Skip to content

Instantly share code, notes, and snippets.

@tylerneylon
Created August 13, 2013 20:31
Show Gist options
  • Save tylerneylon/6225381 to your computer and use it in GitHub Desktop.
Save tylerneylon/6225381 to your computer and use it in GitHub Desktop.
Empirical bounds checking on approximations related to the performance of a parallel queue structure
#!/usr/bin/python
#
# queue_math.py
#
# Checking some calculations on the memory efficiency of a
# hypothetical queue data structure.
#
import random
import sys
# Parameters
num_trials = 1000
# Functions
def lower(n, k):
prod = 1.0
for i in range(k):
prod *= (n - i)
return prod
def exp_m_for_k_is_1(n):
sum = 0
for i in range(1, n + 1):
sum += lower(n, i) / float(n ** i)
return sum
def monte_carlo_m_for_k_is_1(n):
global num_trials
m_sum = 0
for trial in xrange(num_trials):
array = [0] * n
for i in xrange(n + 1):
j = random.randrange(n)
if array[j]:
m_sum += i
break
array[j] = 1
return m_sum / float(num_trials)
def p_sub_ell(n, k, ell):
prod = 1.0
for i in range(ell):
prod *= (1 - (i / float(n)) ** k)
return prod
def exp_m(n, k):
sum = 0
for ell in range(1, n + 1):
sum += p_sub_ell(n, k, ell)
return sum
def monte_carlo_m(n, k):
global num_trials
m_sum = 0
for trial in xrange(num_trials):
array = [0] * n
for i in xrange(n + 1):
for j in xrange(k):
h = random.randrange(n)
if array[h]: continue
array[h] = 1
break
else: # Only runs if break never happens.
m_sum += i
break
return m_sum / float(num_trials)
def lower_bound_m(n, k):
a = n ** (k / float(k + 1))
b = 1 - 1 / float((k + 2) * (k + 1))
return a * b
def lower_bound_m2(n, k):
if k + 1 > n: return 0, 0 # This bound is only useful for k + 1 <= n.
lam = (k + 1) ** (1 / float(k + 1))
alpha = k / float(k + 1)
t = int(lam * (n ** alpha))
val = t - (t ** (k + 2)) / float((k + 2) * (k + 1) * (n ** k))
return val, t
def print_table(max_n, k):
print('')
print('k=%d' % k)
print('n\tappr1\tappr2\tsum\tmonte carlo')
print('----------------------------------------')
for n in range(1, max_n + 1):
a1 = lower_bound_m(n, k)
a2, t = lower_bound_m2(n, k)
a2 = '%.3f' % a2 if a2 else '-'
s = exp_m(n, k)
m = monte_carlo_m(n, k)
print('%d\t%.3f\t%s\t%.3f\t%.3f' % (n, a1, a2, s, m))
print('')
# Main
if __name__ == '__main__':
k = 2
if len(sys.argv) > 1:
k = int(sys.argv[1])
print_table(30, k)
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment