Created
February 17, 2023 05:58
-
-
Save twmht/f474e64ba70eb0dc87f83140415b4ced to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
_base_ = [ | |
'mmcls::_base_/datasets/cifar10_bs16.py', | |
'mmcls::_base_/schedules/cifar10_bs128.py', | |
'mmcls::_base_/default_runtime.py' | |
] | |
architecture = dict( | |
type='mmcls.ImageClassifier', | |
backbone=dict( | |
type='mmcls.ResNet_CIFAR', | |
depth=50, | |
num_stages=4, | |
out_indices=(3, ), | |
style='pytorch'), | |
neck=dict(type='mmcls.GlobalAveragePooling'), | |
head=dict( | |
type='mmcls.LinearClsHead', | |
num_classes=10, | |
in_channels=512, | |
loss=dict(type='mmcls.CrossEntropyLoss', loss_weight=1.0), | |
)) | |
model = dict( | |
_scope_='mmrazor', | |
type='OverhaulFeatureDistillation', | |
data_preprocessor=dict( | |
type='ImgDataPreprocessor', | |
# RGB format normalization parameters | |
mean=[125.307, 122.961, 113.8575], | |
std=[51.5865, 50.847, 51.255], | |
# convert image from BGR to RGB | |
bgr_to_rgb=False), | |
# architecture=dict( | |
# cfg_path= # noqa: E251 | |
# 'mmrazor::vanilla/mmcls/wide-resnet/wrn16-w2_b16x8_cifar10.py', | |
# pretrained=False), | |
architecture = architecture, | |
teacher=dict( | |
cfg_path= # noqa: E251 | |
'mmrazor::vanilla/mmcls/wide-resnet/wrn28-w4_b16x8_cifar10.py', | |
pretrained=False), | |
teacher_ckpt= # noqa: E251 | |
'https://download.openmmlab.com/mmrazor/v1/wide_resnet/wrn28_4_b16x8_cifar10_20220831_173536-d6f8725c.pth', # noqa: E501 | |
calculate_student_loss=True, | |
student_trainable=True, | |
distiller=dict( | |
type='OFDDistiller', | |
student_recorders=dict( | |
bb_1=dict(type='ModuleOutputs', source='backbone.layer1.2.bn3'), | |
bb_2=dict(type='ModuleOutputs', source='backbone.layer2.3.bn3'), | |
bb_3=dict(type='ModuleOutputs', source='backbone.layer3.5.bn3'), | |
), | |
teacher_recorders=dict( | |
# 32, 16, 8 | |
bb_1=dict(type='ModuleOutputs', source='backbone.layer2.0.bn1'), | |
bb_2=dict(type='ModuleOutputs', source='backbone.layer3.0.bn1'), | |
bb_3=dict(type='ModuleOutputs', source='backbone.bn1')), | |
distill_losses=dict( | |
loss_1=dict(type='OFDLoss', loss_weight=0.25), | |
loss_2=dict(type='OFDLoss', loss_weight=0.5), | |
loss_3=dict(type='OFDLoss', loss_weight=1.0)), | |
connectors=dict( | |
loss_1_sfeat=dict( | |
type='ConvModuleConnector', | |
in_channel=32, | |
out_channel=64, | |
norm_cfg=dict(type='BN'), | |
act_cfg=None), | |
loss_1_tfeat=dict(type='OFDTeacherConnector'), | |
loss_2_sfeat=dict( | |
type='ConvModuleConnector', | |
in_channel=128, | |
out_channel=128, | |
norm_cfg=dict(type='BN'), | |
act_cfg=None), | |
loss_2_tfeat=dict(type='OFDTeacherConnector'), | |
loss_3_sfeat=dict( | |
type='ConvModuleConnector', | |
in_channel=128, | |
out_channel=256, | |
norm_cfg=dict(type='BN'), | |
act_cfg=None), | |
loss_3_tfeat=dict(type='OFDTeacherConnector')), | |
loss_forward_mappings=dict( | |
loss_1=dict( | |
s_feature=dict( | |
from_student=True, | |
recorder='bb_1', | |
connector='loss_1_sfeat'), | |
t_feature=dict( | |
from_student=False, | |
recorder='bb_1', | |
connector='loss_1_tfeat'), | |
), | |
loss_2=dict( | |
s_feature=dict( | |
from_student=True, | |
recorder='bb_2', | |
connector='loss_2_sfeat'), | |
t_feature=dict( | |
from_student=False, | |
recorder='bb_2', | |
connector='loss_2_tfeat'), | |
), | |
loss_3=dict( | |
s_feature=dict( | |
from_student=True, | |
recorder='bb_3', | |
connector='loss_3_sfeat'), | |
t_feature=dict( | |
from_student=False, | |
recorder='bb_3', | |
connector='loss_3_tfeat'), | |
), | |
))) | |
find_unused_parameters = True | |
val_cfg = dict(_delete_=True, type='mmrazor.SingleTeacherDistillValLoop') |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment