Created
January 26, 2025 23:49
-
-
Save twobob/e788f403512810ede2cb70eb6bffb83c to your computer and use it in GitHub Desktop.
ideas for audio pipelines
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#Phase 1: Data Preprocessing & Label Refinement | |
#1. Scraping Audio from YouTube | |
from yt_dlp import YoutubeDL | |
# Download audio from YouTube | |
def download_audio(url, output_dir="audio"): | |
ydl_opts = { | |
'format': 'bestaudio/best', | |
'postprocessors': [{ | |
'key': 'FFmpegExtractAudio', | |
'preferredcodec': 'mp3', | |
'preferredquality': '192', | |
}], | |
'outtmpl': f'{output_dir}/%(title)s.%(ext)s', | |
} | |
with YoutubeDL(ydl_opts) as ydl: | |
ydl.download([url]) | |
# Example usage | |
download_audio("https://www.youtube.com/watch?v=example_video_id") | |
#2. Transcription with Whisper ASR | |
from transformers import WhisperProcessor, WhisperForConditionalGeneration | |
import torchaudio | |
# Load Whisper model | |
processor = WhisperProcessor.from_pretrained("openai/whisper-medium") | |
model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-medium") | |
# Transcribe audio | |
def transcribe_audio(file_path): | |
waveform, sample_rate = torchaudio.load(file_path) | |
inputs = processor(waveform.squeeze().numpy(), sampling_rate=sample_rate, return_tensors="pt") | |
predicted_ids = model.generate(inputs.input_features) | |
transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True) | |
return transcription[0] | |
# Example usage | |
transcription = transcribe_audio("audio/example.mp3") | |
print(transcription) | |
#3. fastText for Text Classification | |
import fasttext | |
# Train a fastText classifier | |
def train_fasttext_classifier(data_path, model_path="classifier.bin"): | |
model = fasttext.train_supervised(input=data_path, epoch=25, lr=1.0, wordNgrams=2) | |
model.save_model(model_path) | |
return model | |
# Example usage | |
train_fasttext_classifier("transcriptions.txt") | |
# Classify a new transcript | |
def classify_transcript(model_path, text): | |
model = fasttext.load_model(model_path) | |
return model.predict(text) | |
# Example usage | |
label, confidence = classify_transcript("classifier.bin", "This is a technical lecture about AI.") | |
print(f"Label: {label}, Confidence: {confidence}") | |
#Phase 2: Model Pre-training | |
#1. Preprocessing Audio with Librosa | |
import librosa | |
import numpy as np | |
# Extract MFCC features | |
def extract_mfcc(file_path, n_mfcc=13): | |
y, sr = librosa.load(file_path, sr=None) | |
mfcc = librosa.feature.mfcc(y=y, sr=sr, n_mfcc=n_mfcc) | |
return mfcc | |
# Example usage | |
mfcc_features = extract_mfcc("audio/example.mp3") | |
print(mfcc_features.shape) | |
#2. Pre-training Wav2Vec 2.0 | |
from transformers import Wav2Vec2ForPreTraining, Wav2Vec2Processor | |
import torch | |
# Load Wav2Vec 2.0 model | |
model = Wav2Vec2ForPreTraining.from_pretrained("facebook/wav2vec2-large") | |
processor = Wav2Vec2Processor.from_pretrained("facebook/wav2vec2-large") | |
# Preprocess and pre-train | |
def preprocess_and_train(file_path): | |
waveform, sample_rate = torchaudio.load(file_path) | |
inputs = processor(waveform.squeeze().numpy(), sampling_rate=sample_rate, return_tensors="pt") | |
outputs = model(**inputs) | |
return outputs | |
# Example usage | |
outputs = preprocess_and_train("audio/example.mp3") | |
#Phase 3: Fine-tuning & Evaluation | |
#1. Fine-tuning Wav2Vec 2.0 for ASR | |
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor | |
import torch | |
# Load model and processor | |
model = Wav2Vec2ForCTC.from_pretrained("facebook/wav2vec2-large-960h") | |
processor = Wav2Vec2Processor.from_pretrained("facebook/wav2vec2-large-960h") | |
# Fine-tune on custom data | |
def fine_tune_asr(file_path, transcription): | |
waveform, sample_rate = torchaudio.load(file_path) | |
inputs = processor(waveform.squeeze().numpy(), sampling_rate=sample_rate, return_tensors="pt", text=transcription) | |
labels = processor(inputs["text"], return_tensors="pt").input_ids | |
outputs = model(**inputs, labels=labels) | |
loss = outputs.loss | |
return loss | |
# Example usage | |
loss = fine_tune_asr("audio/example.mp3", "This is a transcription.") | |
print(f"Loss: {loss}") | |
#2. Evaluation on Validation Set | |
from sklearn.metrics import accuracy_score | |
# Evaluate ASR model | |
def evaluate_asr(model, processor, file_paths, transcriptions): | |
predictions = [] | |
for file_path in file_paths: | |
waveform, sample_rate = torchaudio.load(file_path) | |
inputs = processor(waveform.squeeze().numpy(), sampling_rate=sample_rate, return_tensors="pt") | |
predicted_ids = model.generate(inputs.input_features) | |
predictions.append(processor.batch_decode(predicted_ids, skip_special_tokens=True)[0]) | |
accuracy = accuracy_score(transcriptions, predictions) | |
return accuracy | |
# Example usage | |
file_paths = ["audio/example1.mp3", "audio/example2.mp3"] | |
transcriptions = ["This is the first transcription.", "This is the second transcription."] | |
accuracy = evaluate_asr(model, processor, file_paths, transcriptions) | |
print(f"Accuracy: {accuracy}") | |
#Hardware Stack Considerations | |
#1. Distributed Training with PyTorch | |
import torch.distributed as dist | |
from torch.nn.parallel import DistributedDataParallel as DDP | |
# Initialize distributed training | |
def init_distributed(): | |
dist.init_process_group(backend="nccl") | |
model = Wav2Vec2ForCTC.from_pretrained("facebook/wav2vec2-large-960h") | |
model = DDP(model) | |
return model | |
# Example usage | |
model = init_distributed() | |
#Points of Potential Disagreement or Further Refinement | |
#1. Fusion of Textual and Acoustic Features | |
from sklearn.ensemble import RandomForestClassifier | |
# Combine MFCC features and fastText embeddings | |
def combine_features(mfcc_features, fasttext_embeddings): | |
combined = np.hstack([mfcc_features.mean(axis=1), fasttext_embeddings]) | |
return combined | |
# Train a classifier on combined features | |
def train_combined_classifier(features, labels): | |
clf = RandomForestClassifier() | |
clf.fit(features, labels) | |
return clf | |
# Example usage | |
mfcc_features = extract_mfcc("audio/example.mp3") | |
fasttext_embeddings = model.get_sentence_vector("This is a transcription.") | |
combined_features = combine_features(mfcc_features, fasttext_embeddings) | |
clf = train_combined_classifier([combined_features], ["relevant"]) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment