-
-
Save tylermorganwall/3ee1c6e2a5dff19aca7836c05cbbf9ac to your computer and use it in GitHub Desktop.
library(rayshader) | |
library(rayrender) | |
popdata = raster::raster("gpw_v4_population_density_rev11_2020_15_min.tif") | |
population_mat = rayshader:::flipud(raster_to_matrix(popdata)) | |
above1 = population_mat > 1 | |
above5 = population_mat > 5 | |
above10 = population_mat > 10 | |
above50 = population_mat > 50 | |
above100 = population_mat > 100 | |
above500 = population_mat > 500 | |
above1000 = population_mat > 1000 | |
above1[is.na(above1)] = 0 | |
above5[is.na(above5)] = 0 | |
above10[is.na(above10)] = 0 | |
above50[is.na(above50)] = 0 | |
above100[is.na(above100)] = 0 | |
above500[is.na(above500)] = 0 | |
above1000[is.na(above1000)] = 0 | |
turbocols = viridis::turbo(7) | |
wc = 0.4 | |
chart_items = | |
xy_rect(x=-1,y=-1.4,z=1,xwidth=wc,ywidth=0.2, | |
material=diffuse(color="grey30")) %>% | |
add_object(text3d(label = "0", x=-1,y=-1.4,z=1.01, text_height = 0.1, | |
material=diffuse(color="black"))) %>% | |
add_object(xy_rect(x=-0.6,y=-1.4,z=1,xwidth=wc,ywidth=0.2, | |
material=diffuse(color=turbocols[1]))) %>% | |
add_object(text3d(label = "1>", x=-0.6,y=-1.4,z=1.01, text_height = 0.1, | |
material=diffuse(color="black"))) %>% | |
add_object(xy_rect(x=-0.2,y=-1.4,z=1,xwidth=wc,ywidth=0.2, | |
material=diffuse(color=turbocols[2]))) %>% | |
add_object(text3d(label = "5>", x=-0.2,y=-1.4,z=1.01, text_height = 0.1, | |
material=diffuse(color="black"))) %>% | |
add_object(xy_rect(x=0.2,y=-1.4,z=1,xwidth=wc,ywidth=0.2, | |
material=diffuse(color=turbocols[3]))) %>% | |
add_object(text3d(label = "10>", x=0.2,y=-1.4,z=1.01, text_height = 0.1, | |
material=diffuse(color="black"))) %>% | |
add_object(xy_rect(x=0.6,y=-1.4,z=1,xwidth=wc,ywidth=0.2, | |
material=diffuse(color=turbocols[4]))) %>% | |
add_object(text3d(label = "50>", x=0.6,y=-1.4,z=1.01, text_height = 0.1, | |
material=diffuse(color="black"))) %>% | |
add_object(xy_rect(x=1.0,y=-1.4,z=1,xwidth=wc,ywidth=0.2, | |
material=diffuse(color=turbocols[5]))) %>% | |
add_object(text3d(label = "100>", x=1.0,y=-1.4,z=1.01, text_height = 0.1, | |
material=diffuse(color="black"))) %>% | |
add_object(xy_rect(x=1.4,y=-1.4,z=1,xwidth=wc,ywidth=0.2, | |
material=diffuse(color=turbocols[6]))) %>% | |
add_object(text3d(label = "500>", x=1.4,y=-1.4,z=1.01, text_height = 0.1, | |
material=diffuse(color="black"))) %>% | |
add_object(xy_rect(x=1.8,y=-1.4,z=1,xwidth=wc,ywidth=0.2, | |
material=diffuse(color=turbocols[7]))) %>% | |
add_object(text3d(label = "1000>", x=1.8,y=-1.4,z=1.01, text_height = 0.1, | |
material=diffuse(color="black"))) %>% | |
add_object(text3d(label = "People per 30km^2", x=-0.55,y=-1.2,z=1.01, text_height = 0.15, | |
material=diffuse(color="white"))) %>% | |
group_objects(group_translate = c(-0.4,0,0),group_scale=c(0.85,0.85,0.85)) | |
radm = 1.2 | |
for(i in 1:720) { | |
chart_items %>% | |
add_object(group_objects( | |
sphere(radius=0.99*radm,material=diffuse(color="grey20")) %>% | |
add_object(sphere(radius=1.0*radm,material= diffuse(color=turbocols[1],alpha_texture = above1))) %>% | |
add_object(sphere(radius=1.02*radm,material=diffuse(color=turbocols[2],alpha_texture = above5))) %>% | |
add_object(sphere(radius=1.03*radm,material=diffuse(color=turbocols[3],alpha_texture = above10))) %>% | |
add_object(sphere(radius=1.04*radm,material=diffuse(color=turbocols[4],alpha_texture = above50))) %>% | |
add_object(sphere(radius=1.05*radm,material=diffuse(color=turbocols[5],alpha_texture = above100))) %>% | |
add_object(sphere(radius=1.06*radm,material=diffuse(color=turbocols[6],alpha_texture = above500))) %>% | |
add_object(sphere(radius=1.07*radm,material=diffuse(color=turbocols[7],alpha_texture = above1000))), | |
group_angle = c(0,-i/2,0))) %>% | |
add_object(sphere(y=10,z=5,radius=3,material=light(intensity = 20))) %>% | |
add_object(sphere(y=0,z=20,radius=3,material=light(intensity = 20))) %>% | |
render_scene(width=1000,height=1000,samples=128,rotate_env = 180,clamp_value = 10, | |
aperture=0, | |
filename=sprintf("worldpopfocus%i.png",i), lookat=c(0,-0.2,0)) | |
} |
At the risk of asking a silly question, where can I get the gpw_v4_population_density_rev11_2020_15_min.tif
file? I've tried searching Github, as well as the general internet, for it, but I can only find a handful of results, all of which lead back to this gist or a few others. Thanks in advance!
Not so obvious, but a link pointing in the right direction is in my comment above [here].(https://gist.github.com/tylermorganwall/3ee1c6e2a5dff19aca7836c05cbbf9ac?permalink_comment_id=4156882#gistcomment-4156882)
If you follow that through to a download page, and select using hints in the file name, that should get you there.
https://sedac.ciesin.columbia.edu/data/set/gpw-v4-population-density-adjusted-to-2015-unwpp-country-totals-rev11/data-download
I tried making the images into a gif from R with this suggestion, but I think it read too much into memory, and so failed:
https://www.nagraj.net/notes/gifs-in-r/
I will try command line options (pasting into terminal on linux) with this suggestion:
#https://askubuntu.com/a/757963/1596315
convert -resize 20% -delay 20 -loop 0 `ls -v *.png` myimage.gif
#The -v is necessary to order images correctly