYqXtS/PcS/1sbzRs4VjDHv4fyONxnSuZd2TwBznAV40BLZWMtT71zPvq5BREZC\nmlrEwtJ3UUKtvO5+DlNggNij6iBYu5ZGNYx3tqUQkiz2wvjxpwfQT/WquLtU9EYNCQmwZ3s7V264\nG8W1i0ZvDMVqGttNU8l3ptGCFYu7gyhNK253EGazDwchnLDmr7GbwtmWsoQt34A+OIBVBclc8f0z\nUkXhm3n417/2f1lDU5OA2TU1SdYpLY2Om+9E99UX5FUnEWXMplVjIsAZzATVwxD2YfJ2knrgeqqC\nh/Gm5jKanaGEBnRCVhbmVimLcrnE/v4/OjZ5XW4ad1azszycGncEmSN1ZDOXastgNPZqkp155Hiz\nGO8uY0LneswfPUcVsbS6TdjdOtK82/E+vQrNjBmQmIiqSqZm4xd2rut4iMzgCpQrLherfM0aCYxM\nmXLiRb34opSqxcUJyMtJKDFRDESvx0vqplfozMvG2+GgqSuI339xGQVbxrFy4lOENxl4pXkhBJgp\nqA1jiH0nVqtCR5uH8MpcLnSvwZmfzKdZd+DxhOJpbUd71x3S9BgaKlnR4+FnrF8v1qkPyPF4o9jW\nrZPoU26uWLRDhohyu/tu+X1rqziH//u/YlQ/+6z8XVISnv0HqO+II33PM/x748UQoBAaVk3K7MEE\nWCzUG+N5teFKNG1lXGXYji42Fc32ArILzJTu38OHzoXccov4Llu3ijysrhbfzWoVPeF2C79s2iTO\nx5HVq4ft95FHJPMycqS/sbGwULLIgYHiiaxYIYz4zDNQVYW3sQm3R8Gxvx5VF45VURgS1opZceD2\nKsQbasj9upFvvkmmqUmSqe+8Iwagb+CDqoot8MMPIl9LSg5XhZGR4mTt3HlYZ9bR9K9/Sda7vV36\ntF9+WbKW+/fL3Rs6VDwmg0EcwcsvZ9vuAAwP/ZkR3lxCvU3YnUkE0UaNswuNVk9dawBNTeB0i432\n2WfiI86cKQk2RRGHfOdOcbhnzz7+vV60SHgpPf0UQKTKygTht6REyl/S0sSwe+wx+f3o0aJwv/7a\nD5jmcMjvmprAZMLjVdGoXsK9dTSo4Wjayihp0dDYrjsIdeAbW2oySVX3xInCBuPG+X1kVZWexdxc\nScb88IN8PrRE/lg0Y4awQlSUOMvPPy9HdeWV/lZ+j0cc39BQcRTb2sRU8w2/AMngV60p4E6lgE5d\nIB5vC1EBHZD3ifCWc5QEYu66S2w9h0MCTxMnSpAmMlKM7rg4Ccb0k2M7a5Y8E1+2sKrKj9flGyzh\ndsPihU4GtWxnYdf71GkiMdobiKAJBRVnWTuKAlpdHSHmIMxaA7z+CYwZJef42GPyMG66qX/L9T75\nhMH7v8JZ58ERGkPyGdPIzZV7fc01MKwzh0XbH8RGILkFBr5IPp+u3cU4bF1o2qrA48Lu0nNG+3uk\nqtG8X7OEGas+gaWjCQsTUXs6KShIWKC0yMHQsjX8NvBd8m88kw3fuBlZ9D6DPPuo08VhMHnxtrah\ncbvB6aTBa2VW7Rssqvw79WXBNHUlUNXQToyuFK8mTfRdfr4E8oKCAH8naHCw2InPPNN/++iX1KrB\nYODss89Go9HQ0dHBRx991CfHtrq6mkWLFlFQUIDdbpfRLkdQe7s4KWazBBotHhsXBK2h6ux0wj5p\nInyIlWHFH+JVtEzp2sAZ2lxaCMGmCcHhMaB4FX4ojWIbUWR4dzOqYge68nJKXHH8jxqLIVDPHxLe\nJFbfILUR3SVMB8nrFUniA1YYCFIUuQhtbaCqJCUp7N/vH3UFsH9nGwcWP0SgrYrzQ3X8YPg1hmAL\nOlw4MNGojQJdABNtnzLYUMnMzHqiy6rRtTRCRwfDrZVcEFtCVWcoP8t7i827A8hVFzJy5QHOePwI\nZZiW5h930xP0B48Hp93NY88YKSqSqOHssR2UFnSwt0zPrZ67KX42jdeCh5Lk2kWNGkWaZz82bxB6\nOjDhxK3oiTa1EzehDe/4Vj5cZUJVjdiNYWxf8Ffip7X0KA2VmCilIe3tfei/V1VwOPhwlYk77lQI\nCJBo7JavpzMr93ES3ZUANGOlgwAcDoW/Nv2WEm0qjbp5/D33TMy1+1G0Gjp1IWhC9VwQUTu3wDcA\nACAASURBVEhXajP7upIISQzs/4KB7jVjMoGicGC/l//5VRG6plquvjmQ1z6ezMsFkwhyN1PlCOFc\nzavoDE6i9J14nXY86KkmDme7B8UkNsEo817cxmimZLWT+vNSdGOzJBo/6ExISCDQayD82RAaGgZw\nzntnp2i9bt5Tq2vI//kjVJd1Ubf8Ft77PIaUnZ9idrXQ4rXiUTW8zlLWO2ZzAR+QoFSRrhRRq7+M\ntowoMjIMTJ0K5XGD2de1lJprIogxBmIo9OBBIXGIBjbZJaKv0YhULi7u/9Fgq1YJapvXC5dcQs6c\n3/H3r87FYptAsnY3M9wbSVAPEOWIIokDpFBKG4EcUEMZHVnJem8nGw0TWGlIYd7yRK5oE2MhMXFA\nUPX//yCPh5j7r+feyhLedp7HU+r1FBZqyEjuRJ+aRKkhGYPTSnx9DubORtbWZ9Hkms9wzR6ClHau\nML2LTnHzXsk4RpQFMjxRsoGrV8OYgFJaNpfStSgcw+rVYoE2NYnHNGjQia3aHTvEmq2qkv85CaWn\ni4zr6vSSeH8uLls9RmcTnSpMZjPftM5k+bqruF5to10JIi9gGvPmqkyrLsTV5mT24FLMzRUEl5VQ\nr+0kYXYRO3ZM4v63VaaVZrBC/QrFbpcwu80mevHIOl2fntTpTgwIl5srd7ypSRymsjJ/tZSqSj9M\nWZk4jC6X8LvVCj/8gOLxMMhRQ4MmklTy+V37HzE2q0xXKvjL2rWsetXLl41j2au9kI9dRiwrXYzf\nUUuMUsu+2RfgrpO3fOklcQLq6+WsQHjkyivl+48+En977doTOLarV4s3sXu3PJO4OPHgDhzw9zOW\nlMjvU1JkT4GBOFUDnRoTdm8QO0qTGbHsLv7xaCCxms2cpayizJjB61+IR+TDbRoxwj/h5OGHRawn\nJMgVcbsP2osHSacTO97lOnFvJnFxYkz5/mn1anHM7XZ/0/HkyZI+zcmhs76NV/bN5xxDClZHM82E\nMky3l0dHvsKBhYGsLJrAjh3ynklJcn3feUeO8M03JWFz+eWSqfGB8p3IsZ03T5w7g+EUdEl4uH8U\nX0yMLCYgQBajKLJXjUYeYFiY2HTPPCP1wXV1lNfoqDVMJllbgc0Ui6dRZaXtHGxoMRrlcV1yiZhG\nHo+IbpdL3iY29vB+4ooKuVNBQeJHvvBCz/Y0fLiUIms0IjY2bpTgxqefSheWxyN+W16e+Onh4RJM\naG31J2fcbpW2qjZSjXkkJjsxh8YQ2NwCeo3cW1WVF500SZ5JQ4N/5k5BgZT7jBsngZry8qNbyvpA\nmZnSFXX55RIAef11CciMGSOBnKefho4OlQR9E01OPRqlg0B9B4GKHVWjQ/G60Xjd6PUKN8e9TW7K\n+cx0vIrms3xoaZIXKS2Vc1+3TvBq+ousVswmL6PHaMjPSODD78R/KykBRfGyV41hubYFk6cDj1vP\nBZXPYGmvxR0ZjdmsgMeM0dFFqz6WiM4GhgaUMdixSy6Rrz69slKAZTIypB9hAMlgkHzapi+7yPVk\n8niJi4ZsDVnuHXSqOhS8mN02wjpb2NWWQeaIODShoVxS/Al1ZVoKLOMYZtvGfu0MrlT/xYyuWuJs\nD0nZxWefCX81NkJMDMHBItKbmyVR15/UZ8f2888/55133uHrr79m5syZXH311b0b0XMMCgsLY926\ndVxwgnBFSopUlhTl2Dl/Ui0EJKAZlo41v5S4JD1T2j8iJWADgfY6VC00ekLJDZtOqXYUBY3pmDQu\nyryJXGd8iT3OoSQZ64h02NmyKxhnVwEuu52dKQ3EGr6GdetQL1pC9YW/JdCqJTjQK4Ogd+wQQXDt\ntQNjvbtcosGKi+Gss7jiisuZMEECZ1FRUpbyxi+/5vzmvQRjY3HjPymP+RVRs6dTtf5b3uxcTEvQ\nIMa7NhFrKyLGU8UG03zOaC8kKDaG2MmT0S5fyoUtf4f3Xqaixcxm93RG6PfwtrqEjKYjgB7mzPGP\nuzkZ0lxLC/ztb5TtVSjs/B1RwyOlX3CijtglZ3Du6k9oJJwMCnjVdiVhpDOMIhJ1dVQHDSfSVUlg\newvBahs2bQSRBj1zP76eGdYI3p17F05zKLOHlMJzb4jGX7rUL8VrakSyDxp02LlERPQBcMrrlRDz\n1q28V3QPMBi11cZHbxtZ2PYNI9U8OtDTSDjPcD2pyn7WaBbwS8/LZGl20rq3GWNDJQfccdgVE7bE\n4Qy6JJ3E5jqGBb1L0axfEePaTch9b4oCueyyYwdM7HbRkElJJy9PVFXJinz9tdzT3/yGbz5opGi3\nC402jHcfKaI0YipBXhv1RHAHDxDnrSA4SEWbGEf73hqMtlb2mMfgiklieJwoy23KRK6puh1HQxux\n+vtQbrsNoibIsx40CBMS9K2oEMPwhKxRXS0W2pGBoxPRxx8LmuCwYQK4oNfTsfEHWoobsJo1vPti\nIbqmSi53/gOjx067Esi1yrNsUycwXF+EV2tmojeHeHcpY7beT17JZh4vuIcrfhtE44sfMLR2I0Oe\nsqNJG8K9v/8tTqNV+mOG/VIMom+/FWPwuNZuHyg0VO5xfT20tLD5w1p0kcNpbWrFYzDT3mHki65Z\nuNDjII0USnFgYHBXIVG1XorMf0MTFEilIZCaBmGB66+nuxbZc9pRFf8jqKkJtm0jy9xKsOMfvGP6\nObHmUpZUv8nH5ecQEWLm6pnbmeD4FmdBIqnt+6jzBKJ4HHymLGCm8i27NZmUhs2kalsow8+Q4OOI\nEbB7RxKTUxLQtVbCucv8Zbdm84kb60Bk2rvvSkrjZGmdboqJARpaYPZsDDk5OGxtmGxORrOTs/mM\ntZ65/Jm7SKWIYbZt/KHwfxka2w6XngdTL5NMrMaBxbOfrvmJPHY3JKZb2FA5iwvivyZMbRSrbc0a\nsep9GVYfjR8vlQyKIuXBx6Nzz5XXycgQD2jCBL/B6fWKYW2xyAW+7jrh+f37oagITWcneo2WqIA2\nZnvW8G7HfPIYwaKCj+DiR5lgHscjjlcwadqoPeCl0WFhg/sGLBa4KAZuuFbexu2GrKgaojc8w8Tw\nOPS3LCMlS/rYrFZRu07nIQAox6LZswX6dtYsaag880xZe1GRyDZV9Ufha2vFS6mowBWfTFupjY89\n8xj1ryfJSRzNvB27iHEX8I7uUnZZ51DbaESrlTO9806ZyqYoEhNoaJDH5vX6xxIdyzhUlJM4tSB9\nTfv2iafl9cqZKIp/KKvNJuPrbDb4618xdDqY07CJekcQMYTwg2YSe7Uz+NuUnVRvXMMB+1hmztRS\nViY88P77Yuz7RqTW1kr2MC5OHMB5806yPnqwh+NRcLDcx3vvle9nzZIz+etf/cjVWq2/7L+6WmT8\nrbdCezsrm88m1VLOdyEXMrZ5LV9qZ5OnGYvR40LV6Rk+XPqXXS5RB+vWyd5cLgl6H8q2vtHxNpv4\nJ73Zk68vOSpKxIbH489e22z+ZNgrr8g6mpqEfXw+a3xUF3Ht5ZyVWcOQBD2avCqwdiNXlZfL4Wzd\nKi/qOyCfPu7q8s8v9aE43XDDKR7IsclgEH+nqkrerrZWMtpWq8S7vF4vLR1mAgkgzVuEfmQW1n37\nUFtUFNWLTi8PZ7hmD8M9K6G5Tta/fr1UxviQnPrbg1qwACIj2VIQxpNPptBqk1iW1wsKKm1KEJ0a\nC98rEwnqauXyrlcIpxlaDPJMw8LQApOVRiqqdfwh4B9oWyLFpzjjDImyPfWU2ANffSWjcQawNxUk\nkOfWm3FiZFddJE6MeFU3PzCGYRQwQtnN2bp1eFBoHj+PzuzdxNl2EGVvRutOY6t1Lg3RZ7LM8CJx\ncarI78svFztUo5Egw733EhgohUhVVf1vSvXZsX3ttde45JJLeP755/uEhHwoGY1GjCfg+nt9Qqqz\nk5l79pBSEAyVc+H3vyeovp67icLxxCZiiwLo2GajSxdAV1M7r2pWoDrqMejbuEC3iqfNt/M797NM\nCtrBEsMWCIxktG43xR3xzGx7n6i9bew3qAyel8YXn7h4e4uLwIgA7r7ZTtSOHSJJtm6VMqMjnQyP\nRxipL8+koUE66IODYe1a9MuXk5Ulwqa1VSqgWvZbqOYa/odb6CCIpNofiN75A5EpNobVPYUuPZU1\nJYP5VnsuKVEdrPLOp0LnYVFwPrFz5oghvWIFbNpEjLOSjcazeDHgj8Rnhh6N/aMoPa+T3bsXqquJ\njwgnYU8RlfWRLM/Khesfx2ww8LOLtez9dx65jjT2eNNxMYJqEvESQPLkYYSMCyL3X9vI72wn0tjG\n2S+8AHFxOAePwpTYROzwUALeew1cDjGypkwRL2r//u60RZcYGnPnnvrzP5RaWuSsExM5p2QVOEax\npPWfZDaYWdMcThNhxBqqiQjyMjemiodrrsbh1rNSWcFveZbJ7evY4R3KEEMFr8fcyvQPzsRoE1QI\nQ0cHIwrfJ2d9C6vtY5lR8QPxs2YdbRi63bK3igrJlNx114mrBVwuESZJSQL2cdllNLqCKLF7iWnf\nS0zTZtoaHAxPGknrgRJCaSZE047BZIK0NKxWK4SFsVRpY8x1CuFDRXG/tSWJmqA0Glxt7N+ZyYQn\nVpG+8nAI7ZCQHrSr790rqAtut5TA9TQKvGqVWAwFBWKIJCURMHY4UeY2cvYGUaIJpNQVw0bPJC6z\nfs6QGIWft3yOu8VCXILC4qtGkvrMi0S31ZDrGEGYowZraxlB9nA6qvaTWxtBTPEmgrqcJE/Y6r9D\nsbGiVOLjxdLoNYpJD2jePLj5ZnjoIVRFQ3h7KdH2rczzfkSnx8gtnoepIYpQpZWLY76mvW47wd5O\nOrBg8dTyxxnf8ULbECZPPqRsLzdXkGRVVeqj+jvLDAQHh9HW1luEKh3KIcGMoKBQbLaTZyb7nQIC\nICsLbUkJISNSGBsUyj0bLiKnMx1jVzNGXSdh9cVUWePZ3pVIHN8zWtlJhxrAeE02n3bN40vtIvSl\nKk9megAtDQ3iH8yYoGHsxHvQeF2S7Zgwwd+Ad7Iy9lmz5KM39N134qCoKowahd4UgHd3NcYOhX2u\nobSqVgLowIiLG5XnidmzDfa0QXExVWEj+MZwJcMTtjN6cgC6xFgmToQNGzSYM4ZRf9s7hL3RbYnU\n1h7umHu9EqAym3tWL5qaKgabxyNByMBAvyGt1YqTe/vtYv03N0sJZF6eWLs6HdqODrTpQ4iqa6VZ\nTUBn97CrPZnOmHCG2X/gtsgX+KhqMiaHg2/U6biMUVitwlqDB4vTetNNoKnq4pZoMzMjvoXaVEB4\nPTFRYsq+0abHJR8crsnkh+wdOlSeR1CQ/H7LFpFTPmcxMpLgqjJUj8o8zWqUvXp2KqOJ9jho1Yax\nSPmCtZ6LD2L3hIaKc1hUJM5SerrfTl+8WMSRVtsLNPojSauVdebniyfhQ7/Jz+cgqMW4cSJ37Xa0\nDgdnuVeRp80k3zMSj6IjWGlnXW44r9QvxIaGNrtMXPv+e3kJl0v2ERgojnhGhviaLS0DbqfLgT/3\nnDhlkZGSNjUa5SO0G0i0uVkeqNst+rW5GSIiSDHV8YnpEmYOria2wUjSrkriqWLEaFCTB5OVJU7k\nI4+IvW6zyeOsrPQj5PrIapU9V1WdejtURoY4Aw6HH1A2JETiKZs2SeA+Olq21tAgvw8MhOBQDZOi\n6pibtAfN0HQoPSCVgHa7yD+HQwIwN94o46o0Gv8dbmuTu/urXwm/hoT0+/gfRfGDhjc3S25Cq5X7\n0doKJpNCpnYvV3hfYZiuBiIHgT4GtldJ0MiF/LHFchBVGFUVeTRhgqTVfQ56f5JOB5Mm0VgDUdFQ\n1z1uyWAAneohVtPAI/yBxaHfENrazFbvmZzl+hw9yHqmTUMzbRpJs2aRNH++yMJNe0SGZmdL7b7B\nIPfSYDgt/ZHTp0NBvkqn4iEqpIuzba+R7R1DPpl8r5mGTqujyZJKytxM3tg3mtpd+5hhD2WF/WnS\ng/cRNnwwFz0ch/7leHHGx4+X/kGDQe7UIXojLGwAQGrpB8f2zTffPOHvp0yZwpYtW/r6NofRQce2\nsFAM/aAg+XrzZvj2W6IWLIC7roQNg7CGf4C300FeVzrtNUMJc9ux1NYwia0YdE/wWui1aDMnstu7\nnFGpdoaXlvLH5g/IIZBG1cp33omsyFtFTuhyLGFGbDaoaAkkasYMP9z4kUze0iIGe0ODCINTNSQ7\nOkRC5uQI3NoRGS1VhcDUGEzbC2hyR1BlHU7y3q84oDURHxRKwp5vMRSVsmKRCW+8juzkC6n8xyDK\nY67COqOZsbmfSZPOOefAyJHoLBZ+ObaBbw4UMbvmXfbdP55hd19yaqXWQ4ZAZCTmpibuvU9D+7Au\nQq79C+zMASA4IYFBcwbzYP2fGd3SyPcHrFjNWtIyw7hoegUNedW8os6ivCOAeWyUyH1jI+/Uz+Tr\n7CTY1EpYu4fR7JIouE9g+SKuJpM4Tv3l2IaESJ3Pjh1cesUgzq/YjH5XB57vNzLOOIot0/+ILjyE\nK+9K4mJFw66VCaz51EXeXj1Pqr9h+JAWJhduwqEa+GP4iwxKnQFVMaKB9u6lwR7AU3uvQm1rJyc0\ngYd9CvdQ6uyU+xAR4S/RO5GCMRhE423cKIZJcDCxKRrOztrNvO8eIc5Ty9DGPDQBAWwOGMe2rjM4\nP+AbmDNN6sWKimDXLnRxcYyYHAhG6YdKDE1FeTCDV7YPx11nYkN+Ik90+JEge0y+bK3RKBmDnjq2\ns2dLHVZa2sGQuMagIy2sAUNYNZ+3VmKLSWGv+wyC43+gbtnlrF+ZSZzSwhBTK5Nnp9L0ZTr6PWVk\n2fPITRzPxEsH4whQ+OeeqVBXT6u2kRW2kqPLKQsLxXLwzfjr9aZPQjqdGGIeD9/Z0nF6u7jZeRce\nnZG/a26gTDeYzi49Fq2L+OGhhM+ZA5u3kNBWDeg5+4ahzO0exX1QXPgi8hqN3JsBcGzFqVUP+UlP\nsu/uw/6nre1Hgt+1WFCXXkbZpjKCr1jM26ufRtlRRn5bCmHaFtCH0aYJ5vkDC1ADPZjjxvGYciud\nlU10GWsxtK0l2thOXtBUUuNjUdVAHnsM4je/S1jNZ3Rdnonu9pvlvUJCeu+s9oZycoTv7XZYtgzt\nmDGEP/QwdR96cVQGE6J2MMKbx4PeO9EFBmPReMEl4EZP/12lJu5CNndN4MGSxwhaeDbXXPNbimLO\npbFREHYfnnsmoVmF8l6+sVpdXYKiWlgocqM3jWFa7dE1tCBeQGKiyLoNGyTDm5UlDZcbN0pt6uLF\n6LJ3MvqR3YR37Gee8hm62kqU8GCWjS5grnc1tzf9gdGWUsoio3j0UX/l9Msvi/1u8EbwlXs4M+P3\nHsXrx1rWMelI5NjUVPnweRh/+pMEIaur5fcZGShVVYSoLZi8Tm50PIG7MRHdkLE8HvcIxkXzWJtr\nJidHHCW9XkSxDwj6Zz+Tx+319iNobWqqyNLWVnH2fP3CgYHieS5Y4HdwjEaCwnRMaspmjGYnr0b8\njt0B48jRpKMMtpAZoJCcLA6fXi/xiNhYUdNZWTIBySebTtuIUYvF72laLPLwYmNl3+efL3C8drv/\n71tbobOTS2bvY176twSnRaHbHc816XUsW+zmts+TWbNWYt0Oh/xrfLzEq7Ta4wNc9alqrJuOzC0o\nigz1uOoqYcFVq4Q1X3tNVFRnJzS16Ei9aSIhY714tmZTFZZFVMUajO0t/nal2FhxpkJC5PC0Wvl6\n6lTRSxERYtOuWSOM5Gse7ify5Yfq64U33W75eulS+OB9GOTdT0hnNQ2jxhORmIhqMFLhisZMO+FK\n9yxYm03WOGqUZDvT0nqGSuRwSHbXbJZMaS9p9mzJ1I4dK2anzuPkwv2PQFERq3Vn80/vlcw2fMG0\n9lXss2QyTC0Shzw1VUpPCwuprtWgUQOI9nrl2btcwkA33ijtDUOGHNsx7+iQUuWQEEnw9LF69IIL\nYNZ0Bd2jr+HJL8D+QwG7jAu4oOwj4rxV7Ddm4rYEk7n+WXa3zMWrRJDtzmJFSAh4VDr1VhxpWegf\neUT8oIoKCY4tXSr266ETdIqLpU1j4sSetTf2kAYcvtjh61wfCEpNlYhGcbEovhdeEEH83HPykZYG\no0ahSUnh+/1ziPxHMZ1OhRuC3iXZ3InLtRuLpxXVHIB23vmw8TlIT8c0bRre2z6ivU2hvCsFT/Jg\nzh9Ww/PtGjIzYViGAmNXSHr9WOVk+/aJErNaJcV1qoZkZ6c/vHlECaHVKtNNduVnMMXswvS31ah5\nLuyaYLLtg9iwQ2W2Wspo5z704eFo77sbcz4MWgeqasZq60aO9HpFmqSkwLhxqMpilvzx59j1oVi3\nfAE1M05tHEto6EEMdL3FQmh5OXjccj7dDSiflU6mtiuMRk0Cl13VzBmb1jKnZS3KSheKdTBntb7L\n++G/RD9sFCRUgtWKLmQWaoEOpbgY3TAL2BSR6L704OjRov2bm48PXHIqpNGIgGlvRwkKwpyTA2v+\njSY0kGC02IITOetP02CEmPQ3XuekLrua2r1mitVUPqscw7WmjZi1bsIqNsJ3WyQ09qtfwe23oykq\nRNPShGvURPSpRjAfo2IhKEgij19/Ldnok0VNfTNjLrlEnrtGw+LFkP7Dboz77NTWBLJVGY8VlWmm\nbPYZM/GEREnZX0WFWCAXXijKoqrqIOjC9IWBuMf8jvdm/ECL24KxvQWlsgLSeonsMWaMRPNsNjFY\ne0oXXSRgFhaLP4K5YweaiAiSagtYEbSavyfOZWpcIOFdEdR++x0ez3ACLBpcHi13PRJMS8XVzFPD\nWTZiCxNuP4sJKQfIe2U7ijMGr0aDzqyX1z+yh/CqqyR9snChH6U1NLRfhTKvvEKFfhBPuX7Duc73\nKDckk6buY+hwA6MVheI9DsYHlDC36Dms1hgYPQQ6YuWsJkw4WqhPnSrZl66uEzez/bfS7t18+nQJ\n75VNwLyjg3tiKogZP47zt20lMGIQgVf+jDGJ43jrtgYcGDGEWNCNmEywQc/IwkLCd5XgbdMSkRJL\nfOp0QGyWUbVf0myKRbMrX6ye/hhrdTKaO1eswqgo4a3QUJRAC6FpZjrrQjEEWDivcw1jQ+ogzA1X\n3CqoNwkJ6MOT8Th0pDt2ot+wFvQeNH97gJnaIpqUMLalXIx39lkwaajIE5+RVVMj1RNxcQJC1B+I\nJ8nJot/37xc9W14ucuLxx8UIDQoCRUEXE8Mfv3iEpm17GWTfhZ4uMfTKyzEbvXTpAyjSDUfbdTh4\nWkyok7HGYiq9cUz9/Rkwf3L/eVlJSaKDioqEJwcNkrSETicOk9EoslurRfGq6HQKjlY7AWOHoX/9\nFbRNtdw2dC/fnjkYrU7DPd2gkRkZYutC/8fTCA8X+OeuLjE+//Y3uT9BQbIPh0MutVYr1ntFBVqH\ngwCNhlpXKPqUeHTRwSxZIn86Y4ZU+xYXixoKDhZxumjRjzw+CuRuTZ8u+/nlLwUR2maThcXEyN2u\nq4PkZJTSA4QFmKBSC7feim7ECMJ0OjTdPdmqKset1cpL/PrXoh50Og6Cfp0u0umk9HvECDEd9XrB\nBWtpka81Fgts2sTKdfE0FaYwRZPFaPdGjNYAsWNNJjmk8HCxCZctE5Tkjg7hQUWRZt+SEnnBBx/s\n13R7WJiYHF6vxLJaWg6C7hIV1Mm0ljU0ayIJqM+HhmDW1mfxesBlGFxt/MnyOEnzupHTKiqEQUJD\nxeHbt09soBNlO//9b/lQlFOqxPJNDPV6xax2FVaS9WExX1THMKNjPYaEJCZX7sDkUQhVW+Q9oqIO\n6oQdj3/DU5q/odha+d3UjYwIPCAJp/h4fzr7ePTee9IXrShyd08yIeRkpCgQGqGFe26BigpC1q3j\nmjc+o6GpglzjBCY6fsDY6MCiqeACxxs8bfoDl0zdDx3pvNJ4Puu1VxH+Fx333RdI0C9+IY31WVkS\nLIuOFlsyKEju1SOPCB+uXy/Run4SDqdnLk8fSFXV4/9Sp5MwD4g0DQmRQn2fE/j443LTcnLYtjUC\nY3kNXV0BJMW1QmAoyThYvsyKdbqWzInjIGkZ/POfcP/9ZGWksyHyAv6w+n+IzC0nckIKT94vLyvP\nXjl+j9TgwXJpm5rE8T5VGj5cjPiKCvl8CJWXw1f/tjNn52PEBZahOe9MIhJ3MLXqC27ceRWhhhCa\n1TA6Q+zoFyw4+HLXXy+69UynHd5WxWFbvfogdPHZUbk4ndloHB5MKWf3bfyRXu9vDomO9ivKq68G\nt5v8iixGs4OWhCFcOXIX6V+8LaUuXi9hLa3M9LqJNXgYdt1vIPrX8PTTLKn+C7Hjb8JqzSfz6/dA\n9dL65me8vHEccXHws59Z0N5006mv+USk0fjrvcaMgaeeQvvcc2QEBpJx+1CIRkK3L79M+JdfckVb\nGrXeOQRpO7FboiAyTc4yLAySkmTUgdUKBQWEtbZyi+lPfKw+gjt0GjU1x2mrO/vsEwu5I8lnVXST\nue4A4zzbqI7UUK1PoMU5FEtgK8FjzFwbXEPsh4ViAeblSci0pARefRU0GtSFi8CgR5kxA53Vwh/O\n3MyW7yCscS9lKwJIev5PBGT2YuhjYKDUBvaWjtgTIAGNL79EGxHBjFtuYcYgC/zyJdiVS9yQIVx7\nDRR/30VyooEX368jxFFDniMVHF/DSy+huj1kRkVzndFGq87CtKCdMHjBUcpws2cSmyImcVYqjH3/\nbQFEMBqlPqzXkJ3HoI4OaGujwhGORnVTrkliRFc+utFpLDoHQt69n5jIAyQneXkjdy7WXA0Xx23C\nmBJ7fJTd0FABQ/k/OjZ5vexqTcCsc9Fe2UKZqsVW2sYm05WcN7yWiJYPIWU0f7C+SUFDBOOHmlAe\nf0ycgGuuIc5cQpxuMwTZ4ZsEmDePm2+GptJEJv7wOobW1D7UifaSkpKEF8rLu5FOnVBVRVeZmbAI\nBaWrAY3NKUogLg6uuw71xptQvB5uaNXz/fcw3JWC6V49tDuhuZlF3n/iaHFyTnI+dd9PggAAIABJ\nREFU4Zo7pT0mIcHv2EZHS21lcXHvAlQnIpNJGkt9jtY998jXixbJ2mtrJcgUFUVympHkPSVgbxXZ\n4HZDayuBEyZwSbiO8lwLyckSg/L53Fe7n+Pc6O1ow60knP8AWA/3QBwOATxqa5OESq8qGI1GuO02\nWe/OnbLO/fv9z2rMGGlk0+kwetz8MeQFcvVjGfWrIeiru+DBB4nr6mLJpZfymbqQUaMkbpaZKdOE\nfCbRqlX+PfVqBM7xyGCQD5dLHDuTSWyppUvFY2trE/1dUyMgWN0ZpZuGvssnP7ua1KzDY/jLl0sX\nRHKy/Nvjjx/7bdevl5Ll+fP7vwXyKCorkxrzjg6pCGht9ffaqqrgNvjqiYODJWW4apX8rVZ7sNz8\nL3+RqubwcDleXxX6M89ILqKzU1R9XZ3EoadPPzxRdaIxR8cjH/iW0ylHciLTLCBAigSuv17gYMxm\nWPFzL/yikPxtYVg0etpDQugMjsYYYRB7dd8+KUe2WsXBXblSFtrZ6bdjPR5/mfKJbPPjUE/2rdH4\n3669XXzrKMVO1ycJnGN/B7O7FfbvZ3fHLAwaFx2mMCoX/ZqkZ6+TqMJHHwnvPfigyEGdTr6/8srj\nv6kPKEtV5etT3INGI0EdJsXhLU1g8YE1oLRwXqqD0voazPXFqIqDykFjib/5EmGYDz5gb2MoqsmE\nx9XFfkccI4Z7RfD05JL4xlz0YO3H2gsc522ys8W+mTaNpH9fQeFlLzO84Du0GRkk7fuG6JYqYg3w\nzIjn4OY7wDOavNuNhJbn0mi20NAQRNAbb8i92rJFhFVBgaxx1iwJ+qmq8FUv130y+kk6tm63mwUL\nFrBz507mz5/PAw88wMSTDcM0mYSTS0pEyWo0YjjX1IDFwpTOr/hUO510dqFdthRyP8MQEMA87VqY\n1C1Nq6sPgvMEhoWxsPUdyAgBUwxNpTbunleIVd/JLc8OISzlBIaKL1vZ1dW30KpWK000x6DXXoOu\nbcU05e6leYqVcLtd0CUef5zLQj7nzdZFVI9YgGWpB/uOIh7/cgLlzYFcc003WIN3FiRF+OH1du4E\noxHDmlUYrFrB6b9iWf+Fhg0G6Zmy2+Vc2tu59KuHeaX9LKa2rGJwbRWYzXhMForrg4mo34MuKoxJ\n6TaYMlx6x7xezFon85L3wAUzoOJ9me+7qYq8TOHDYcP6HLDqOY0bJ5B9Wq0/yLF9uzDxgQOMDu1i\nWmgM1ZoELsgshpsekP3X1bHm4e281RjBhZZ8zlY0aFSV2AAbCeXf81XYNN5+u59n7fro3Xehs5PA\noXHkRN2JYkrg/DPzSS7dAIob1lmFl4KDpYln+3bQatlfoaf29+9hsppI/1kR5nv/SPzDNzJoxd9p\nc5qoL3fRsq6eSb1xbPuTkpP9faQmk5RkulwH+2In/mo0E3+t0NXuZNeq1yis1nOJ8SOw2XDU2cje\nbeKNyIu5ceJ6Jl05BSxXSGbikDL8tjaZPmI2y/SR5wcfQGcyieJvbOwfx3bHDjoUCw5jAIGGLmo0\nSQQZNegmTSB4zQec3VUP3i4+CfkT2zJn425pY0gATO0qFCvq/6j3NGIEF97q4MV3rAzt3EukwUmF\nN4p9rgQ+2hfJLweVwr//zRD2McSSD+oo6ZOdPVtG8vzjH5IZiIwUI3jXLpIWLyYmqZ2d1fPp2mvD\n+mUFmT87DbDUhYWyFotFrODERNixg1iGEO6uZV9HDJbhSUAqPPQQX39rYOVKyMrScM01Pr90NAx7\nS2rq1q/H8MEHGKLMBKs1wgB5eSLz7rlHspFHyvb+IkXxo8r4oH23bROn1mQSALkbb5Q0T329eKOb\nN4tzbzaD18ucCW3sS+qibG0xFw7Kg5b5EBJCQPV+AmJD2LfDxid/a2XF3UGHJWqysyX5rNfLS111\n1SmufedOcZwMBnmxpUulT9jhkACnVkvSJTOlv27uKNEdTudBpOjJS0QEDx4seDI7d0rsPTpaejoD\nA6VQ7eGH++mZ22ySRdmzp7s5M1gCJbGx/r7w2lpZQHU1pKcTnDWYZVcfbSeMGSOJvp07ZdtHUmen\nmElvvSVvsXevFNoNaBuh7y7V1wuvlJdLJqm6Wvh39mxxjnyoRe7ueUVxceJldZNv8s2RdM458pJh\nYWKG3nabOJkvvSRvY7HIEf/zn6Jer7++ZyBSdrv87YYNYuOEhBz7mR5JISGHTAqrb4S2Ni4NXc1r\nLedQEpTFjBd+DXFRoi9fftk/v9jrFae/rEwW+NZbcgGvu04WkZbW6wqH998XP8mHs9YTn23Dhm7M\nISWS0X/8BQlbCiWasH075za/T6XuUtL0lYzUl8k/LF4slR4vvSSM09goTnt9/Ynf6Pzz/eXq48Yd\n8088Hhm1lJ0tz/6EXW4mE5o5s7EWF8HOFtj6DREBSZQaE0CnYU/HZK646ippui4tZbrWSv7UG9Hk\n5zF1eIvctdbWngVElyyRgw4N7ZXx29QkSdLWVskvHBYc6+oSvWa1wttvU5swhffCf0PIzOUYw8w8\nPOk2WN8NjHfeeaI4nnmGpaktvFE8genD60lKCpL1NzeLPHG55H5NmiQtUT7Qg7w8/wywfqKfpGOr\n0+n46quvev+PR3Yi/+IXIrwmTCDQVMoVaz/nQMKZWFKckOM9WoLOny8P3AcpN2rUwcj3lppBdB2o\npMxjJP+fW5n+57NOvJZDs5UDQDEx8L0uCYcpFJOrBc48V4RydjaTvv2WSfa/y4Xbtpsi+1DKqgqI\nHhnLp5/EM3q0Iga7LzzabfwQEyP1Q7m5UgIxYkT/LlpV5ZJrtRAQwOhMN6ND/yk/L3RBSgrViZOp\nWbOfgGAbupY2QqZOFaadNk2CFh6P7LO+XvpHm5upXHQxzj1iC/T7uJyT0aHWkN0u6zMYYPBgzCEh\n/G6hFwpXi3WUlSVK8i9/4f1tK4gIz6FIr2dm5ngslcVoho5jh3sRXVV1xEwzA/1gJHq9/ixxYKBY\nSHl5BIUY+f3tBkgwwFObxPro6pLKgPx8qXvzjSOpruab4ggylK/EL6+FFICICDqXX03dg6/Qboxg\n9LiBDrefhHwWQvdstYPIs3PmHBSa+kAjv743TvrewsNhl4PW8laytdPxJA/iy6wJDB1UJQbeEaXe\nvvvV0CB2jmbppfD6q+LQDh/e+/W2toq37Cs3AoiKoq4jEJ22i6xhLuaVvMqgoFYpB4yPF0USE4Ph\ngkV4voxGH+sgJCkJBkcNSO/sfwUpCkOXTeB/lgEleuoey6aweRwV4ecwaUwJpJlFMYeHy+GbTGLo\nezzC8ytWyMUoLRXr3G6H+noqk6fS+cm/6QqJZn12PJk/Ow17iYgQmdTRIZZKdja0tBBtyyczvQNr\ncADpsUGw8C5ISuKDW6sITYwgO9tAZeUh/XsZGfIxfboYsAcOiJeyadOx31ejGbi6y6ws4eHSUvEo\niovl5755lEOHCv/l5MjnQYMkvTlzJqbx47nh202Q/RLs1cLnHkGc/8Uv2H3d+5QMncnWynhm7Dtc\n3YWEiPr2ePpQbdneLuuIjpY1JyVJaxLI10aj8Ox99/n7P0ePPqjXOP98wsMlXu+jRx8Ve3DfPvne\nbveDCPUb6XQi4BwOqa567bWDPafExQnQ36efigMxbhxcfPExX0arPXFAoLhY9mHuZq/zzjsN885H\njBBcFN+YH68XfvMbsUFUVUBumpvl6wsv7G7ENsheezD/NDlZqrhB1FB4uORWfGjGIOONgoLEnj9w\noGfnt2ePxC11OlHnp9SnGxICmZmM3f0uY83fQfwo+LBCAsKRkfLC9fWycJ1O+h5XrZIL59NPMTHH\nPe8TkdMpY4Tju/GEzj23Z7ZaeLjvTihEjIqHhCWSSW5uZlCIgYfUB8R+veEpsdudTjlj31QMg0FS\nqD48gOOR2SwX8ARUVSU91TExUv17UviW+Hg56G4ANp0unK42LUqnHd3s6f7L7vUS3VHCfddWQMgg\neH87jD6v54HywMBTav/IyxORarHImRzm2Op0cpn374foaCwRZgLMCk32IMbFuCFyhAQWTSa5nABD\nhzKx+DMmLq6E5bNAi/hgsbESZPXNKY2J8Z/H8OGnZjudhBT1hLW+fae8vDxGjhzZb6+nKMqJy5N9\ntHu3aAFVhRtuoDN9NLt2Qez3HxH/7TsiqBculAd8JIc1NkpUMi1NmNxuZ+vn9Tx/Xx1GTRd33KMn\ncfmM07OP45DLJRczMrCTpHC7SABFEU23caMMA2ttheZmmsJSydvpQavXYlm2mDH3HTsLDIgjv3Wr\nGBNpaf27hxdfFMTFmBgJI3q9fijB554DrxfHJVfy/KcJaAt3kTgnjcV3ZPrrfHxUVib/73LBjBl0\nXfUr8vKEZ3oK2tynfRyL2tok+tbQIJm+hQtFGSqKf1ajr4LgT3/iX7sm8LU6g5SZg7hzyjoMQUYY\nM4b91z1Ga7OXkWN06P56b6+iWMfcx8qVosTDw2V9gYHiJIWE+Gud33xTQqk6nTh8VqsIZJ9j9/rr\nbH51L6t3JxAz2MT5zy0kNlMCSF6v6H6dTiLJfQ269ctZPP20ZEVCQkSwZmYeHcTKz5fnsGMH1dur\n+cv+y+gcM5Wrz6lh6pf3CN+fe66UAx1CjY0i69PSTqyYT7qP2lr485+FX5csOayEc+83Fbz8bCe1\nhkRu7fwLwyq+krs+dKgEeGbNwjMsk/x88WFOFWHzZNSbsxB04yPBo070/bH/ZiDU0ancqeJiOZqR\nnz6ItnCXfHPBBaKEo6PFmPrf/xVZGx0tvNXRISA0nZ0wdixNV9zEo7c3UNcZxIWXmXrVQdCnfdTW\ninGeliZy9amnUN1uyi/7I+2X/VqmuTTUwx13sHL3aFY7pxM3dyR33dWDAp3mZskIJyRIH+lA7eFI\nUlWRTZ98Imdx7rmi33187XKJnC0qElk8a5Z/Mzk5MujT6xXnfP58QHyz996TRMc99xzOz6oqd6Cz\nU+zkI8XHSfdhs8mdaGwUfbB1qwjHSpl1jskkozvS03s19+Xdd2XdUVHSHtrWJuLtVADaj7uHO+8U\nPZ2VJeOcli0T49VolHkyEyeKngsJOfnIqhNQc7OIwOpqKdNdseLUKvZP6U69+KLUmoeFCY/cf784\ndfX1EtEwmSSd7JudYzQeDXPcA2pulljXkCH+nMv778s1joyUx+uLB51oHw0N8qzKywXH6+qrTzEI\n0NUlVQ9PPilKe+RISSuDXydVVEhQJipKLv/IkVIb3IPDOd4eVFVA0LdvFzvhD3/oWWZeVf3Vq5mZ\nMkKHoiIpUbDbRQ7ffbfw2QMPiBwYOVLub0ODTAHoSWq7B/twOCTvU14u4uXnP+/BC5WXS+Cgrg4C\nA2nRheMpLiF4Yjr6e+6Uu/XQQ+KvREZK5UtGRq/X29M9HLm0Bx6QWMBvfiNsfRh1dEgyKTERgoOp\nqhLnPuubpzBs/07W7APnmjZNSkdAcGNmHOEfZWeL3T5jRq9hkE+Fv/ucsQ06RpTWarUyYcIEHn30\n0X51antF+/YJE2u1sGcPAaNHM3488EONCK7QUOlJO5Z1Gh7ub6rpHusx8fJwhqRqMKhOgqb0cybz\nFMhg8FVMBHR/dJPF4s8ARURAVhZhI0dyhvlTXIFBBJADnMCxTUyUj4GgnBxh3poaETpJSSKtVFWc\nKacTU1YW18zT0tycIZHyYwnvQzOjLS3o9QM+t/rkVFcnewoLE2f90KDAoYwcEwN33cUV1bUsiEkh\nNNaIwdht8TY2MthQAUlGaO2nYoodO+SuNzSI4goOFs1yKF10kazXaj32QLGWFqbGHSDdWoPx5msJ\nzPTvR6MRPfKTIVWVPUdH+0vmjqVBfSgbCxYQm5fHw9Z4nJEmwkubJKuj0wl6xRF0qGjoE1VWivEb\nHCzZ8kMc29SZCfy+G8gxxH4tPO70jws580zIzETLaehH+y+mg+z7RrM4SDqdZHoOBYDavl1kbG2t\nX5750G9HjCDMrHDnE5G0t4vYO20UHe0vE5w2DVatQomKIslzAHzB8c5OcLm4LCOHsyythNw7smf+\nVWho/4BDnQrV1PgrMWprRQf4eNtgENl6LGCCUaPEeHc6DyvVW7RIjLnAwKMdekXpY8Cork6M7bAw\nMegee0zSc2+/Ld6oyyW2Ry8HtF50kSTRrdZ+n7gi5PXK/Z00SZ53XZ08U4tFHpKvUbQfQINCQ8Wf\n9PHHaQWVysuTe9HQIB9tbXIR9HoJhkZF+XVhH+aRhIYeHf+58EIR48HBPQ9IRESIn93RIV+f8rPS\n66XsMyVFPJtDkY0rKvww3A0NYkfGxp40k9kTUhSpYq6vF/3Z03JzRTkyoadIMOi++0SHjhghd3PH\nDnk4AQFSpekbO9bD+d89IV+3Y3NzL65/YqKsdfduiIoi5L77YEwSlJf4gwfDhvlLwA9F5h5g8o00\nc7mOY9OYzYfdj7g4iIvxwrM58s9ut5Rk+CZv+MhmO/q1xo07bon3QFCfrecbb7yRxMRElnZHRd56\n6y327dvHmDFjWLFiBd98880pve7NN99MdnY2Y8eO5Yknnuj9C0yeLFFSt1s0gY+WLDkIqEFHR8+7\n+BWF8Kn9XfMzQJSZKeUiNTXSOxAcjK66Gl1JCVzUXQ+XmytRWF+p2emgpUulV2PaNOES33y/WbMO\nk15G7UnkUXq6ZNLKy2V/PwVKTpZASX6+ZAWOJB/Un80Gc+agSU7mqC2Gh0u0a/t2aYTuD01/8cVS\nSjZ58tHp7CPWdNyI9KWXgtFIeFQUTOpfiP9+J0WRe/bRR1Ir5NNAPrjC1tbD92o2w6RJBNJd+G3N\nEuuxoWFgDfiMDDGyy8vFgPj3v2Vd3T2KB+NtIfFilH/0kVh/P6kown8BXXutlCdmZsrzX7NGLIE5\ncw6XZ76Z00cEBs3mAUCw7Q1lZEiGsrhYdJ+PEhPhyitR9uwhesEC2LRWnN05cwZmPnNfSVEEAE1V\nJeC0fLk4s4WFosumTDl+QPZo6/jgjwdshmpKijiHBQWiD3zBhthYSdm1t0vpR0JCr1JvijLA6lqj\nkXv94YciP9PSJGpcUCBNnv1MPxp/LF0q1UyTJ0sSZMwY4euZM3s2HqYPdKpneOjEoj5TXNzRKO2H\n6qQzzxQvVKcTT+5Y4wd7SdqT2XW9oYSEw0t1AwP9mDY33igVWyaTOPH9SEbjKewhKMjfJnTRRVId\nt3ChRKdAAijbt8vfDPDdO9bSekWHyoczzpCAUEWF8E1z9xz7no5tHEDqcylyVlYWubm5h/1s9OjR\n5OTkMGrUKHbu3Nnr19y+fTvPP/88L774Itdeey0rVqxg/PjxsuD+KFV84glJjWs0EoI5VpZqgKlf\n9nGqVFcnxrLXKwbZ/fef0sv0aQ979wr6gtcrkZyBQjLuAZ2Ws8jOlqg9CKrx8uX9/ha93sf27VLO\nB2L8XnFFv6+ptzRgZ7FjhwziVBQx2E6EkNgP1ON95OTIulRVMoK9RqkZOPpvLkU+Jm3cKGWLIAGj\n4wD7DRQNGG9s2SJjPED2dKgD3M/Ur3uw2eCWWyR4HRwsJX8D3qQp1Kd9/OtfEiBRFLj11tNuzPqo\nR3vw3XlFEaP8x8rWn4D6dBZr1wpIDkgAoq/9An2gH9UmPJL27ZOyZK9X7uctt/To336UPXR0CAiR\nz7F94omj29d6SadtH5WVUvqvqlKvfvfd/fbSA7oHVZVn3toqz/rRRwcM+f9HKUU2m828/fbbLOlW\nhu+99x6m7hoZ5RQzTt9//z3z5s0D4KyzzmLLli0HHVuAe++99+DXM2fOZGZvR+r4RgJ0dgrW/KZN\nUpcUGSnlQx0dEg36sQeulZeLAhw27NiRp+ZmUe5JSfJ1U5OAA51Mufv2paqnzRDA5ZLMh8Mh/VGH\nruHI52y3C8PHx4sTHhFxegfC9RfV1gr4QnLy4Ux/5H47OyVz7UMrSU7u/7tXViZ3acQIf/Tw0Pdo\nb/c/c5dLyqljYv4znzvIPfvsM3mevvvm26/vzjudEm10ueSODWS9qN0uzXEGg8gag0HufmWlH6zu\ndPHi/9GJ6dD739YGX37pr01WFP84lENLYX/q1NUl8tfXn+rj69ZW4QGv148H0NBwiug0/Ug2mzQi\nWq3SVHiooVpVJc8+JETW7NMhh8ozl0v2FRt7+jLQHo9AKftmqAcHS49aUNDhskWj8a/X6ZTMbWLi\ngIJNnjIpiuinqipBnD7jDNlPdbXYSH3osf1JkO/OuN1SvVRVJRUYaWlH6+CmJtGTiYk/vm3YH1RV\nJXylKILD4XCIboqJOdw++ynIOK9XbJjQUOGrDRskKzt7tlTwKYpfhv1UyG6XBI5eL30N+fmy5pkz\n/ck0nxzwjRv6qVF1tX/CzMcfiz5csMDPA6cyt+o0UJ8ztvv27ePGG2/ku+++A2Dy5Mk88cQTxMfH\nk52dzZlnntnr13zwwQcZO3Ys8+fPZ+3atWzevJm7uqEB+yUKUVsrTeWNjSKoRo6UUrNLL5XucKdT\nMmpnnQT5uA/Uo33cdpuUg3i9klU9tHSkpsYPPjNvniid9na5dD1plt+1S5huypRTrsfq1VmsXy/N\n5Yoi5cNLlgiT19T4m4ZADLB77/X3IAYGSonun/88YE7WgEW2HnxQgA68XonK1db6gU18xlZXl+xt\n1y4JZAwfLtnE2bN7/XYn3Mctt4gR6/EIbGN0tKxr82Yp5/OhnV59tZTw5+TIvfjzn09raWK/ncWX\nXwrQiaIIXy9aJHu12USxmEzCU998I3Jg4kRBkPGVlPaRjtrHe+9J+Y6qyjOeNUuMiQcflDLR1FQZ\nt9AD5M3TRf+1GdvHH/fff71eZJTXK/ejsFBGSZjNcoa/+EW/r/d41Cfe+PZbGbKp0UhWatkykQc+\n4JW4OHG+cnOFN+64Y0DuYo/38PLLkk1TVSkt9CGb5Of7QSGvuUb6H/Pz5fc+3lVV+Zu8PHG+7rmn\n3x2wY+7DV5XjG2YZEyNoT0ajPGdf6WRHh8wwsVhEBlRWSr/n737Xr2s8pT0cSR6PVPLs2SMO+4QJ\nEvRoa5Mg6a23/uiGbZ/4wufQ+hylggLJnP3pT4e3sFVUSIWZ0ymo2t2Jl/6k05rt/P57ycQ7nXKW\nBQUSUJ8zx59BzM4Wx2batB6PmxiwPbz9tgTmgoMFZeyuu0QWBwWJrPBhVYwf3y8YMX3eh8Mh9vvq\n1WLD+uZeaTQSTPCNiQSRuSUlUv7dLwAeQn3ew/btsk5FEV7/4guxVTIyBHzMYpF7NGLESYFm+0Kn\nso8+hwiGDBnCp59+SkNDAw0NDXz66aekpqYSEBBwSk4tCPiUrbsBubW1lZC+znBxu+XDR4oijJCW\nJoauyyWHVFkpjqLBIM3ePya53eJQOByHz0n1UVWVCCSzWQSyD/ygsLBnr5+ZKQ7mgDUZHUEmkz/C\nYzbL56wsiWz7nFrwZ2sjIkSZWq0SKT3ZHLKfIlkscrc0GjnLadMk8HBoZK6tTSKRJpMYmFqtBBwG\nYi0dHWKo++6SRiPCdMgQuW9ardyf3bvl+dfVifH7n0gBAeKMeL3ytW+vCxfK/XM4pNzK45GMhM0m\nSnygyGLxj5TwZWaKiiQYZTbL+f+nPuv/n0hVD7//Wq0YfyBnlJHhz8Dl5f24az0Reb3+dYPwgC8z\n4GvUa2yUftXwcOGD4GBxwjo6xJD/Mcli8WdgDkVJKisTWeWDLU5Lk/LYQwNSPqj26GjRJW1tp2fN\nRqPIGY9H1l9UJGvv6Dhctuh0ogcyM0WPR0WJc+71np519oa02m44WkXkVkfHwREg7OpGC/+plM+e\nCul0EkSeMkX0gMcj+/TNU3K55FyqqmSvRqPs+z+dCgrkc/fkDPR6f+UQyHmPH9/zuTwDTXl5Ip9a\nW+Wjo0POSqMRULbBg0UODBTwaW+ppUUSFb5JJYWFYnd1dsozPjQYlJUltng/OrX9QsXFwttut1Tx\ntLb65VtlpQRDL7hgQJ3aU6U+lyKXl5dzww03sKk74zN9+nSefPJJEno6g+kYNGXKFF544QWWLFnC\n2rVruaovfWclJTJwXKsVjPHERDFKFi2C776TSGpiokQiVdWPlHfuuaf+nn2ligqBAO/oEEN88uSj\nS8MyMgTUobJS+vK+/VaE8RHjSX4yNGGC1OQ7nfKMH3hA1nvZZYcPBLNaBTZw/XqB0duzRxzC5OQf\nb+2nSitWiNCKiZE75nBIP+Wh+w4Nlanua9fK99HRcub9SSUlck86OwUM50ggiLFjpc+uvV16bTMy\nBOBk0aLTByzW35SQIAJYVUXpHUlms/SMvfuuyIMzzjgcIbK/ae5cMZDeeANefVUyTeedJ0ZSQYEY\nV0eiVf9EqKamhr1HBFtSUlL6JON/sqQoIk9993/+fHj+eYlMv/yyYAHMnCnR91MYI3FayCdn9u6V\nzOzcuQKO87vfiQzwtSIkJ8u9y88XeRQeLkai1frjQ24vXixlxIGBhwOmTZki40rWrZMMzpAh8rND\nSauVfX/8scjSPqDa9ooyM6UyxmaTZ1xVJSOhMjP9Q3J37JDMeViYZHTOPlsqSZYv/2mWIoLojCFD\nJKuZmiq2yNatoht++1vZ629+89Ndf09ozhxZ/8cfi36cP1/u2QsvyH5vuEF4qLa2X1CCf1T64gvh\nnfp60XvBwSIrZsz46e7tkktE/k6aJG15S5eKXR8QIOfyU6OoKJFhL70kFT/19aI7HA6RZ/8JvDJz\npr+SsKREKniGDxc75UcfQ3Ji6nMp8llnncWyZctY3g2Gs3LlSlauXMmaNWv6tLCbbrqJ7du3M2bM\nGJ588kn/gnubln7rLekt9HjEYfqJMO4J9/HJJ1K6qNOJwL3sstO7uB7SKZc6FBdLGWhkpJyLD1Tp\nR6LTVgJUXCyl7lFRA7Lv4+7j7belNNfrlQjbTwVJ+hjUb2fx/vvS0wrioFx0Ud9f8/+xd9bxVZft\nH3+fWp91b2yDjQHSDaKEiC2PnYCC8dj+LPQx0Qcfu7sDkVIRRBEQCaW7GTAq6HyrAAAgAElEQVTW\n3Wfb6fj9cbGCMRbnbAPP5/Xaa7DtnHNf3/u+r44WoFE61qwRRdfXVxpy3HVXu66ppaih4frrb+WX\nX9bj4SHZHRZLKSNGdGflykUN/vaMSUU+Hg8+KJGawkJJgWswyb790Gw6ahrzhYeLt/2tt1y/uGbC\nKfd71y7hnUFBEk2q13OjvdBqOl5/XZwHOl2dUdhBaNNemM1SUtGliyi+b7/tlM65rYFLS4lyc2Wv\n7r9fIpguRLvpIS7kZ+1GwwsvSMZJWZk47JzcgM1pdCxcKBMPlEpxllx/fdvfs5lwGg1PPCH3vaRE\n/u2kObvNRYekIhcVFTF16lQ0Gg0ajYZbb72VwsLCtr4tb7/9NmvXrm1g1LYKgweLB9fb+/QZldG3\nryi/KpXLmWmHICZGBGJRkdSp/VMQEyONvtqb7kGDaucx15/jeEZjwAAR3p6encejm5wsirjVemKU\nqRPDZLJhMDxDRcXfVFT8jV6fzZ9/LkahUNR+ndEYN06UwPj4E0dkdEZ0FJ9pLyQkSLSwokKiTKcT\nzjlHMrFCQjrMQeIUaDQS7cvKkuh+/XKiMwWjR0saaWho41k/pyvOO+/04meNYcwYKTEIDz9xjGFn\nQv/+ondpNO06x9WpqBnlU6O3nwZoc8T2vPPOY+rUqdx00004HA7mzp3LV199xcqVK521xgZolRdC\nr5cUs040n++UdBgMdfWonRRtbtqg10u92uncfKKlcCHdTdLRCe9AY3DqXhgM8r0DaD4pHSaTnAGn\nDSR0HWpouOKKySxadAFQM5+5edHXMyZi63BI1MbXt81jJNqCFtFhtYpS7u/f4fy1Ppx2vy0WSevr\noK7tbaKjqkrq7Tq4o7BT7kVFhZyxDkytdKn8rqwU52g77FW76SEu5GftqktVVkoNuwu6iTtdD+kA\nXd7po9VqDPR2RodEbL/88kvmz59PZGQkUVFRLFiwgK+++qrJ1+zbt49Ro0YxevRo7r777ga/mzRp\nEl5eXgQGBvKWs1KofHw6vUJ/Ary9O7VR22ao1Z1O6WoXdBTdp+MdaCu8vTsfzZ6ep4VR2zFQN4gC\nKxQex/1fgb9/O9VL1odCIRGpDjRqWwy1WtZ8pvJXjeb0HUXm59fhRq1ToFBIBsrpUC/YWmi1Z8Ze\n1cfpyM8ag1bbOUdkHY8zQZf39z89nvUxtJkjJSQk8Msvv1BUVERRURGLFi0iLi6uydf06NGDdevW\nsXbtWkwmEzt27Kj9XZcuXfj555/p27cvDz30UFuX54YbbrjhxmkBKxLBrfmyHPd/B5WVZQ1e4e8f\n3PGGrxtuuOGGG2640SnQZsN2ypQplJeX1/6/rKyMadOmNfkadT1PkcFgaDDOx8vLi6effpq9e/ey\na9euti7PDTfccMONMxRi6J7c8HXDDTfccMMNN/45aHON7YABA9i5c+cpf3Y8Fi9ezFNPPcWQIUMa\npC6XlZURFBTEkCFD8PHxYe3atQ0XfKamVrnhhhtuuOGGG2644YYbbrgB0OIa2zYn2TscDkpLSwk+\nNiuutLQUm812ytcNHz6c0NBQVqxYQf/+/QkODiYyMpI5c+YA4N1EbVy7Fae7EO1aZO8inAk0gJuO\nzoQzgQY4M+g4E2iAk9PR2IiizkzvmbAfZwINcGbQcSbQAG46OhPOBBrgzKDjTKABWhfMbLNh+8gj\njzBy5Eiuu+46HA4HCxYs4KmnnmryNWazmYiICFatWsXTTz/NyJEjufTSSwGorKxEq9VisVhQtqUp\ngcEA330n3bwmT5a24G6ciM76nBwOmb26aZPMHu4sI1uawl9/wZ9/wvnnyyiE0x25uXI2wsLg5pvP\nnCYaZWXw7bfSDGHy5NO3CU1pKcyaJfsyebI0pTkdkJcn6w4Lkxndnp4dvaKTwt8/uEF6s1YbhE5X\n2oEr6gDY7TKLce9euPZa6Nmz7e95Gp2BFsPhgMWLYfdumZ/dznMf24zKStkbiwWmTOmw+bQuQ3m5\n0KdQCH3+/h29os4JhwOWLoVt20QH69+/o1dUh4oKkeEKhci+zjpuascO4QXDh8sc29Ml49RqhXnz\nIDNT+HN8fEevqEVwSo3tTz/9REREBJGRkSxcuJApU6Y0+Zrff/+dsWPHMmbMGLKzs7nooot44IEH\nALj11lsJDAxk69atWCwWTCZT6xa2fTusWiXCePHi1r3HPwHbt8Pq1Z3vORUXw9y5MhT644+FyXZm\n6PXw1VdibHzxRd2omdMZCxZASgqsXClK2pmC5cth61ZYvx7Wrevo1bQey5eL0vH330LL6YIffoCD\nB0+Lc+Wu4UWUm59/FmP088+d854//njanIEWIzMTfvoJ8vOd97zaEzX8ZOtW+OOPjl6N87FyJWze\nDBs3ijPajcZRUADz58vM208+6ejVNMSff8oebtoEa9Z09Goah8MhumtJieiyxcUdvaLm4+BB+P13\nSEuT4MZpBqf0+y4tLcXX15epU6dSVFREWloaXbt2PenfT5w4kYkTJzb42bvvvgvAjz/+6IwlyQB0\nT0/xPMTEOOc9z0SEhEjEp7M9J19fGSVQVgbdu3d+T5eHh0S7c3Nl6PmZEN3s0kWUGw8PCD6Dus1G\nR8t5Uio7T4ZCaxAdLd/Vaol8nS7o0kWUEk9P4T9udG4EBAg/rqpyXvQxNlaU0jPxDAQESPaETgfJ\nyR29mpYjIgJUKlHMIyM7ejXOR2TkmcH/XQ0/P4lml5dD794dvZqGqNlDkPPaGaFQiKw7fFiyHk6n\nMX/BwTIj2Gg87aK14ITmUTNmzGDbtm2kpKRw6NAhcnJyuO6661jnokhIi/LG09MlktazZ6ebtdap\n8t/T0iTC2MLn5HIaSkvF+52c7NI5YE6jQ6eDo0ehW7cOSW9y+n7YbHDggNByihFezkK73AuHAw4d\nEuUtMdElTpN2oyMlRQxbF9DhMhra+Vy1pca2M9XhdqjMKCyUiG3Pnm1KG66loQN4izNxyr2oeV49\neoiC2AlxUhocDkhNlT1KTu70TuUW34sa/q9UQlJSp6GvU+mENSgpgawsOcfNmAnfbjQ4HGIwKhQu\n2UOn0aHXy1mLi2v34ECbacjJER28V68OnXncGjrabNj279+fZcuWMX78eJYuXQrAZZddxu4m0ov2\n7dvHnXfeiUqlonfv3nz00Ue1v8vNzWXSpEmYTCZeeOEFxo8f33DBnfHytwJnAh1nAg3gpqMz4Uyg\nAc4MOs4EGsBt2HYmnAk0wJlBx5lAA7jp6Ew4E2iAM4OOM4EGaB0dbQpjLl68mJSUFBITEzly5AgJ\nCQlceOGFp3xdjx49WLduHWvXrsVkMrFjx47a37388su8+OKLLF++nJkzZ7ZleW644YYbbrjhhhtu\nuOGGG278A9Cm+PLTTz/Ngw8+yBdffIFWq+Wqq65i1qxZPP30001/aL2wtsFgIDAwsPb/e/fuZeTI\nkQBotdraLsn1MWPGjNp/jx07lrFjx7aFDDfccMMNN9xwww033HDDDTdOY7TJsNVoNPz6668EBATw\nr3/9C4VCgZ+fX22H46awePFinnrqKYYMGdKg0VT9GbgBAQGUl5c3adi64YYbbrjhhhtuuOGGG264\n8c9Gm1KRg4KC6NevH4MGDSI3Nxez2UxkM7voTZw4kT179qDValmxYkXdguo1L9LpdASdaTPU3HDD\nDTfc6IRQo1AoGny54YYbbrjhhhunD9oUsV20aBEDBw7kyJEjhISEoNFoCAgIoF+/fk02jzKbzXgc\nG4fi7++P2Wyu/V2/fv3YuHEjffv2RafT4efn15YluuGGG2644UYzYKVhoygAt3HrhhtuuOGGG6cL\n2mTY+vr6snz58pP+fuTIkWzYsOGEn//++++8+eabOBwOunbtykUXXcQDDzzAu+++y/Tp05kyZQoG\ng4EXXnihLctzww033HDDDQwGAzt37uzoZbjhhhtuuOGGGy5Em8f9NIWBAwc26HjsDLishfWmTfDL\nLzByJFxyictnm7VrK+5162DpUhgzBiZMcNrbtpoGhwN+/hm2b4erroKBA522ptbA6Xuh18PXX0NF\nBdx6K0RFOe+9m4BT6aiogC+/lFmG06a12ww2l96LAwdg7lyZyXf99TLH1kVwCR3tfK5cQoPNBvPm\nyfzdG2+UuaguhkKh4IsvvuCee57Ayyux9ucVFRs5fpRP4xHbM2TcT3k5fPUV2O0wdWq7z1UEJ9Cw\nZQssXgxDh8Lll3fYDNJm0WE2w6xZMg/yllsgPr59FtdMNEnD/v3CK3v1El7Zgvn27Y02nalDh+D7\n72UW6o03ulQmnAodNp5lzRpYsQLOO0++2gCX0rBnDyxYAH36wDXXuPRMuoSOHTvgp59g0CC44orT\n18aw2+GHH2DvXrjuOtkPF6Ldx/20Fps2bWLUqFGce+65PPzwww1+N2PGDAYMGMC4ceN466232mdB\ndjt89hlUV8vFKSlpn89tD5jN8MUXQtvs2aIUdzTy8mDRItDp4PPPO3o1zsf27eJMOHRInCWnI/76\nC7Ztg927YeXKjl6Nc/Dtt1BcDMuWQVpaR6+m5dix4/Q/V0ePyvMvKpL9aCdYrVaUyiuoqNhQ+/WP\nQ82d3rULVq3q6NW0HA6HyIvKSlEQCws7ekVNY98+WL0asrPFmXM64ZtvRA/6/ffTk1c2F7NmQUEB\nLF8Ohw939GraHwaD7HV1tTyL6uqOXtHJ8eWXUFYGv/4KWVkdvZqW4/PPRf9etAhyczt6Na1HZqbs\nQWmpOEo7ITrEsE1ISGDVqlX89ddfFBYWsnfv3trfKRQK3njjDVatWsVDDz3UPgtSKKBrV9mokBA4\nk+p61WqIixPaIiLAx6ejVwT+/hAYKEwqMfHUf3+6ISICPD0lOpWQ0NGraR1iYsR7rVBAbGxHr8Y5\n6NpVlGI/vw6JVrUZ4eF156qTRX+ajeBg8PWFqiro1q2jV/PPQnS0yAOFQu736QaFQuRFWRkEBcFx\n0xI6HcLCwMsLjEbhPacTunWr45VncgPPbt3EmPP1Fd3vnwYPD+EFpaWSAeTp2dErOjkSE8UwrNEf\nTzckJkrWTECAfJ2uCAwU3qvTdVoZ3uGpyFOnTuXxxx+n57GUtOeff55ffvmFoKAgXn/9dfr3799w\nwQoFzz33XO3/2zTH1mKRKIi/vyiKR4+KEt8Oh65d006qq8XrGhcntDaFnBzIyJD0glP8bZtoKCsT\nr1VS0smZaWqqRHb69wdv79Z9TjPgkr3IzpbU0e7dG6acOBwSBbXbhS4nptM4nY60NFlnt24NaTAa\nYedOUdyc7Jhw6b2wWMQrHx4OoaGtf48antFEGq3L6GjsXFmtsiZfX0kddFKKk8toSE+H9eth2DC5\n/y6GQqHgk08+4f/+bysGw6f1f8M/KhUZ5E47HGJoNXZOzGa526c4363FCTRkZ0sEoBnyBhDek5oq\nyngHKre1dBgMEgEPD29cycvLE2U2OblD01wbQ4O9MJlk34ODhbc4g1e2E1p1LywWodfLS2RwWJjQ\n2oHosFTkqirhyQkJdUGdkhIpF0lKatFzcSkNZrOcychIcUJUVUl6ckyM6LZOhEvoMJngyBFxMNZ3\nFrmIDpfuRUkJ5OcLrzjWCBidTtKT4+Od6jhtDR1tMmyrqqrw9vZGpVKRkpJCSkoKF198MRqNBoA9\ne/bQt2/fk75+9+7dPPnkkyxZsqT2Z2VlZQQFBXHkyBGmTZvG2rVrGy7YmZs1b56k9KnV8J//SO3d\nSWCzydnz9hYZ1Vbdsb2ZWFqaOOX69q07hydAp4PHHxdPbXIyPPtsk+/pKhry8yF/aza95z2LxmGG\nc8+Ff//b6Z9Tg3bdi/Xr4cMPsVgcHBl7O4FXjHNaqaQr6bBa5fz7+UH3VZ9KXY6XF8yYAV26OO1z\nOkq4Hz4s8qVfv1Pon3PnCs/QaODJJ+WeNIK20OFwSBYjQO/ezeA1P/8sJRQqFUyf7rSal7bQUFkJ\nBw+KnI6IOO6Xr78uSqWPD/zvfy5XnN2G7cmh18tZi4kRfYvvv5c0s1Oc79aiAQ0VFSJvqqpE9j7z\njFM/61QwmUQPCw1teQJELR0ffSTlAZ6e8MILLo+EGwyyX5GRbU+kabAXX30Ff/whysGzz7ZbhDkj\nQ6pD+vRpfbCwVfdiwQLhm2o1PPGEOATbCUajnLuIiIai81R01Ohw/frJ9XQZrFZ5JgUFYkC++moT\nSmNDNEVDeblU0SQmOik4/tpr4lRygRw5GR35+ZIF3auXExM7X3tNgh3e3k6l41TnyeGQ/TAYxC5o\ns9/thRdEkfLzg1deaZ6jshlozf1uU1fk0aNH8/fff1NWVsaFF17I0KFDmTdvHrNnzwZo0qgtLS3l\n/vvvZ8GCBQ1+XjO3NslFnnyrVeR2ZSVcVVSGj0olP6yqOvGPTSbJi09L4+/EaXy27qxa3bF37yY+\nxGIRBTg3F26+2XWpnCYTfPqpSIfbb2/gYXdU6zn07CzKcgx43DaZ9+eEYDbDBRfAlCkneT+jUU65\nn5/z64wdDnnwO3bAlVeyrqIPBw7Ieuo7qXQ6uR8Dti8nNnU9of1iRPJ1RhQWSl2Kvz+Omyexbrs3\nBw/ChRfWE1iZmfDxxxJduPtuUeYcDlIOKViRX87hPfDSS+2cmVJeLutWqWDyZLIrtPz+u+iW5/ju\nQDH7OzlLU6eK4AeWLJF+AWo1vBpcSrinp5zzxu5NR6CyUmiy2WDy5AbRHIdD7PDUVLj44mMKPMi9\n//prSv7ez6ySSRwNGMQ110hfh5OitFS0ipPxDCdg/Xo5Mhqrgec8XyI+bQ3861/wwAO1+9GAj1Uc\n42M2W6fZjzffBOX6vxlV8CMB10TjhQnOOguuuIKy1BLyM70J1ZoJ0+s7eqlnNkpLcXzwIUdTLGwe\nfDfjboyk/qj5Dz8U3dDXV/hQUFlZy8/3cby92Y4Vo1FkWFvljd0O778vxsro0WKYNcNKmjVLSmC9\nvOD55xvapBaLkFRVBRMnNqGjlZbKZ1ksTdcn5ubCd9+JNXPjjaLIzp4tz+rWW5utVX7+OWzeLDrw\niy+KTr94sdgdl13WhkzS+nQcv+9FRfKw/PyEt+7YIc968GC46aZWZx0tXAhvvCHB0ssvlx6F7Yby\ncuGlx/NMg0H2qbJSaK2qgk8+kUXedRf4+mIyiTw0m+Vs+Pq27KO/+AI2bpRz9+KLzQuIZmTAzJly\nXS66CCZNOvVrqquPOxseDtm3devg/PPFQmtEXmKzyfPRaoV+i6XZhu3JYLfDyy/LNQgJkX+35KxW\nVMCqT1Lot/o94pWZqC67RM6lj49sRDvIkRrdtLJSRNl//tPEHzscUku7bx/miVfz65Ge2HPzuSzr\nIzz9NHDPPXXlUCUlcqHbiY4a7NsnNrXNJizp0ktP8YL168X5NW6cRPc/+kgY4z33yPeiIsosvhTs\nMmLdaqTPec4xbFuDNhm2DocDHx+fYx0n72H69OknpA43BqvVyqRJk3j99dcJP+5WV1ZWotVqKS4u\nxmq1tmV5jWLbNgnUqlSgGnYNN56tEA/Jcevetw/WfXyIS/ZvIqanFv9l81EFzMBqlTvfJPbtk2YE\nnp7yYY884nQ6AAmJbNkiAufHH+Gpp2p/lb94EyUL12JXqtlfGIolZhKenqfotxEeju7aaez4cie5\n/S/m8ioneqXy8sQy8vOj6s1P+cz+Lmq1OHheeaXuz6qrwVRppk/pWvYrepN4OAf1s1dxfNCnU2Dx\nYnG9ms0UhfXm85/PRqWSjPb//U+Y+L7/+5X40iISozNR7dolnalLSthRYCWz6wT0euFl7WrY/vGH\naEcOB8TH8/LSS9m0SQT0oh7fE+BllUYzY8dKqgnivFWrRcZlj7+F8IyFYr03keXQrli7VhivQiGW\n69VX1/4qPV0EUkWF6GTvv1/vF3/9hdkUyPAj35M5fBBFRaf4nOuuE+YRGiqucxegrEy2Jqp0H8od\nv1CsMOJfNhuP88+v/czt22H+fNEpFcOv4OZzrXKIBg1yyZpaAodDPNs3Z31LpcIf5axvOBI2BOPP\nhwmPGciHhn+TbFtCjrUn03y68A+sbGs/bNxI5dYUcvaqqcj6k6+MNzVQyPLz5d4bjaLDBl1/vVz0\nsLDas7Znj+hoQ4aI0+6EDIJ6vJ1PPoH33mve2iIixKjbtUsmEbQWOTliJFZVieL+r39JmnsTyM2V\nJRsMwsZ0uoaG7bZtcr9q7M2TGhK33ioPJyGhllc2igULJLVz927xis+ZIxdl7VpRFJuoVTMY6sjL\nzBQd2GQSBXvNGjHAHQ7Jbmx1U9tJk8TSjIoSrb0+liyRdVss4vCcM0cMimNKbkpVDD/+KGRNnNi8\nbLbcXOlZlJ8vdOTnt3LdrcVVV8n3oCAYMKDu59u2ibdDo5HMnMpKMfqzs+UijBjBunWyHxkZ8Pff\n4sRriZGWny97aDTKuWuOYVtRIXvu4dH8Z7V0qQSljx6VYzbz/0rQ/vab3O1335XvKpUc/JrnAULM\n/ffLczjnnJZb7o3AahX7zd9faDGbW/bMPv4Ywt/8EkvVOkxhRnw0y2SN+/fLmXRi1tjJUF0tuppW\nKyyvSWRmYvtxIYdzfcla8Dnfdn2d8UV/kqPOpFsXq3g2anjeXXfJHWsnOmpQUSFXWqM5dR++qiID\nWY9+jslDS6+Ur/A8e7AohRkZkn01ejSWux9g+R1LyQwdQMr34bw9rOPaFbXJsAXYsGEDs2fP5osv\nvgDAbref8jULFixg69atTJ8+HYCXXnqJ77//nnfffZfHHnuMvXv3YrfbeaW+xeMkeHuLMmizgSYq\nFK5pPMX144/BVx9JSo6W4OAqEieOZZhBdMchQ07xIcHBwoFMJtc23omMlJNTXX2CMNJEheFQqXFY\nHfgmRTJxggiTa69t+i2XVo1mic9o7CkQvE4UGadAq5WvigoUiX3RZIvAPr7/R2Qk3DBZQ+nRHnjr\nD7IteALp27rzwBgnrcOZiI4+dpA0qCNCUKtFWNV49xcsAKOhJ56ZmwgK8iYsNlYUgkmTGDoECpbA\nJf1pEEFpF0RGivahVEJEBAcPijFVXg6F5/QhIOtPEfj1JO5VVwkTDAqCPhOiwOOedl70KRAeLkLa\n4TjhgZaU1DVRrNenTgR7UBDhJWUEjx7LkL4ScGoSoaEuTYsH8Sfk50PJnmjKdwThoU8n1xxHQr2G\nVzWlYTYbeEQEwbV3uHRNLYFCAffdB/l5fRig34ahIpKCbDMmr0DWrwrAEhPMb9b78PMDTdsCAW6c\nCl27ovTSoFTYyfZKIvI4fnvXXaL89ulzTFQpTjzfH30kV2vuXLEBTuBXNby9vLzlzp4xY+SrLQgO\nFiO5qEi+NyPPcf58keVFRULT8f65+verSb0+JkYiFqdCbCxs3Sp6QUiIPPDVq4WhniL1cMsW+PNP\neelZZ4nfoXt3yRZOSRGWB220PyIi5DA0huhoCbmp1bLWPn3EMRoeDkFBfP62qCApKRIfaE6/RA8P\neavoaDk6J80icxVCQuCORnhmSIho+jabLE6pFC+ij0+t58PHR+RJWZnYVTt3wvDhzf/o226Tpt5J\nSc1vUdG7t/hrmqPD1cDXVwyw4mLZm9Xb/bk8KkrepFevugjNCbUiyEY2I0jVXHh4SMLaH39IZVlL\n+75t3gx97XH0sflis+jl8Awc2ObxRC1BZKQkYO7aJRHwJuHvT4nRl6K0So769iQrC/JCuqOxLpfz\nVT/VPyFBBGY7Y/BgyWDT6cQh1RTWbdZgqggnyJhHakAUZ/XqJYzJ27v2Xih7dGfziO4UFkKgd21y\nWYegTTW2a9as4Y033mDUqFE8/vjjpKam8s477/Duu+86c40N0NY6I4dDDqZeLwZqbYaF3S4uUa0W\nFApeffVYHYRnOc89WI5fry7CwUwm8QafateysoRxnHVWo2lGTquXKisT10t8/Amu0vQ/jlC08Qg9\neynRXjSqWZJv7VpJd1Io4MEHmw4AtZiGoiLxrvfowdE8bzIzRakIDHBIKM1olGdrMJCWoeST5/Mp\nUEVzydXezWbmrUGr98Jul9moPj7QtSupqbLtAweK0rRgASxe5CDCks39j3kRPyRMXnfokEicwYPF\nMaHXy3lqY7pPs+moKa5QKiEpiffftrDo+yqCQxS887mWSEuWCHgn1Ug0CYulLh2RNs5GPnJE9uS4\nIviyMrj3Xjl+558vZX21yM6W6PTgwSJgLBaneKidcb/T0uCd+48QlbuV3jcP4LJH6pUaHOtBVl19\nHB+rD71eeE8r8xPbRENamuR+h4Zy1BbH1y9kUaKJ5PybIxgzRtberdtxvTKO48HOwj+6xlavh2XL\nSC3yIztpHEOGq1t8vF96SdhcQID8u1EvfHGx3KUePZps9OeyGvqKCkmxjIkR4/r4hn315Ytazfz5\ndaXyzzxzYkmpwyHi3mCQkbnH1zS2mI70dNHqe/aEUaPkrGdkiIJ+Cj67f7+UOdpsElit72y2WsVe\n1mhE7rQkK7jZNJSVSTQ3IkKiTDabhI7Dw8HPj3ffFR1Xq5V02eY2nD96VN6mRl62Fk45Uw6HRGfV\najkYnp6SH61UilCv1zXZboe33pLRr5GRkijXVLC+XemoB6tVJuQsWiR7cu+9MKKfXnQPi0UOTo8e\ndZGaqirRZdpQbOmq+/3BB7D0ZxO97Pt44jEbIZEa0a+bOjwGg/ABL68Wf54z6MjYUsiX/8sjU5lA\nz9AiRl/oy9DBdtSeqqajGSaT3LE2TjBx5l5s3w6fvKYjrPIoF9/TlVEX+8OGDRK1HTu2thlWYaEk\nrPboUa/kqzFYrY1HtpxEh0u7Ip8MmzZt4uGHH0apVDJ06FDefPPN2t/l5uYyadIkTCYTL7zwAuPH\nj2+4YFdcHJsN3nlHJNnYsTBtGnq9eLliYyWww+bN8jcOh9SVnNJl0zTapUnOgQPifc/KEuY1e/Yp\njSeHQzKcVaoTG/oeD6fRsGULvP22fHjPniLxYmLInPQk5RZfevd2bbFiN9gAACAASURBVENJV+2F\nzSaXPCCgXnOSnBzRpGocJKNHC9f285Oijca8p81Ea+kwf/kd+xfsI8xPT8zMe9ovvbiiQoqMiosl\npW/0aJftRUFBnaO6gZx7+WVJMVMoZA8sFrkzp0hlPBWcQkdJCRn3vkpFpZLew/1QPfvUqV9Tg337\n5E55eUkjkFY0tWk1DaWl8pl6fW0TuvT0utqkRu+yzSY5fXv2iBf+1ltb/rknwT/asP34Ywm1ZmeL\ne/6VV1qsMNXIwi5d2t7XxGVyz2aT875rl6T2Tp1a97v68uWY7G6UN7cALaKjqgoefVTSXA0GifDe\nfXeLnDepqWKX9+rlvEb6zaLhwAGJJmVlSaT2+eel00w9GI3yZ9HRbRJfrYZTztSXX0oE3WoVy9XD\nQ5qnnaQzuM0mDget1nkT/VxxNxwOubsKRT1/byP8mcWLpZwtIUH0kFYYg66iASR1ef9+8aVEa4pk\njTVdj5544sQXHDkiBaRKpTTFaWEzNGfRkZEBFS99SG/dBlRaH+G/TXVzz8sT76FeLz012lDu5My9\ncDikbNBmkyuhqCiXCEF1taQdPP9889/MYBAaMzPhmmtOaUu1ho42sciUlBTuuOMOJkyYwLhx4xg3\nbhznNSM1oKk5ti+//DIvvvgiy5cvZ+bMmW1ZXgNYrfIcDYa6n2Vny2Y5ysrFqI2Lg99+g6wsfHzE\nGRR2LMiGwSC7q1R27iHWIAZDaqoI1Lw88TZmZTVroH1VlThoa0aYtgfs1QYOVkSSZwoW4R8SAjk5\nxJHZsEttbi62zJwT9rGzwWyG/butlO9Io198RUPFyWg8lj/qIZr+unXorRqMuSUSRW1nZGdDeqaS\n/mG5xHiVyvqOobISsrMcODIyxTJ0NtLSJOdWqxWlwoWIiJCvjAyw641y8Q0GOfBeXnLoi4rk33/9\n1eC11dVyfZpRZeFcmM3EexXQL6oIVbWu0T8pKnSwf2Ue5sx8cnIkrQiQGh6FQrzaBw+235pBLoDZ\nLM8yNxdyc0lIEB3EahWDoqys4UtsRaVUbdqLJTpOzoLN1r5rPlNRVSXn2sPj2GVPx7A3lcx9lTSn\nhYVeL9c0MbGDp74UF0vU82QKTlmZpAHExUnh6THi7HbISLOzo7SLyJdjslulEp2xXcZBZ2eL7K2o\nkDuxYUOTAszhkGDa1q115CYmSjqqE6fDNQ29XnjkunXyLK1Wecb15EMNvLxEV6oxaisr5Y7XV5Ma\n0786DCUldWOvQBa3Zo2cndRU+bnd3iitdruI6fx84Wf1jVqHQ9hdRUX7kNEYSkrq1LyiInE4JCaK\nr7pWn6vPnysr5WcrV9YJyK1bm1FE6jocf1ZycmS7+vU7FgU0meSPvLyEyCNHxCFdH9u2yc9qxnG1\nM0pK5JqrVNDP+zAqXy955mVlsl6zufEXHjokjge1WnqGdDDsdti0SVhr9+71pgnWnCFv7zqlw+EQ\nHn2qZq/Z2XLOwsKkxsIFaFMW9LXXXsvdd9/N7bffjqoFIbWIem49jUaDul5a7969exk5ciQAWq22\ntplUm2Ay8eNz+1ifGoFv9xiee06e68svg9VoYXLAaiZkZckOqtVwyy1Sf3HDDXLxDQYyokfyLWHE\n+OiYNKEPna00LDtbmjGE+xuYsvpuPLNTJXH+uutg2TJh2jUdJzZvFuVRqZTIyDFvlsUizq8VK8Sp\n//bbEsB2JVasgE8/OpvKnYF0MaYy84bdRJSmi8TQasVNl50Nq1bBtm18VnkTG0IuI7pvKM8912rH\notNgscDslzPJWnGQSVfq6frA5Xz+uYqNs9LwL0tn5rg/CZwyUXI5/P1FWF5yiTC4bt1ITVeRvWE3\nRk04CYqetFcrpr17pc/L3r0QG34Vk4qzufDoR5LT9sYblBHEm4/mojywjwHqvVzZfa8cDmfkXNWg\nWzdJiSgokLvmJOzcKTVMgwfXNTNJT3Mw844MzHnFXBO7iYmKX+Rzp02TsxYVJWespEQ0SKsV1Gqq\nquC554RXTxhtYtLAfaIAuHKsh80mmlNICNx5p0iV8nJ4+mmqrp3K138lYtKZuLrnPj75VEHO3lKC\nqrOpSOiP38i+PDtDRfg558g9Dwk5RQt3FyAyUqLeS5aIoH7iCbLPuYFvloSwK9UXTVgAPa37eKTb\nQnweugsGDuSzH4PxyxhEr5Tt9H30Ijw62czP0wYVFZI2qlJJNObyyyEvD/3WfWytHMDeJ9JJ31FO\ngTqGYfcN495HvMV4WbxYUmQvv1wujM2GIy+f1z4N52iGhogISTNtY7XEibBapeP |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment