Last active
May 26, 2018 20:34
-
-
Save typio/0227400e0e3b1df58bb9506452a83c55 to your computer and use it in GitHub Desktop.
shiffman's tf.js linear regression
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
<html lang="en"> | |
<head> | |
<meta charset="UTF-8"> | |
<meta name="viewport" content="width=device-width, initial-scale=1.0"> | |
<meta http-equiv="X-UA-Compatible" content="ie=edge"> | |
<script src="https://cdnjs.cloudflare.com/ajax/libs/p5.js/0.6.1/p5.min.js"></script> | |
<script src="https://cdn.jsdelivr.net/npm/@tensorflow/[email protected]"> | |
</script> | |
<script src="./sketch.js"></script> | |
<title>linear regression</title> | |
</head> | |
</html> |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
let x_vals = []; | |
let y_vals = []; | |
let m, b; | |
const learningRate = .5; | |
const optimizer = tf.train.sgd(learningRate); | |
function setup() { | |
createCanvas(400, 400); | |
m = tf.variable(tf.scalar(random(1))); | |
b = tf.variable(tf.scalar(random(1))); | |
} | |
function loss(pred, labels) { | |
return pred.sub(labels).square().mean(); | |
} | |
function predict(x) { | |
const xs = tf.tensor1d(x); | |
// y = mx + b | |
const ys = xs.mul(m).add(b); | |
return ys; | |
} | |
function mousePressed() { | |
let x = map(mouseX, 0, width, 0, 1); | |
let y = map(mouseY, 0, height, 1, 0); | |
x_vals.push(x); | |
y_vals.push(y); | |
} | |
function draw() { | |
background(51); | |
stroke(255); | |
strokeWeight(4); | |
for (let i = 0; i < x_vals.length; i++) { | |
let px = map(x_vals[i], 0, 1, 0, width); | |
let py = map(y_vals[i], 0, 1, height, 0); | |
point(px, py) | |
} | |
tf.tidy(() => { | |
if (x_vals.length > 0) { | |
const ys = tf.tensor1d(y_vals); | |
optimizer.minimize(() => loss(predict(x_vals), ys)); | |
} | |
}); | |
const lineX = [0, 1]; | |
const ys = tf.tidy(() => predict(lineX)); | |
let lineY = ys.dataSync(); | |
ys.dispose(); | |
let x1 = map(lineX[0], 0, 1, 0, width); | |
let x2 = map(lineX[1], 0, 1, 0, width); | |
let y1 = map(lineY[0], 0, 1, height, 0); | |
let y2 = map(lineY[1], 0, 1, height, 0); | |
line(x1, y1, x2, y2); | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment