Last active
February 23, 2016 02:15
-
-
Save tyarkoni/e20ab0105a1ddb4a1648 to your computer and use it in GitHub Desktop.
Simulates correlation between effect sizes of original studies and replication studies
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import numpy as np | |
import scipy.stats as ss | |
import matplotlib.pyplot as plt | |
g1_d_mu = 0.4 | |
g1_d_sd = 0.4 | |
prop_null = 0.3 | |
n_subs = 20 | |
n_studies = 400 | |
grp1n = np.round(n_studies * prop_null) | |
grp2n = n_studies - grp1n | |
def select_sig(x, n, p=0.05): | |
t, p = ss.ttest_1samp(x, np.zeros(len(x)), axis=1) | |
sig_inds = np.where((p < 0.05) & ( t > 0))[0] | |
xt = x[sig_inds[:n], :] | |
d = xt.mean(1) / xt.std(1) | |
return (d, sig_inds) | |
# Null-effect study group | |
x = np.random.normal(size=(grp1n*50, n_subs)) | |
d0_t1 = select_sig(x, grp1n)[0] | |
x0_t2 = np.random.normal(size=(grp1n, n_subs)) | |
d0_t2 = x0_t2.mean(1) / x0_t2.std(1) | |
print('Group 1 r: %.2f' % np.corrcoef(d0_t1, d0_t2)[0, 1]) | |
plt.scatter(d0_t1, d0_t2, c='b') | |
# Real effect study group | |
_d = np.random.normal(g1_d_mu, g1_d_sd, size=grp2n*10) | |
cov = np.eye(grp2n*10) | |
x1_t1 = np.random.multivariate_normal(_d, cov, size=n_subs).T | |
d1_t1, val_inds = select_sig(x1_t1, grp2n) | |
x1_t2 = np.random.multivariate_normal(_d, cov, size=n_subs).T[val_inds][:grp2n] | |
d1_t2 = x1_t2.mean(1) / x1_t2.std(1) | |
plt.scatter(d1_t1, d1_t2, c='g') | |
print('Group 2 r: %.2f' % np.corrcoef(d1_t1, d1_t2)[0, 1]) | |
print('Collapsed r: %.2f' % np.corrcoef(np.r_[d0_t1, d1_t1], np.r_[d0_t2, d1_t2])[0, 1]) | |
plt.show() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment