Created
August 13, 2013 20:31
-
-
Save tylerneylon/6225381 to your computer and use it in GitHub Desktop.
Empirical bounds checking on approximations related to the performance of a parallel queue structure
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#!/usr/bin/python | |
# | |
# queue_math.py | |
# | |
# Checking some calculations on the memory efficiency of a | |
# hypothetical queue data structure. | |
# | |
import random | |
import sys | |
# Parameters | |
num_trials = 1000 | |
# Functions | |
def lower(n, k): | |
prod = 1.0 | |
for i in range(k): | |
prod *= (n - i) | |
return prod | |
def exp_m_for_k_is_1(n): | |
sum = 0 | |
for i in range(1, n + 1): | |
sum += lower(n, i) / float(n ** i) | |
return sum | |
def monte_carlo_m_for_k_is_1(n): | |
global num_trials | |
m_sum = 0 | |
for trial in xrange(num_trials): | |
array = [0] * n | |
for i in xrange(n + 1): | |
j = random.randrange(n) | |
if array[j]: | |
m_sum += i | |
break | |
array[j] = 1 | |
return m_sum / float(num_trials) | |
def p_sub_ell(n, k, ell): | |
prod = 1.0 | |
for i in range(ell): | |
prod *= (1 - (i / float(n)) ** k) | |
return prod | |
def exp_m(n, k): | |
sum = 0 | |
for ell in range(1, n + 1): | |
sum += p_sub_ell(n, k, ell) | |
return sum | |
def monte_carlo_m(n, k): | |
global num_trials | |
m_sum = 0 | |
for trial in xrange(num_trials): | |
array = [0] * n | |
for i in xrange(n + 1): | |
for j in xrange(k): | |
h = random.randrange(n) | |
if array[h]: continue | |
array[h] = 1 | |
break | |
else: # Only runs if break never happens. | |
m_sum += i | |
break | |
return m_sum / float(num_trials) | |
def lower_bound_m(n, k): | |
a = n ** (k / float(k + 1)) | |
b = 1 - 1 / float((k + 2) * (k + 1)) | |
return a * b | |
def lower_bound_m2(n, k): | |
if k + 1 > n: return 0, 0 # This bound is only useful for k + 1 <= n. | |
lam = (k + 1) ** (1 / float(k + 1)) | |
alpha = k / float(k + 1) | |
t = int(lam * (n ** alpha)) | |
val = t - (t ** (k + 2)) / float((k + 2) * (k + 1) * (n ** k)) | |
return val, t | |
def print_table(max_n, k): | |
print('') | |
print('k=%d' % k) | |
print('n\tappr1\tappr2\tsum\tmonte carlo') | |
print('----------------------------------------') | |
for n in range(1, max_n + 1): | |
a1 = lower_bound_m(n, k) | |
a2, t = lower_bound_m2(n, k) | |
a2 = '%.3f' % a2 if a2 else '-' | |
s = exp_m(n, k) | |
m = monte_carlo_m(n, k) | |
print('%d\t%.3f\t%s\t%.3f\t%.3f' % (n, a1, a2, s, m)) | |
print('') | |
# Main | |
if __name__ == '__main__': | |
k = 2 | |
if len(sys.argv) > 1: | |
k = int(sys.argv[1]) | |
print_table(30, k) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment