Created
January 18, 2021 05:56
-
-
Save twmht/acafbfcc25d3d813d9506c5089f139b5 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
'''Train CIFAR10 with PyTorch.''' | |
import torch | |
import torch.nn as nn | |
import torch.optim as optim | |
import torch.nn.functional as F | |
import torch.backends.cudnn as cudnn | |
import torchvision | |
import torchvision.transforms as transforms | |
import os | |
import argparse | |
from models import * | |
from utils import progress_bar | |
parser = argparse.ArgumentParser(description='PyTorch CIFAR10 Training') | |
parser.add_argument('--lr', default=0.1, type=float, help='learning rate') | |
parser.add_argument('--ngpu', default=4, type=float, help='learning rate') | |
parser.add_argument('--local_rank', default=0, type=int, help='learning rate') | |
parser.add_argument('--resume', '-r', action='store_true', | |
help='resume from checkpoint') | |
args = parser.parse_args() | |
world_size = args.ngpu | |
torch.distributed.init_process_group( | |
'nccl', | |
init_method='tcp://localhost:12355', | |
world_size=world_size, | |
rank=args.local_rank, | |
) | |
# seed = 133 | |
# random.seed(seed) | |
# np.random.seed(seed) | |
# torch.cuda.manual_seed_all(seed) | |
# torch.backends.cudnn.deteministic = True | |
# torch.backends.cudnn.benchamrk = False | |
device = 'cuda' if torch.cuda.is_available() else 'cpu' | |
best_acc = 0 # best test accuracy | |
start_epoch = 0 # start from epoch 0 or last checkpoint epoch | |
# Data | |
print('==> Preparing data..') | |
transform_train = transforms.Compose([ | |
transforms.RandomCrop(32, padding=4), | |
transforms.RandomHorizontalFlip(), | |
transforms.ToTensor(), | |
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)), | |
]) | |
transform_test = transforms.Compose([ | |
transforms.ToTensor(), | |
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)), | |
]) | |
trainset = torchvision.datasets.CIFAR10( | |
root='./data', train=True, download=True, transform=transform_train) | |
# trainloader = torch.utils.data.DataLoader( | |
# trainset, batch_size=128, shuffle=True, num_workers=2) | |
sampler = torch.utils.data.distributed.DistributedSampler( | |
trainset, | |
num_replicas=args.ngpu, | |
rank=args.local_rank, | |
) | |
trainloader = torch.utils.data.DataLoader( | |
trainset, | |
batch_size=32, | |
num_workers=1, pin_memory=True, drop_last=True, shuffle=False, sampler=sampler) | |
testset = torchvision.datasets.CIFAR10( | |
root='./data', train=False, download=True, transform=transform_test) | |
testloader = torch.utils.data.DataLoader( | |
testset, batch_size=100, shuffle=False, num_workers=2) | |
classes = ('plane', 'car', 'bird', 'cat', 'deer', | |
'dog', 'frog', 'horse', 'ship', 'truck') | |
# Model | |
print('==> Building model..') | |
# net = VGG('VGG19') | |
# net = ResNet18() | |
# net = PreActResNet18() | |
# net = GoogLeNet() | |
# net = DenseNet121() | |
# net = ResNeXt29_2x64d() | |
# net = MobileNet() | |
net = MobileNetV2() | |
# net = DPN92() | |
# net = ShuffleNetG2() | |
# net = SENet18() | |
# net = ShuffleNetV2(1) | |
# net = EfficientNetB0() | |
# net = RegNetX_200MF() | |
# net = SimpleDLA() | |
net = net.to(device) | |
# if device == 'cuda': | |
# net = torch.nn.DataParallel(net) | |
# cudnn.benchmark = True | |
# net = torch.nn.DataParallel(net) | |
if args.resume: | |
# Load checkpoint. | |
print('==> Resuming from checkpoint..') | |
assert os.path.isdir('checkpoint'), 'Error: no checkpoint directory found!' | |
checkpoint = torch.load('./checkpoint/ckpt.pth') | |
net.load_state_dict(checkpoint['net']) | |
best_acc = checkpoint['acc'] | |
start_epoch = checkpoint['epoch'] | |
criterion = nn.CrossEntropyLoss() | |
optimizer = optim.SGD(net.parameters(), lr=args.lr, | |
momentum=0.9, weight_decay=5e-4) | |
scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max=200) | |
# Training | |
def train(epoch): | |
print('\nEpoch: %d' % epoch) | |
net.train() | |
train_loss = 0 | |
correct = 0 | |
total = 0 | |
sampler.set_epoch(epoch) | |
for batch_idx, (inputs, targets) in enumerate(trainloader): | |
inputs, targets = inputs.to(device), targets.to(device) | |
optimizer.zero_grad() | |
outputs = net(inputs) | |
loss = criterion(outputs, targets) | |
loss.backward() | |
optimizer.step() | |
train_loss += loss.item() | |
_, predicted = outputs.max(1) | |
total += targets.size(0) | |
correct += predicted.eq(targets).sum().item() | |
if args.local_rank == 0: | |
progress_bar(batch_idx, len(trainloader), 'Loss: %.3f | Acc: %.3f%% (%d/%d)' | |
% (train_loss/(batch_idx+1), 100.*correct/total, correct, total)) | |
def test(epoch): | |
global best_acc | |
net.eval() | |
test_loss = 0 | |
correct = 0 | |
total = 0 | |
with torch.no_grad(): | |
for batch_idx, (inputs, targets) in enumerate(testloader): | |
inputs, targets = inputs.to(device), targets.to(device) | |
outputs = net(inputs) | |
loss = criterion(outputs, targets) | |
test_loss += loss.item() | |
_, predicted = outputs.max(1) | |
total += targets.size(0) | |
correct += predicted.eq(targets).sum().item() | |
progress_bar(batch_idx, len(testloader), 'Loss: %.3f | Acc: %.3f%% (%d/%d)' | |
% (test_loss/(batch_idx+1), 100.*correct/total, correct, total)) | |
# Save checkpoint. | |
acc = 100.*correct/total | |
if acc > best_acc: | |
print('Saving..') | |
state = { | |
'net': net.state_dict(), | |
'acc': acc, | |
'epoch': epoch, | |
} | |
if not os.path.isdir('checkpoint'): | |
os.mkdir('checkpoint') | |
torch.save(state, './checkpoint/ckpt.pth') | |
best_acc = acc | |
for epoch in range(start_epoch, start_epoch+200): | |
train(epoch) | |
if args.local_rank == 0: | |
test(epoch) | |
# torch.distributed.barrier() | |
scheduler.step() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment