|
#!/usr/bin/env python |
|
# coding: utf-8 |
|
|
|
import os |
|
import numpy as np |
|
import json |
|
import tensorflow as tf |
|
|
|
os.environ['CUDA_VISIBLE_DEVICES'] = '0' |
|
schema = "schema.fbs" |
|
binary = "flatc" |
|
model_path = "mediapipe/models/facedetector_front.tflite" |
|
output_pb_path = "facedetector_front.pb" |
|
output_savedmodel_path = "saved_model" |
|
model_json_path = "/tmp/facedetector_front.json" |
|
num_tensors = 176 |
|
output_node_names = ['classificators', 'regressors'] |
|
|
|
|
|
def gen_model_json(): |
|
if not os.path.exists(model_json_path): |
|
cmd = (binary + |
|
" -t --strict-json --defaults-json -o /tmp {schema} -- {input}". |
|
format(input=model_path, schema=schema)) |
|
os.system(cmd) |
|
|
|
|
|
def parse_json(): |
|
j = json.load(open(model_json_path)) |
|
op_types = [v['builtin_code'] for v in j['operator_codes']] |
|
# print('op types:', op_types) |
|
ops = j['subgraphs'][0]['operators'] |
|
# print('num of ops:', len(ops)) |
|
return ops, op_types |
|
|
|
|
|
def make_graph(ops, op_types, interpreter): |
|
tensors = {} |
|
input_details = interpreter.get_input_details() |
|
output_details = interpreter.get_output_details() |
|
# print(input_details) |
|
for input_detail in input_details: |
|
tensors[input_detail['index']] = tf.placeholder( |
|
dtype=input_detail['dtype'], |
|
shape=input_detail['shape'], |
|
name=input_detail['name']) |
|
|
|
for index, op in enumerate(ops): |
|
print('op: ', op) |
|
op_type = op_types[op['opcode_index']] |
|
if op_type == 'CONV_2D': |
|
input_tensor = tensors[op['inputs'][0]] |
|
weights_detail = interpreter._get_tensor_details(op['inputs'][1]) |
|
bias_detail = interpreter._get_tensor_details(op['inputs'][2]) |
|
output_detail = interpreter._get_tensor_details(op['outputs'][0]) |
|
# print('weights_detail: ', weights_detail) |
|
# print('bias_detail: ', bias_detail) |
|
# print('output_detail: ', output_detail) |
|
weights_array = interpreter.get_tensor(weights_detail['index']) |
|
weights_array = np.transpose(weights_array, (1, 2, 3, 0)) |
|
bias_array = interpreter.get_tensor(bias_detail['index']) |
|
weights = tf.Variable(weights_array, name=weights_detail['name']) |
|
bias = tf.Variable(bias_array, name=bias_detail['name']) |
|
options = op['builtin_options'] |
|
output_tensor = tf.nn.conv2d( |
|
input_tensor, |
|
weights, |
|
strides=[1, options['stride_h'], options['stride_w'], 1], |
|
padding=options['padding'], |
|
dilations=[ |
|
1, options['dilation_h_factor'], |
|
options['dilation_w_factor'], 1 |
|
], |
|
name=output_detail['name'] + '/conv2d') |
|
output_tensor = tf.add( |
|
output_tensor, bias, name=output_detail['name']) |
|
tensors[output_detail['index']] = output_tensor |
|
elif op_type == 'DEPTHWISE_CONV_2D': |
|
input_tensor = tensors[op['inputs'][0]] |
|
weights_detail = interpreter._get_tensor_details(op['inputs'][1]) |
|
bias_detail = interpreter._get_tensor_details(op['inputs'][2]) |
|
output_detail = interpreter._get_tensor_details(op['outputs'][0]) |
|
# print('weights_detail: ', weights_detail) |
|
# print('bias_detail: ', bias_detail) |
|
# print('output_detail: ', output_detail) |
|
weights_array = interpreter.get_tensor(weights_detail['index']) |
|
weights_array = np.transpose(weights_array, (1, 2, 3, 0)) |
|
bias_array = interpreter.get_tensor(bias_detail['index']) |
|
weights = tf.Variable(weights_array, name=weights_detail['name']) |
|
bias = tf.Variable(bias_array, name=bias_detail['name']) |
|
options = op['builtin_options'] |
|
output_tensor = tf.nn.depthwise_conv2d( |
|
input_tensor, |
|
weights, |
|
strides=[1, options['stride_h'], options['stride_w'], 1], |
|
padding=options['padding'], |
|
# dilations=[ |
|
# 1, options['dilation_h_factor'], |
|
# options['dilation_w_factor'], 1 |
|
# ], |
|
name=output_detail['name'] + '/depthwise_conv2d') |
|
output_tensor = tf.add( |
|
output_tensor, bias, name=output_detail['name']) |
|
tensors[output_detail['index']] = output_tensor |
|
elif op_type == 'MAX_POOL_2D': |
|
input_tensor = tensors[op['inputs'][0]] |
|
output_detail = interpreter._get_tensor_details(op['outputs'][0]) |
|
options = op['builtin_options'] |
|
output_tensor = tf.nn.max_pool( |
|
input_tensor, |
|
ksize=[ |
|
1, options['filter_height'], options['filter_width'], 1 |
|
], |
|
strides=[1, options['stride_h'], options['stride_w'], 1], |
|
padding=options['padding'], |
|
name=output_detail['name']) |
|
tensors[output_detail['index']] = output_tensor |
|
elif op_type == 'PAD': |
|
input_tensor = tensors[op['inputs'][0]] |
|
output_detail = interpreter._get_tensor_details(op['outputs'][0]) |
|
paddings_detail = interpreter._get_tensor_details(op['inputs'][1]) |
|
# print('output_detail:', output_detail) |
|
# print('paddings_detail:', paddings_detail) |
|
paddings_array = interpreter.get_tensor(paddings_detail['index']) |
|
paddings = tf.Variable( |
|
paddings_array, name=paddings_detail['name']) |
|
output_tensor = tf.pad( |
|
input_tensor, paddings, name=output_detail['name']) |
|
tensors[output_detail['index']] = output_tensor |
|
elif op_type == 'RELU': |
|
output_detail = interpreter._get_tensor_details(op['outputs'][0]) |
|
input_tensor = tensors[op['inputs'][0]] |
|
output_tensor = tf.nn.relu( |
|
input_tensor, name=output_detail['name']) |
|
tensors[output_detail['index']] = output_tensor |
|
elif op_type == 'RESHAPE': |
|
input_tensor = tensors[op['inputs'][0]] |
|
output_detail = interpreter._get_tensor_details(op['outputs'][0]) |
|
options = op['builtin_options'] |
|
output_tensor = tf.reshape( |
|
input_tensor, options['new_shape'], name=output_detail['name']) |
|
tensors[output_detail['index']] = output_tensor |
|
elif op_type == 'ADD': |
|
output_detail = interpreter._get_tensor_details(op['outputs'][0]) |
|
input_tensor_0 = tensors[op['inputs'][0]] |
|
input_tensor_1 = tensors[op['inputs'][1]] |
|
output_tensor = tf.add( |
|
input_tensor_0, input_tensor_1, name=output_detail['name']) |
|
tensors[output_detail['index']] = output_tensor |
|
elif op_type == 'CONCATENATION': |
|
output_detail = interpreter._get_tensor_details(op['outputs'][0]) |
|
input_tensor_0 = tensors[op['inputs'][0]] |
|
input_tensor_1 = tensors[op['inputs'][1]] |
|
options = op['builtin_options'] |
|
output_tensor = tf.concat([input_tensor_0, input_tensor_1], |
|
options['axis'], |
|
name=output_detail['name']) |
|
tensors[output_detail['index']] = output_tensor |
|
else: |
|
raise ValueError(op_type) |
|
|
|
|
|
def main(): |
|
gen_model_json() |
|
ops, op_types = parse_json() |
|
|
|
interpreter = tf.lite.Interpreter(model_path) |
|
interpreter.allocate_tensors() |
|
# input_details = interpreter.get_input_details() |
|
# output_details = interpreter.get_output_details() |
|
# print(input_details) |
|
# print(output_details) |
|
# for i in range(num_tensors): |
|
# detail = interpreter._get_tensor_details(i) |
|
# print(detail) |
|
|
|
make_graph(ops, op_types, interpreter) |
|
|
|
config = tf.ConfigProto() |
|
config.gpu_options.allow_growth = True |
|
graph = tf.get_default_graph() |
|
# writer = tf.summary.FileWriter(os.path.splitext(output_pb_path)[0]) |
|
# writer.add_graph(graph) |
|
# writer.flush() |
|
# writer.close() |
|
with tf.Session(config=config, graph=graph) as sess: |
|
sess.run(tf.global_variables_initializer()) |
|
graph_def = tf.graph_util.convert_variables_to_constants( |
|
sess=sess, |
|
input_graph_def=graph.as_graph_def(), |
|
output_node_names=output_node_names) |
|
|
|
with tf.gfile.GFile(output_pb_path, 'wb') as f: |
|
f.write(graph_def.SerializeToString()) |
|
|
|
tf.saved_model.simple_save( |
|
sess, |
|
output_savedmodel_path, |
|
inputs={'input': graph.get_tensor_by_name('input:0')}, |
|
outputs={ |
|
'classificators': graph.get_tensor_by_name('classificators:0'), |
|
'regressors': graph.get_tensor_by_name('regressors:0') |
|
}) |
|
|
|
|
|
if __name__ == '__main__': |
|
main() |
@PINTO0309 On which of the folders? Sorry, I don't really have deep understand ML yet: