Created
July 28, 2023 06:25
-
-
Save twmht/f38ff427edfab3fd457d01cfbfe8161e to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
[14:23:22] /home/acer/tvm/src/relay/transforms/convert_layout.cc:99: Warning: Desired layout(s) not specified for op: nn.max_pool2d | |
[14:23:22] /home/acer/tvm/src/relay/transforms/convert_layout.cc:99: Warning: Desired layout(s) not specified for op: nn.global_avg_pool2d | |
[14:23:31] /home/acer/tvm/src/relay/transforms/to_mixed_precision.cc:491: Warning: Op "layout_transform" not registered FTVMMixedPrecisionConversionType appears 2 times in graph. | |
2023-07-28 14:23:49 [INFO] Logging directory: /tmp/tmp_vfiw0j9/logs | |
2023-07-28 14:23:49 [INFO] LocalBuilder: max_workers = 6 | |
2023-07-28 14:23:49 [INFO] LocalRunner: max_workers = 1 | |
2023-07-28 14:23:49 [INFO] [task_scheduler.cc:159] Initializing Task #0: "fused_nn_conv2d_add" | |
Traceback (most recent call last): | |
File "test_meta_scheduler.py", line 72, in <module> | |
database = ms.relay_integration.tune_relay( | |
File "/home/acer/tvm/python/tvm/meta_schedule/relay_integration.py", line 352, in tune_relay | |
return tune_tasks( | |
File "/home/acer/tvm/python/tvm/meta_schedule/tune.py", line 118, in tune_tasks | |
task_scheduler.tune( | |
File "/home/acer/tvm/python/tvm/meta_schedule/task_scheduler/task_scheduler.py", line 132, in tune | |
_ffi_api.TaskSchedulerTune( # type: ignore # pylint: disable=no-member | |
File "tvm/_ffi/_cython/./packed_func.pxi", line 331, in tvm._ffi._cy3.core.PackedFuncBase.__call__ | |
File "tvm/_ffi/_cython/./packed_func.pxi", line 276, in tvm._ffi._cy3.core.FuncCall | |
File "tvm/_ffi/_cython/./base.pxi", line 181, in tvm._ffi._cy3.core.CHECK_CALL | |
tvm.error.InternalError: Traceback (most recent call last): | |
8: TVMFuncCall | |
7: _ZN3tvm7runtime13PackedFunc | |
6: tvm::runtime::TypedPackedFunc<void (tvm::meta_schedule::TaskScheduler, tvm::runtime::Array<tvm::meta_schedule::TuneContext, void>, tvm::runtime::Array<tvm::FloatImm, void>, int, int, int, tvm::meta_schedule::Builder, tvm::meta_schedule::Runner, tvm::runtime::Array<tvm::meta_schedule::MeasureCallback, void>, tvm::runtime::Optional<tvm::meta_schedule::Database>, tvm::runtime::Optional<tvm::meta_schedule::CostModel>)>::AssignTypedLambda<tvm::runtime::Registry::set_body_method<tvm::meta_schedule::TaskScheduler, tvm::meta_schedule::TaskSchedulerNode, void, tvm::runtime::Array<tvm::meta_schedule::TuneContext, void>, tvm::runtime::Array<tvm::FloatImm, void>, int, int, int, tvm::meta_schedule::Builder, tvm::meta_schedule::Runner, tvm::runtime::Array<tvm::meta_schedule::MeasureCallback, void>, tvm::runtime::Optional<tvm::meta_schedule::Database>, tvm::runtime::Optional<tvm::meta_schedule::CostModel>, void>(void (tvm::meta_schedule::TaskSchedulerNode::*)(tvm::runtime::Array<tvm::meta_schedule::TuneContext, void>, tvm::runtime::Array<tvm::FloatImm, void>, int, int, int, tvm::meta_schedule::Builder, tvm::meta_schedule::Runner, tvm::runtime::Array<tvm::meta_schedule::MeasureCallback, void>, tvm::runtime::Optional<tvm::meta_schedule::Database>, tvm::runtime::Optional<tvm::meta_schedule::CostModel>))::{lambda(tvm::meta_schedule::TaskScheduler, tvm::runtime::Array<tvm::meta_schedule::TuneContext, void>, tvm::runtime::Array<tvm::FloatImm, void>, int, int, int, tvm::meta_schedule::Builder, tvm::meta_schedule::Runner, tvm::runtime::Array<tvm::meta_schedule::MeasureCallback, void>, tvm::runtime::Optional<tvm::meta_schedule::Database>, tvm::runtime::Optional<tvm::meta_schedule::CostModel>)#1}>(tvm::runtime::Registry::set_body_method<tvm::meta_schedule::TaskScheduler, tvm::meta_schedule::TaskSchedulerNode, void, tvm::runtime::Array<tvm::meta_schedule::TuneContext, void>, tvm::runtime::Array<tvm::FloatImm, void>, int, int, int, tvm::meta_schedule::Builder, tvm::meta_schedule::Runner, tvm::runtime::Array<tvm::meta_schedule::MeasureCallback, void>, tvm::runtime::Optional<tvm::meta_schedule::Database>, tvm::runtime::Optional<tvm::meta_schedule::CostModel>, void>(void (tvm::meta_schedule::TaskSchedulerNode::*)(tvm::runtime::Array<tvm::meta_schedule::TuneContext, void>, tvm::runtime::Array<tvm::FloatImm, void>, int, int, int, tvm::meta_schedule::Builder, tvm::meta_schedule::Runner, tvm::runtime::Array<tvm::meta_schedule::MeasureCallback, void>, tvm::runtime::Optional<tvm::meta_schedule::Database>, tvm::runtime::Optional<tvm::meta_schedule::CostModel>))::{lambda(tvm::meta_schedule::TaskScheduler, tvm::runtime::Array<tvm::meta_schedule::TuneContext, void>, tvm::runtime::Array<tvm::FloatImm, void>, int, int, int, tvm::meta_schedule::Builder, tvm::meta_schedule::Runner, tvm::runtime::Array<tvm::meta_schedule::MeasureCallback, void>, tvm::runtime::Optional<tvm::meta_schedule::Database>, tvm::runtime::Optional<tvm::meta_schedule::CostModel>)#1}, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> >)::{lambda(tvm::runtime::TVMArgs const&, tvm::runtime::TVMRetValue*)#1}::operator()(tvm::runtime::TVMArgs const&, tvm::runtime::TVMRetValue*) const [clone .isra.0] | |
5: tvm::meta_schedule::GradientBasedNode::Tune(tvm::runtime::Array<tvm::meta_schedule::TuneContext, void>, tvm::runtime::Array<tvm::FloatImm, void>, int, int, int, tvm::meta_schedule::Builder, tvm::meta_schedule::Runner, tvm::runtime::Array<tvm::meta_schedule::MeasureCallback, void>, tvm::runtime::Optional<tvm::meta_schedule::Database>, tvm::runtime::Optional<tvm::meta_schedule::CostModel>) | |
4: tvm::meta_schedule::TaskSchedulerNode::Tune(tvm::runtime::Array<tvm::meta_schedule::TuneContext, void>, tvm::runtime::Array<tvm::FloatImm, void>, int, int, int, tvm::meta_schedule::Builder, tvm::meta_schedule::Runner, tvm::runtime::Array<tvm::meta_schedule::MeasureCallback, void>, tvm::runtime::Optional<tvm::meta_schedule::Database>, tvm::runtime::Optional<tvm::meta_schedule::CostModel>) | |
3: tvm::meta_schedule::PostOrderApplyNode::GenerateDesignSpace(tvm::IRModule const&) | |
2: tvm::meta_schedule::MultiLevelTilingTensorCoreNode::Apply(tvm::tir::Schedule const&, tvm::tir::BlockRV const&) | |
1: tvm::meta_schedule::MultiLevelTilingTensorCoreNode::ApplySubRules(std::vector<tvm::meta_schedule::State, std::allocator<tvm::meta_schedule::State> >) | |
0: tvm::meta_schedule::MultiLevelTilingTensorCoreNode::MMATileLoopNest(tvm::meta_schedule::TensorCoreState) const | |
File "/home/acer/tvm/src/meta_schedule/schedule_rule/multi_level_tiling_tensor_core.cc", line 347 | |
InternalError: Check failed: (loops.size() == 3 || !state->is_mma) is false: The MMA tensor core only supports SSR loops now |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment