Skip to content

Instantly share code, notes, and snippets.

@twmht
Created August 1, 2023 02:18
Show Gist options
  • Save twmht/506797e3fb68b637101f7f40239a91cd to your computer and use it in GitHub Desktop.
Save twmht/506797e3fb68b637101f7f40239a91cd to your computer and use it in GitHub Desktop.
[10:15:26] /home/acer/tvm/src/relay/transforms/convert_layout.cc:99: Warning: Desired layout(s) not specified for op: nn.max_pool2d
[10:15:27] /home/acer/tvm/src/relay/transforms/convert_layout.cc:99: Warning: Desired layout(s) not specified for op: nn.global_avg_pool2d
[10:15:35] /home/acer/tvm/src/relay/transforms/to_mixed_precision.cc:491: Warning: Op "layout_transform" not registered FTVMMixedPrecisionConversionType appears 2 times in graph.
2023-08-01 10:15:50 [INFO] Logging directory: /home/acer/test_meta_tensorcore_vgg16/logs
2023-08-01 10:15:51 [INFO] LocalBuilder: max_workers = 6
2023-08-01 10:15:51 [INFO] LocalRunner: max_workers = 1
2023-08-01 10:15:51 [INFO] [task_scheduler.cc:159] Initializing Task #0: "fused_nn_conv2d_add"
Traceback (most recent call last):
File "test_meta_scheduler.py", line 79, in <module>
database = ms.relay_integration.tune_relay(
File "/home/acer/tvm/python/tvm/meta_schedule/relay_integration.py", line 352, in tune_relay
return tune_tasks(
File "/home/acer/tvm/python/tvm/meta_schedule/tune.py", line 118, in tune_tasks
task_scheduler.tune(
File "/home/acer/tvm/python/tvm/meta_schedule/task_scheduler/task_scheduler.py", line 132, in tune
_ffi_api.TaskSchedulerTune( # type: ignore # pylint: disable=no-member
File "tvm/_ffi/_cython/./packed_func.pxi", line 331, in tvm._ffi._cy3.core.PackedFuncBase.__call__
File "tvm/_ffi/_cython/./packed_func.pxi", line 276, in tvm._ffi._cy3.core.FuncCall
File "tvm/_ffi/_cython/./base.pxi", line 181, in tvm._ffi._cy3.core.CHECK_CALL
tvm.error.InternalError: Traceback (most recent call last):
11: TVMFuncCall
10: _ZN3tvm7runtime13PackedFunc
9: tvm::runtime::TypedPackedFunc<void (tvm::meta_schedule::TaskScheduler, tvm::runtime::Array<tvm::meta_schedule::TuneContext, void>, tvm::runtime::Array<tvm::FloatImm, void>, int, int, int, tvm::meta_schedule::Builder, tvm::meta_schedule::Runner, tvm::runtime::Array<tvm::meta_schedule::MeasureCallback, void>, tvm::runtime::Optional<tvm::meta_schedule::Database>, tvm::runtime::Optional<tvm::meta_schedule::CostModel>)>::AssignTypedLambda<tvm::runtime::Registry::set_body_method<tvm::meta_schedule::TaskScheduler, tvm::meta_schedule::TaskSchedulerNode, void, tvm::runtime::Array<tvm::meta_schedule::TuneContext, void>, tvm::runtime::Array<tvm::FloatImm, void>, int, int, int, tvm::meta_schedule::Builder, tvm::meta_schedule::Runner, tvm::runtime::Array<tvm::meta_schedule::MeasureCallback, void>, tvm::runtime::Optional<tvm::meta_schedule::Database>, tvm::runtime::Optional<tvm::meta_schedule::CostModel>, void>(void (tvm::meta_schedule::TaskSchedulerNode::*)(tvm::runtime::Array<tvm::meta_schedule::TuneContext, void>, tvm::runtime::Array<tvm::FloatImm, void>, int, int, int, tvm::meta_schedule::Builder, tvm::meta_schedule::Runner, tvm::runtime::Array<tvm::meta_schedule::MeasureCallback, void>, tvm::runtime::Optional<tvm::meta_schedule::Database>, tvm::runtime::Optional<tvm::meta_schedule::CostModel>))::{lambda(tvm::meta_schedule::TaskScheduler, tvm::runtime::Array<tvm::meta_schedule::TuneContext, void>, tvm::runtime::Array<tvm::FloatImm, void>, int, int, int, tvm::meta_schedule::Builder, tvm::meta_schedule::Runner, tvm::runtime::Array<tvm::meta_schedule::MeasureCallback, void>, tvm::runtime::Optional<tvm::meta_schedule::Database>, tvm::runtime::Optional<tvm::meta_schedule::CostModel>)#1}>(tvm::runtime::Registry::set_body_method<tvm::meta_schedule::TaskScheduler, tvm::meta_schedule::TaskSchedulerNode, void, tvm::runtime::Array<tvm::meta_schedule::TuneContext, void>, tvm::runtime::Array<tvm::FloatImm, void>, int, int, int, tvm::meta_schedule::Builder, tvm::meta_schedule::Runner, tvm::runtime::Array<tvm::meta_schedule::MeasureCallback, void>, tvm::runtime::Optional<tvm::meta_schedule::Database>, tvm::runtime::Optional<tvm::meta_schedule::CostModel>, void>(void (tvm::meta_schedule::TaskSchedulerNode::*)(tvm::runtime::Array<tvm::meta_schedule::TuneContext, void>, tvm::runtime::Array<tvm::FloatImm, void>, int, int, int, tvm::meta_schedule::Builder, tvm::meta_schedule::Runner, tvm::runtime::Array<tvm::meta_schedule::MeasureCallback, void>, tvm::runtime::Optional<tvm::meta_schedule::Database>, tvm::runtime::Optional<tvm::meta_schedule::CostModel>))::{lambda(tvm::meta_schedule::TaskScheduler, tvm::runtime::Array<tvm::meta_schedule::TuneContext, void>, tvm::runtime::Array<tvm::FloatImm, void>, int, int, int, tvm::meta_schedule::Builder, tvm::meta_schedule::Runner, tvm::runtime::Array<tvm::meta_schedule::MeasureCallback, void>, tvm::runtime::Optional<tvm::meta_schedule::Database>, tvm::runtime::Optional<tvm::meta_schedule::CostModel>)#1}, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> >)::{lambda(tvm::runtime::TVMArgs const&, tvm::runtime::TVMRetValue*)#1}::operator()(tvm::runtime::TVMArgs const&, tvm::runtime::TVMRetValue*) const [clone .isra.0]
8: tvm::meta_schedule::GradientBasedNode::Tune(tvm::runtime::Array<tvm::meta_schedule::TuneContext, void>, tvm::runtime::Array<tvm::FloatImm, void>, int, int, int, tvm::meta_schedule::Builder, tvm::meta_schedule::Runner, tvm::runtime::Array<tvm::meta_schedule::MeasureCallback, void>, tvm::runtime::Optional<tvm::meta_schedule::Database>, tvm::runtime::Optional<tvm::meta_schedule::CostModel>)
7: tvm::meta_schedule::TaskSchedulerNode::Tune(tvm::runtime::Array<tvm::meta_schedule::TuneContext, void>, tvm::runtime::Array<tvm::FloatImm, void>, int, int, int, tvm::meta_schedule::Builder, tvm::meta_schedule::Runner, tvm::runtime::Array<tvm::meta_schedule::MeasureCallback, void>, tvm::runtime::Optional<tvm::meta_schedule::Database>, tvm::runtime::Optional<tvm::meta_schedule::CostModel>)
6: tvm::meta_schedule::SpaceGeneratorUnionNode::GenerateDesignSpace(tvm::IRModule const&)
5: tvm::meta_schedule::PostOrderApplyNode::GenerateDesignSpace(tvm::IRModule const&)
4: tvm::meta_schedule::MultiLevelTilingTensorCoreNode::Apply(tvm::tir::Schedule const&, tvm::tir::BlockRV const&)
3: tvm::meta_schedule::MultiLevelTilingTensorCoreNode::ApplySubRules(std::vector<tvm::meta_schedule::State, std::allocator<tvm::meta_schedule::State> >)
2: tvm::meta_schedule::MultiLevelTilingTensorCoreNode::TransformForTensorization(tvm::meta_schedule::TensorCoreState) const
1: tvm::meta_schedule::MultiLevelTilingTensorCoreNode::TransformWithTensorIntrin(tvm::meta_schedule::TensorCoreStateNode*, tvm::runtime::String const&) const
0: tvm::tir::TileWithTensorIntrin(tvm::tir::Schedule const&, tvm::tir::BlockRV const&, tvm::runtime::String const&, bool)
File "/home/acer/tvm/src/tir/schedule/transform.cc", line 321
InternalError: Check failed: original_producers.size() == 1u (0 vs. 1) :
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment